
A simple time-varying observer for speed

estimation of UAV

Mohamed Boutayeb ∗ Edouard Richard ∗∗

Hugues Rafaralahy ∗ Harouna Souley Ali ∗ Guy Zaloylo ∗∗

∗ CRAN − CNRS UMR 7039, Nancy Université, IUT de Longwy, 186
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∗∗ Nancy Université, IUT de Longwy, 186 rue de Lorraine, 54400

Cosnes et Romain, France (Tel: +33 3 82 39 62 23; e-mail:
Edouard.Richard@iut-longwy.uhp-nancy.fr)

Abstract: This note deals with the speed estimation of Unmanned Aerial Vehicle (UAV)
using linear acceleration measurements. The estimator is a useful time-varying reduced-order
Luemberger like observer such that the observation error is reduced to a time varying linear
differential equation. Asymptotic stability of the estimation error is proved using the Lyapunov
approach and the Barbalat lemma. Moreover, we generalize the proposed approach to systems
with partial accelerations measurements. Conditions for the existence of the observer, which
are less restrictive than those given in the literature, are given. A numerical simulation on a
Quad-rotor UAV is performed to illustrate the effectiveness of the approach.
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1. INTRODUCTION

UAV and more particularly mini-UAV must be as light as
possible for technological reasons but also for low cost and
low energy consumption. In fact, the weight of the drone
can reduce its performances considerably. It is therefore
rather natural to use a state estimator to replace possibly
one or several sensors. Observers are usually used to
estimate the non measured state components for output
feedback control or to generate residual signals for fault
diagnosis. During the last decade, tremendous research
activities focused on structural, modelling and control
design for UAV (see for example Castillo et al. [2005],
Alabazares [2007], Lee et al. [2007]). However, very few
results were established for the state estimation. Among
the recent works on this subject, we mention the work
of Lee et al. [2007], the authors propose a velocities
estimator for a tracking control of an under-actuated
Quad-rotor UAV using only linear and angular positions.
In Madani and Benallegue [2007] and Benallegue et al.
[2008], sliding-mode observers based control are proposed
to estimate the effect of external perturbations using
measurement of positions and yaw angle. Observer-based
control for visual servo control of UAV has been proposed
for example in LeBras et al. [2007] using image provided
by a camera for the estimation of the velocity. For the
use of observers in faults diagnosis, we can mention for
exemple Sharma and Aldeen [2007], in which two cascaded
sliding mode observers are proposed first to estimate the
disturbances (effect of wind) and second to reconstruct
actuators faults. In Bateman et al. [2007], a linear input
decoupled functional observer is proposed to estimate
actuators failures of UAV. The proposed method is based

on the linearization of the model around an operating
point. A variable structure observer is performed in Slegers
and Costello [2007] for actuator bias reconstruction of
UAV without using a linearization. Extended Kalman
Filter is used in Prevost et al. [2007] to estimate the state
of a moving object detected by a UAV. The disadvantage
of this method is its only local convergence. All the
results cited above are obtained using linear and angular
positions.

In Benzemrane et al. [2007], the authors propose a nice
technique to estimate the speed of a Quad-rotor UAV from
acceleration measurements, provided by Inertial Measure-
ment Units. The approach is based on an adaptive observer
technique using cascade nonlinear filters that lead, unfor-
tunately, to a high order observer and therefore, the com-
putational requirements increase considerably for on-line
control purpose. More precisely, the observer is composed
with two matrix differential equations in cascade with two
nonlinear filters.

Motivated by this interesting work of Benzemrane et al.
[2007], we propose here a useful and alternative ap-
proach for the speed estimation through a straightforward
reduced-order time-varying observer. Indeed, one of the
main contributions is that the state observers order is
equal to the dimension of the state vector; this has the
advantage to be implemented in real time applications.
Furthermore, an extension to only partial acceleration
measurements was established. In both cases we provide
asymptotic stability conditions that are reduced to simple
and checkable one. In the last section, numerical examples,
describing a Quad-rotor, show the good performances of
the proposed approach.
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2. UAV MODELLING

Several works deal with the quadrotor modelling (see for
example Alabazares [2007] and Castillo et al. [2005]).
In this section we recall a sketch of modelling as well
as the notations are introduced. In order to model the
four-rotor rotorcraft dynamics two frames are defined

i .e. Ri(O,
−→
E 1,

−→
E 2,

−→
E 3) is an inertial frame attached to

the earth and Rb(G,
−→e 1,

−→e 2,
−→e 3) is a body fixed frame

attached to its center of mass.
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Fig. 1. Quadrotor model

The UAV model can be deduced from the rotation dy-
namic Newton-Euler law (1) and the translation dynamic
Newton-Euler law (2)

(

dI−→ω

dt

)

Rb

+ −→ω ∧ (I−→ω ) =
−→
M (1)

m

(

d−→v G
dt

)

Rb

+ −→ω ∧ (m−→v G) =
−→
F (2)

where I is the inertia matrix and −→ω = (p, q, r)⊤ is the
angular velocity both expressed in the body fixed frame.
−→
M represents the torque derived from the differential
rotors thrusts, m is the vehicle mass, −→v G = (u, v, w)⊤

is the center of mass velocity expressed in the body

fixed frame and
−→
F is the sum of the four rotor thrust−→

T = −T−→e 3 and the weight
−→
P = mg

−→
E 3. In order to

express the weight with respect to the body fixed frame,
the attitude matrix R must be used. By means of Euler
angles Φ(roll) , θ(pitch) , Ψ(yaw), the attitude matrix can
be written as

R =

(

cθcΨ sΦsθcΨ − cΦsΨ cΦsθcΨ + sΦsΨ
cθsΨ sΦsθsΨ + cΦcΨ cΦsθsΨ − sΦcΨ
−sθ sΦcθ cΦcθ

)

(3)

where c. = cos(.) and s. = sin(.).

From the rotation dynamic Newton-Euler law (1) the
dynamics of the angular velocity is given by



























ṗ = −
Izz − Iyy
Ixx

qr +
τΦ
Ixx

q̇ = −
Ixx − Izz
Iyy

pr +
τθ
Iyy

ṙ = −
Iyy − Ixx

Izz
pq +

τψ
Izz

(4)

where Ixx , Iyy and Izz are the inertia matrix terms ex-
pressed in the principal inertia axis, τΦ , τθ and τψ rep-
resent the control torques due to the differential rotors
thrusts. Using the center of mass dynamics equation (2)
and the attitude matrix (3), the translation dynamics with
respect to the body frame is











u̇ = −qw + rv − g sin θ
v̇ = −ru+ pw + g sinΦ cos θ

ẇ = −pv + qu+ g cos Φ cos θ −
T

m

(5)

where T is the total thrust which represents a control
input. The time derivative of the Euler angles are related
to the angular velocity −→ω by the following relation











Φ̇ = p+ q tan θ sinΦ + r tan θ cos Φ

θ̇ = q cos Φ − r sinΦ

ψ̇ = q
sinΦ

cos θ
+ r

cos Φ

cos θ

(6)

The dynamic model of the four-rotor rotorcraft is then
given by equations (4), (5) and (6).

3. PROBLEM STATEMENT AND OBSERVERS
DESIGN

Since the UAV is equiped only with an Inertial Measure-
ment Unit it is assumed that the measured variables are
the Euler angles η = (Φ , θ , ψ)⊤, the angular velocity −→ω
and the acceleration of the center of mass (u̇, v̇, ẇ)⊤ given
by the sensors embedded in the four-rotor rotorcraft. The
states of equations (4) and (6) are then measured.

3.1 Observer design with three measured accelerations

To estimate the angular velocity x = (u, v, w)T we consider
the model of system (5). Taking into account the measured
variables, the system (5) can be rewritten as:

ẋ(t) = A(t)x(t) + b(t)
y(t) = ẋ(t)

(7)

with

A(t) =

(

0 r −q
−r 0 p
q −p 0

)

and

b(t) =







−g sin θ
g sinΦ cos θ

g cos Φ cos θ −
T

m







We consider the standard state observer form
˙̂x(t) = N(t)x̂(t) +M(t)b(t) +K(t)y(t) (8)

where the time varying matrices N(t), M(t), K(t) will be
defined later.
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Lemma 1. If the time varying matrices N(t), M(t), K(t)
are chosen as

N(t) = −γAT (t)A(t) (9a)

M(t) = −γAT (t) (9b)

K(t) = I + γAT (t) (9c)

where γ is a strictly positive tuning parameter and if −→ω (t),
−̇→ω (t) and −̈→ω (t) are bounded and if at least one component

of the vector −→ω ∧ −̇→ω does not go to zero at infinity then
the observation error is asymptotically stable.

Proof. Using equations (7) and (8) the observation error
ǫ = x− x̂ dynamics can be written as

ǫ̇ = Nǫ+ (A−N −KA)x+ (I −M −K)b (10)

It is easy to see that the unbiasedness conditions

A−N −KA= 0

I −M −K = 0

are satisfied if matrices N(t), M(t), K(t) are chosen as in
(9) then the observation error becomes

ǫ̇(t) = −γA⊤(t)A(t)ǫ(t) (11)

The stability proof follows Lyapunov techniques and the
use of Barbalat’s lemma (see Khalil [1992]). Consider the
following Lyapunov function candidate V (ǫ) = ǫ⊤ǫ. The
time derivative of V along the observation error dynamics
(11) leads to

V̇ = −2γ‖Aǫ‖2 ≤ 0 (12)

Since V (ǫ(t)) is monotonicaly non increasing and bounded
below by zero, V (ǫ(t)) → l as t→ ∞ where l is finite. Then
ǫ(t) is bounded.

Now, we use Barbalat’s lemma in order to prove V̇ (t) → 0.

The time derivative of V̇ along equation (11) gives

V̈ (ǫ(t)) = 4γ2ǫ⊤A⊤AA⊤Aǫ− 4γǫ⊤Ȧ⊤Aǫ.

Since ǫ(t) , A(t) , Ȧ(t) are bounded then V̈ is bounded,

which implies that V̇ (ǫ(t)) is uniformly continuous. Now

using Barbalat’s lemma it follows that V̇ (ǫ(t)) → 0 as
t→ ∞. Then, from relation (12) A(t)ǫ(t) → 0 as t→ ∞.

In order to use again Barbalat’s lemma, we compute the
time derivatives of the function ϕ(t) = A(t)ǫ(t). A simple
calculation gives

ϕ̇(t) = (Ȧ− γAA⊤A)ǫ

ϕ̈(t) = (Ä− 2γȦA⊤A− γAȦ⊤A− γAA⊤Ȧ)ǫ.

AsA(t) , Ȧ(t) , Ä(t) , ǫ(t) are bounded, then ϕ̈(t) is bounded
which implies that ϕ̇(t) is uniformly continuous. Since
ϕ(t) → 0 and ϕ̇(t) is uniformly continuous it follows from

Barabalat’s lemma that ϕ̇(t) = (Ȧ− γAA⊤A)ǫ→ 0 . Now

since ϕ̇(t) → 0 and Aǫ→ 0 then Ȧǫ→ 0.

Next, the two conditions Aǫ → 0 and Ȧǫ → 0 can be
written as

{

r(t)ǫ2(t) − q(t)ǫ3(t) → 0
−r(t)ǫ1(t) + p(t)ǫ3(t) → 0
q(t)ǫ1(t) − p(t)ǫ2(t) → 0

(13)

and
{

ṙ(t)ǫ2(t) − q̇(t)ǫ3(t) → 0
−ṙ(t)ǫ1(t) + ṗ(t)ǫ3(t) → 0
q̇(t)ǫ1(t) − ṗ(t)ǫ2(t) → 0

(14)

Using the first relations from (13) and (14) it is easy to
see that (q(t)ṙ(t) − q̇(t)r(t))ǫ3(t) → 0. Suppose that the
function q(t)ṙ(t) − q̇(t)r(t) (the first component of vector
−→ω ∧ −̇→ω ) does not go to zero at the inifinity, then ǫ3 → 0.
If r(t) → 0, then ṙ(t) → 0 as ṙ(t) is uniformly continuous
which is impossible while q(t)ṙ(t)− q̇(t)r(t) does not go to
zero at the infinity. Notice that q and q̇ are bounded. Using
ǫ3(t) → 0, from relation (13), it is obvious that ǫ1(t) → 0
and ǫ2(t) → 0. The same reasoning can be used with the

other components of the vector −→ω ∧ −̇→ω which proves the
asymptotical stability of the observation error. This ends
the proof.

3.2 Observer design with two measured accelerations

In this section, only the two first components of the ac-
celeration are measured. To estimate the angular velocity
x = (u, v, w)T we consider the model of system (5). Taking
into account the measured variables, the system (5) can be
rewritten as

ẋ(t) = A(t)x(t) + b(t)
y(t) = Cẋ(t)

(15)

with

C =

(

1 0 0
0 1 0

)

We consider again the state observer given in (8).

Lemma 2. Assume that the time-varying matrices N(t),
M(t), K(t) are chosen as

L(t) =

(

1 0
0 1

−p/r −q/r

)

(16a)

K(t) = L+ γAT (t)CT (16b)

N(t) = A(t) −K(t)CA(t) (16c)

M(t) = I −K(t)C (16d)

where γ is a strictly positive tuning parameter and if −→ω (t),
−̇→ω (t) and −̈→ω (t) are bounded and if at least one of the two

first components of the vector −→ω ∧−̇→ω does not go to zero at
infinity then the observation error is asymptotically stable.

Proof. Using equations (15) and (8) the observation error
ǫ = x− x̂ dynamics can be written as

ǫ̇ = Nǫ+ (A−N −KCA)x+ (I −M −KC)b (17)

It is easy to see that the unbiasedness conditions

A−N −KCA= 0

I −M −KC = 0

are satisfied if matrices N(t), M(t) are chosen as in (16).
Then the observation error becomes

ǫ̇(t) = Nǫ(t) (18)

Using the expression of K(t), one obtains

N(t) = A(t) − L(t)CA(t) − γAT (t)CTCA(t) (19)

Now, choosing L as in (16) yields A(t) − L(t)CA(t) = 0
and finally the observation error becomes

ǫ̇(t) = −γAT (t)CTCA(t)ǫ(t) (20)
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Consider the following Lyapunov function candidate V (ǫ) =
ǫ⊤ǫ. The time derivative of V along the observation error
dynamics (20) leads to

V̇ = −2γ‖CAǫ‖2 ≤ 0 (21)

Since V (ǫ(t)) is monotonicaly non increasing and bounded
below by zero, V (ǫ(t)) → l as t→ ∞ where l is finite. Then
ǫ(t) is bounded.

Now, we use Barbalat’s lemma in order to prove V̇ (t) → 0.

The time derivative of V̇ along equation (20) gives

V̈ (ǫ(t)) = 4γ2ǫ⊤ATCTCAATCTCAǫ− 4γǫT ȦTCTCAǫ.

Since ǫ(t) , A(t) , Ȧ(t) are bounded then V̈ is bounded,

which implies that V̇ (ǫ(t)) is uniformly continuous. Now

using Barbalat’s lemma it follows that V̇ (ǫ(t)) → 0 as
t→ ∞. Then, from relation (21) CA(t)ǫ(t) → 0 as t→ ∞.

In order to use again Barbalat’s lemma, we compute the
time derivatives of the function ϕ(t) = CA(t)ǫ(t). A simple
calculation gives

ϕ̇(t) = (CȦ− γCAATCTCA)ǫ

It is easy to show that if A(t) , Ȧ(t) , Ä(t) , ǫ(t) are
bounded, then ϕ̈(t) is bounded which implies that ϕ̇(t)
is uniformly continuous. Since ϕ(t) → 0 and ϕ̇(t) is uni-
formly continuous it follows from Barabalat’s lemma that
ϕ̇(t) = (CȦ− γCAATCTCA)ǫ → 0 as t → ∞. Now since

ϕ̇(t) → 0 and CAǫ→ 0 then CȦǫ→ 0.

Next, the two conditions Aǫ → 0 and Ȧǫ → 0 can be
written as

{

r(t)ǫ2(t) − q(t)ǫ3(t) → 0
−r(t)ǫ1(t) + p(t)ǫ3(t) → 0

(22)

and
{

ṙ(t)ǫ2(t) − q̇(t)ǫ3(t) → 0
−ṙ(t)ǫ1(t) + ṗ(t)ǫ3(t) → 0

(23)

Using the first relations from (22) and (23) it is easy to
see that (q(t)ṙ(t) − q̇(t)r(t))ǫ3(t) → 0. Suppose that the
function q(t)ṙ(t) − q̇(t)r(t) (the first component of vector
−→ω ∧ −̇→ω ) does not go to zero at the inifinity, then ǫ3 → 0.
If r(t) → 0, then ṙ(t) → 0 as ṙ(t) is uniformly continuous
which is impossible while q(t)ṙ(t)− q̇(t)r(t) does not go to
zero at the infinity. Notice that q and q̇ are bounded. Using
ǫ3(t) → 0, from relation (22), it is obvious that ǫ1(t) → 0
and ǫ2(t) → 0. The same reasoning can be used with the

second component of the vector −→ω ∧ −̇→ω which proves the
asymptotical stability of the observation error. This ends
the proof.

4. NUMERICAL SIMULATIONS

In this section, we applied our approach to design an
observer for the linear velocity of an UAV. In order to
show the influence of the design parameter γ, simulations
are carried out with two values of this parameter i .e.
γ = 50 and γ = 100 (fastest dynamics). The simutions
are performed with the following parameters (Benzemrane
et al. [2007]) m = 2.5 kg, Ixx = 224931 10−7 kg.m2,
Iyy = 222611 10−7 kg.m2 and Izz = 325130 10−7 kg.m2.

The following figures represent the observation error ǫi (ǫi
is the ith component of ǫ) for different cases

• case 1 : Observer given by lemma 1 without measure-
ment noise (figures 2 to 4)

• case 2 : Observer given by lemma 1 with Gaussian
(standard deviation : 1, mean value : 0) measurement
noise (figures 5 to 7)

• case 3 : Observer given by lemma 2 with Gaussian
(standard deviation : 1, mean value : 0) measurement
noise (figures 8 to 10)
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Fig. 2. Observation errors ε1(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 1
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Fig. 3. Observation errors ε2(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 1.
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Fig. 4. Observation errors ε3(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 1.
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Fig. 5. Observation errors ε1(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 2.
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Fig. 6. Observation errors ε2(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 2.
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Fig. 7. Observation errors ε3(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 2.
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Fig. 8. Observation errors ε1(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 3.
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Fig. 9. Observation errors ε2(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 3.
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Fig. 10. Observation errors ε3(t) with γ = 100 (fastest
dynamics) and γ = 50 : case 3.

One can see that all the observation errors are asymp-
totically stable. The tuning parameter γ allows to adjust
the observation error convergence rate without modifying
the stability conditions. Notice that the behaviour of the
observation error is weakly sensitive to the noise measure-
ment.

5. CONCLUSION

In this work a simple time-varying reduced-order observer
has been presented to estimate the linear velocity of an
UAV using full or partial acceleration measurements. Suffi-
cient conditions for the asymptotic stability of the observa-
tion error are given. Simulation results are promising and
seems to lead to an exponential stability. Future research
concerning a proof of exponential stability and observer
robustness will be done.
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