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Abstract: In this paper rational approximation of solutions to nonlinear optimal control
problems is considered. A computational procedure is presented that makes it possible to
compute a rational function that approximates the true optimal cost function. It is shown that
the rational function has the same series expansion around the origin as the true solution. Finally,
two examples are given that compares the new method with the power series approximation,
which is a rather well-known method to find approximative solutions.
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1. INTRODUCTION

This paper deals with the problem of finding an approx-
imative solution to an optimal feedback control problem
for a nonlinear system. The approximation problem is a
well studied area with many references, see for example
Beard et al. (1998) for a good survey. One of the major
methods for finding approximative optimal feedback laws
was invented by Al’brekht (1961) and later developed in
Lee and Markus (1967), Lukes (1969), and Krener (2001).
It is based on a power series solution of the Hamilton-
Jacobi-Bellman equation (HJB). The exact optimal solu-
tion is in general given by an infinite series. The obvious
way to get an implementable approximate solution is to
truncate the series after a finite number of terms. However,
this approximate solution tends to have bad properties for
large values of |x|, since these approximations often grow
too fast towards infinity.

The method considered in this paper will instead approx-
imate the optimal cost by a rational function. The advan-
tage is that with a rational approximation it is possible
to have the exact same power series expansion up to some
given order as the power series method would give, which
means that the fit with the true optimal solution will be
good for small x, while at the same time it is possible to
control the rate of growth for large x. A drawback is that it
normally comes with a higher computational complexity.

A similar computational method can be found in Vannelli
and Vidyasagar (1985), where it is used to estimate the
region of attraction for nonlinear systems.

Notation: The notation in this paper is fairly standard.
The gradient of Vh, i.e., ∂Vh

∂x
is denoted Vh;x. For a power

series a(x), a[m](x) will be used to denote the terms of
degree m and am](x) will denote all terms up to order m.

2. PROBLEM FORMULATION

Consider an optimal control problem

V (x0) = inf
u(·)

∫
∞

0

L(x, u) dt

s.t. ẋ = F (x, u)
x(0) = x0 ∈ Ωx

(1)

where x ∈ R
n, u ∈ R

nu and Ω0 is a neighborhood of the
origin. To simplify the notation, the model is assumed to
be control-affine

ẋ = f(x) + g(x)u (2)

and the cost function is assumed to have the structure

L(x, u) = l(x) +
1

2
uT Ru (3)

The derived method will rely on the series expansions of
f , g and l, and therefore these functions are assumed to
satisfy the following assumption.
Assumption 1. The functions f , g and l are real analytic
functions around the origin x = 0.

The assumption makes it possible to express these func-
tions as uniformly convergent power series around the
origin:

f(x) = Ax + fh(x) (4a)

g(x) = B + gh(x) (4b)

l(x) =
1

2
xT Q̄x + lh(x) (4c)

where fh, gh and lh contain the higher order terms of the
power series, beginning with terms of order 2, 1 and 3,
respectively. To obtain well-defined solution to the ARE,
the following assumption is also introduced.

Assumption 2. The linearization of (2), i.e.,

ẋ = Ax + Bu

is stabilizable. Furthermore, the matrix Q in

l(x) = xT Qx + lh(x)

and the matrix R in (3) are positive semi-definite and
positive definite, respectively.

In Lukes (1969), the optimal control problem (1) was
solved under rather natural assumptions to obtain V (x)
and u∗(x) in a neighborhood of the origin expressed as
power series. The optimal solution mostly requires an
infinite number of terms to be described and the solution
used in practice is therefore truncated. In simulations, dif-
ferent drawbacks with the truncated power series solution
have been noticed. First, the optimal return function often
tends to grow too fast compared with the optimal. Second,
it is rather common that the approximation of the optimal
return function turns negative outside a quite small region
which the optimal is not. Third, the region in which the
obtained feedback law is stabilizing may be small.

The objective in this chapter is therefore to find approxi-
mate solutions that in many cases have better properties
over a larger region. For that reason, another parametriza-
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tion of the optimal return function is studied, namely
rational functions

Vr(x) =
RV (x)

1 + QV (x)
(5)

where

RV (x) = R
[2]
V (x) + RV,h(x) =

1

2
xT Px + RV,h(x) (6a)

QV (x) = Q
[1]
V (x) + QV,h(x) = Tx + QV,h(x) (6b)

and where RV,h and QV,h are polynomials beginning with
orders three and two, respectively.

The advantage with the rational functions is that while
being able to match taylor series of the optimal solution
up to some desired order, it is possible to specify the
growth rate for large |x| by choosing the difference between
the order of the numerator and the denominator. In this
chapter, the difference in the order between RV (x) and
QV (x) will always be chosen as two. The motivation for
this choice is that it often gives rather good approxima-
tions. However, note that by choosing the coefficients in
the polynomials, the difference in order may change which
means that different growth rates can be obtained.

3. RATIONAL APPROXIMATION BASED ON
OPTIMIZATION

In this section, a method is derived which relies on that the
HJB is rewritten as a set of equations, whose solution is
parametrized in the denominator coefficients. The advan-
tage with the approach is that arbitrary high order terms
of the HJB can be reduced and the rational approximant
will still have the same power series up to some desired
order.
3.1 Formulation of the Equations

The optimal solution to (1) is given by the HJB. For this
class of optimal control problems, the HJB will take the
form

0 = H
(
x, V (x)

)

= l(x) + Vx(x)f(x) − 1

2
Vx(x)g(x)R−1g(x)T Vx(x)T

(7a)

u(x) = −R−1g(x)T Vx(x)T (7b)

where the the expression for the optimal feedback law is
explicit.

The objective is now to find the Vr that satisfies (7a) up
to some given order. For this end, the derivative of Vr with
respect to x is needed.

Vr;x(x) =
Vr;x,n

Vr;x,d

=
(1 + QV )RV ;x − RV QV ;x

(1 + QV )2
(8)

If (8) is substituted into (7a), the following equation is
obtained

0 =
1

V 2
r;x,d

((1

2
xT Qx + lh

)
V 2

r;x,d + Vr;x,n(Ax + fh)Vr;x,d

− 1

2
Vr;x,ngR−1gT V T

r;x,n

)

(9)

where the nominator will be denoted H̃
(
x, Vr(x)

)
. This

equation should be satisfied for all x in a neighborhood of
the origin, which is equivalent to that H̃

(
x, Vr(x)

)
= 0 in a

neighborhood up to the given order. Since different powers
of x are independent, all coefficients in H̃ must equal zero.

A more thorough examination of H̃ shows that the coef-
ficients corresponding to the second order terms form the
standard ARE

0 = AT P + PA − PBR−1BT P + Q

while the terms of a general order m ≥ 3 will have the
structure

R
[m]
V ;xAcx + M1Qm−2 − R

[2]
V Q

[m−2]
V ;x Acx =

ξ
(
R

[m−1]
V , . . . , R

[m−4]
V , Q

[m−3]
V , . . . , Q

[m−5]
V

)
(10)

where
Ac = A − BR−1BT P

M1(x) = xT
(
P (3A − BR−1BT ) + 2Q

)
x

and ξ is a function determined by the functions f , g, l,
and R.

To study the solvability of (10) the following lemma is
useful.
Lemma 3. Let Pm(x) and Qm(x) be homogeneous poly-
nomials of degree m and let Ac be a square matrix with
eigenvalues strictly in the left half plane. Then an equation
of the form

Pm;x(x)Acx = Qm(x) (11)

can be solved uniquely for the coefficients in Pm(x).

Proof. See Lyapunov (1992). �

Based on this lemma, the following result is easily shown.
Lemma 4. Assume that Ac is a Hurwitz matrix. For given

values of R
[2]
V ,..,R

[m−1]
V and Q

[1]
V ,..,Q

[m−3]
V , equation (10) is

a linear system of equations for the coefficients in R
[m]
V and

Q
[m−2]
V . The null space of the associated linear map has a

dimension equal to
(
n + m − 3

n − 1

)

(12)

In particular R
[m]
V is uniquely determined after an arbi-

trary choice of Qm−2.

Proof. The size of the null space corresponds to the
number of coefficients in QV of order m−2. The solvability
follows from Lemma 3.

To understand the approximating properties of Vr, the
following result can be useful.
Lemma 5. Assume that Assumption 1 and 2 are satisfied.
Let W be an analytic function such that W (0) = 0,
Wx(0) = 0 and suppose that H

(
x,W (x)

)
has a series

expansion beginning with terms of order m + 1. Then W
and V have identical series expansions up to and including
terms of order m.

Proof. The optimal return function V has to satisfy (10)
with QV = 0, RV = V . Under Assumptions 1 and 2, it
follows that V [2], . . . , V [m] are uniquely determined by the
requirement that terms of order up to and including m in
H are zero. Since the solution is uniquely determined, W
must have the same taylor series up to the given order.

From the lemma above, the following useful lemma can be
proved.
Lemma 6. Let

R
[m]
V (x), m = 2, . . . ,mo

Q
[m]
V (x), m = 1, . . . ,mo − 2

satisfy (10). Then Vr and V have the same series expan-
sions for terms of orders up to and including mo.

Proof. The expression for H
(
x, Vr(x)

)
will have the

structure

H
(
x, Vr(x)

)
=

H̃
(
x, Vr(x)

)

(
1 + QV (x)

)4
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as was seen in (9). By construction, the terms in H̃
of orders less than or equal to mo are zero. Since the
expansion of the denominator begins with 1, this is true
for H as well. The lemma is then a consequence of Lemma
5.

3.2 Choice of Denominator

It is known from Lukes (1969) that the HJB (7) can be
solved by a polynomial. The extra degrees of freedom
obtained by introducing a denominator in V (x) gave a
null space. In Lemma 4, it was shown that for a given QV ,
the terms in RV will be determined. It means that the
denominator can be chosen arbitrarily. Let m be the order
of the nominator. Then the number of free parameters,

or with other words, the number of coefficients in Q
m−2]
V ,

becomes ( m+n−2
n ) − 1 (can be shown using mathematical

induction).

The free parameters can be used for different purposes,
such as reducing extra terms in (7a), or to obtain a Vr(x)
that does not tend to infinity too fast etc. In the first
case, it is good, at least from a reduction point of view,
to have a lot of free parameters. However, the obtained
minimization problem may become though and it may
therefore be advantageous to fix some parameters. In some
cases a reasonably good approximation can be obtained
even with all parameters chosen as constants. Below, a
few different choices of how to choose the free parameters
are discussed.

All Parameters Free The most general choice of denom-
inator is of course to let all coefficients in QV be free. In
this case, all of them can be used to reduce higher order
coefficients in H̃, but the obtained optimization problem
grows rapidly with the desired order and the number of
states.

Denominator with Fixed Highest Order Term Coefficients
To reduce the computational complexity, some of the

parameters can instead be chosen as constant values. One
such choice is to let the highest coefficients be for example
1/(m− 2)! and let the other coefficients be free. The main
motivation for this choice is that the denominator of Vr(x)
becomes positive for both large and small |x|, since for
large |x| the highest order term is dominating while for
small |x| the constant term is dominant.

Denominator with All Coefficients Fixed The choice
which gives the easiest problem to solve is to let all
coefficients in QV be fixed. The result is a well-determined
system of equations to solve, similar to the case in Lukes
(1969), and no optimization is required. In principle, it
also means that the obtained problem will be as simple to
compute as the ordinary power series method. Despite the
simplicity, this choice can sometimes give approximations
that are better than the truncated power series as will be
seen in Section 4. One choice that may be interesting to
test is for example (x − α)(x + β)(1 + xm−4), if the cost
function has limits at x = −α and x = β.

3.3 Minimization of Higher Order Terms in the HJB

If not all coefficients in the denominator are chosen as
constants, a minimization problem can be formulated that
reduces the coefficients corresponding to terms in the HJB
of higher orders than m.

Denote the higher order terms, i.e., terms in H̃
(
x, V (x)

)

of degree m + 1 or higher, as Em(x). That is, if

Vrm(x) =
R

[2]
V (x) + . . . + R

[m]
V (x)

1 + . . . + Q
[m−2]
V (x)

where R
[i]
V and Q

[i−2]
V , i = 3, . . . ,m satisfy (7a), is substi-

tuted into (9), the result is

0 = H̃
(
x, Vrm(x)

)
= terms of degree ≥ m + 1

︸ ︷︷ ︸

Em(x)

The vector with the coefficients of the polynomial Em(x)
will be denoted em.

The number of free parameters should be compared with
the number of coefficients in Em(x). The number of terms
in Em(x) can be very large and therefore, Em(x) is
truncated at some additional order mh. That is, m + mh
is the maximal order of the terms in the HJB that is
suppressed.

The parameter excess Cpe will then be given by

Cpe =
(
m + n

n

)

−
(
m + mh + n

n

)

(13)

If Cpe is larger than zero, i.e., if the number of free
parameters is larger than the number of coefficients, and if
the parameters enter the problem in an appropriate way,
it is sometimes possible to zero some of the higher order
coefficients exactly using an equation solver. For scalar
problems of orders that are not too high, this approach
seems to work rather well. However, for larger scalar
problems and non-scalar problems, it is quite common that
the equation solver requires a huge amount of time or that
no solution is returned at all.

Therefore, another approach is used where the higher order
coefficients in the HJB are minimized using a numerical
optimization routine. The advantage with this approach is
that if a set of coefficients exists such that the higher order
terms are zeroed, the optimization often finds them. On
the other hand, if no such solution exists, for example in
a case when the parameter excess Cpe is negative, i.e., the
number of parameters are fewer than the number of terms
in Em(x), the optimization will still try to give a solution
with |em|2 as small as possible.

The recursive equation (10) is equivalent to the under-
determined linear system of equations

AmYm = bm (14)
where

Ym = (yR,3, yQ,1, yR,4, yQ,2, . . . , yR,m, yQ,m−2)
T

Am =







Am,1(yR,2) 0 . . . 0
0 Am,2(yR,2) . . . 0
...

...
. . .

...
0 0 . . . Am,m(yR,2)







,

bm =







bm,1(yR,2)
bm,2(yR,2, yR,3, yQ,1)

...
bm,m(yR,2, . . . , yR,m−1, yQ,m−3)







and yR,i and yQ,i are the unknown coefficients in R
[i]
V (x)

and Q
[i]
V (x), respectively. The vector yR,2 contains the

coefficients in R
[2]
V which is P , and is therefore computed

using the standard ARE. The matrices Am,i(·) and bm,i(·)
are functions determined by the left-hand and right-hand
side of (9), respectively.

The optimization problem is then formulated as

min
Ym

|em(Ym)|2

s.t. AmYm = bm

The optimization problem can be solved either as con-
strained or unconstrained. To motivate this fact, let i = 3.
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Then, if the coefficients in the denominator yQ,1 are con-
sidered as parameters, it was shown in (10) that only linear
equations need to be solved in order to obtain the coeffi-
cients in the nominator yR,3 expressed in terms of yQ,1.
Furthermore, in Lemma 4 it was shown that the solution
is unique. Repeating this procedure for the higher indexes
means that (14) is solved recursively. The coefficients yR,i,
i = 3, . . . ,m, will only depend on yQ,j , j ≤ i − 2. The
result is the unconstrained optimization problem

min
yQ

|em(yQ)|2 (15)

where yQ is the concatenation of yQ,i, i = 1, . . . ,m− 2. In
this thesis, mostly the unconstrained approach has been
used. However, there might be structural benefits with
keeping the constraints, since simpler expressions in em
will be obtained in that case.

This optimization problem (15) is polynomial, and nor-
mally it becomes be non-convex. For small m, n, and mh it
is possible to solve the problem globally using for example
sum-of-squares relaxation using for example Yalmip, see
Löfberg (2004). In this case it is quite important to rewrite
the problem as

min
yQ,Ysos

|Ysos|2

s.t. em(yQ) = Ysos

where Ysos are extra variables, one for each term in em,
used to reduce the maximal order of the functions involved.

However, for medium-sized m, n and mh, the expressions
in em becomes large and rather involved. In this case, the
global methods seem to be too computationally demand-
ing, and it is necessary to search for a local minimum in-
stead. Then the initial conditions become important. The
good news is that numerical experience shows that often a
local optimum can be found such that the corresponding
approximant is good (depending on the choices made in
the next section).

Note that the unconstrained problem (15) is a nonlinear
least-squares problem which in many solvers, such as the
solver in Maple, can be utilized to reduce the computa-
tion time.

3.4 Design Choices in the Optimization

There are several different design choices for the optimiza-
tion problem (15). One is the choice of the denominator of
Vr, discussed in Section 3.2. Below some other choices are
mentioned.

The Order of f , g and l The first design choice is the
order of the functions that describe the model and the
cost function. It is possible to have arbitrary orders of
each of them as long as the orders are larger than or equal
to m − 1. Otherwise, the power series solution up to the
desired order m will not be correct as was shown in Lukes
(1969). The standard choice in the simulations presented
in this thesis, see Section 4, have been to truncate at order
m + mh.

Order of Em Another design parameter is the truncation
degree of Em(x). From (9), it follows that the maximal
degree that may show up in Em(x) is given by

max
(
ml + 4(m − 2),mf + 4m − 7, 2mg + 4m − 6

)

where mf , mg and ml are the orders of f , g and l,
respectively. This number is often quite large and therefore
it is necessary to truncate Em(x) to obtain a solvable
optimization problem. The truncation also implies that
higher order terms in Em(x) are considered irrelevant.

The most basic choice of mh is to choose the value for
which the parameter excess switches from positive to
negative. Then, the optimal em will be zero, i.e., all higher
terms are zeroed. However, in many cases it is possible
to obtain better approximations by increasing mh, which
normally will lead to that em will not equal zero.

Actually, in some cases one can gain a lot by increasing
mh, without changing m. It means that information from
higher order terms are included in the lower order approx-
imant.

Initial Values Since the optimization problem (15)
mostly is non-convex, the choice of initial values is im-
portant. In this thesis, the default choice is to generate
a number of vectors with uniformly distributed random
numbers in the interval [−3, 3]. The optimization prob-
lem (15) is then solved for each of them as initial guess, and
the best solution is chosen as the optimum. The number
of different sets can be chosen, but the standard choice is
two.

3.5 Stability

One of the major objectives for a controller is to stabilize
the system. The controller obtained from the method in
this chapter can be shown to yield stability at least locally
in a neighborhood as shown in the following theorem.

Theorem 7. Consider a nonlinear system in the form (2)
that satisfy Assumptions 1 and 2. Let Vrm(x) solve (9)
up to order m and let the corresponding control law be
given by (7b). Then this feedback law will stabilize the
system locally in a neighborhood of the origin, and the
cost function Vrm(x) will be a Lyapunov function for the
closed-loop system

ẋ = f(x) − g(x)R−1g(x)T Vrm;x(x)T

Proof. First note that the cost function Vrm(x) can be
expanded around zero yielding

Vrm(x) =
1

2
xT Px + Vrm,h(x)

and the time derivative of Vrm(x) using the feedback
law (7b) becomes

V̇rm = Vrm;x(f − gR−1gT V T
rm;x) =

− l − 1

2
Vrm;xgR−1gT V T

rm;x +
Em

V 2
rm;x,d

where Vrm;x,d is the denominator of Vrm;x.

The series expansion of the first two terms in the expres-
sion above is given by

l+
1

2
Vrm;xgR−1gT V T

rm;x =
1

2
xT (Q+PBR−1BT P )x+O(x)3

and since Em(x) contains terms beginning with order
m + 1, it follows that for x in a neighborhood of the
origin the optimal return function will satisfy Vrm(x) > 0

and V̇rm(x) < 0. That is, the function Vm(x) will be a
Lyapunov function for the closed-loop system and u =
−R−1g(x)T Vrm;x(x)T is a stabilizing control law.

Hence, the controller stabilizes the system locally around
the origin, similar as for the power series approximation,
see Lukes (1969). However, as for the power series method,
no estimate of the region of attraction is obtained by the
method. If such a estimate is desired, one has to use some
other method, see for example Vannelli and Vidyasagar
(1985).
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4. EXAMPLES

In this section three examples are presented. The first
example is a scalar problem which comes from Navasca
(1996). In this example the cost function includes a barrier
function on the state. The second example is a multivari-
able problem. The second one is a physical system, namely
a nonlinear phase-locked loop.

4.1 A Scalar Problem

The considered system is given by

ẋ = (1 + x)u

which is a stabilizable system around the origin. The cost
function is chosen as

l(x) = ln(1 + x)2

The corresponding optimal control problem can be solved
explicitly and the optimal cost function becomes

V (x) =

√
2

2
ln(1 + x)2

while the optimal feedback law is given by

u(x) = −
√

2 ln(1 + x)

In the scalar case it is most often possible to solve for
extra coefficients in the HJB exactly. This fact has been
exploited in this example, where a fifth order rational
approximation has been computed. By using the three
extra terms in the denominator, three additional terms
in the HJB has been zeroed. The obtained solution will
therefore have the same taylor series as the optimal so-
lution up to order eight. Actually, the series expansions
are the same with three decimals accuracy up to the 14:th
degree. The functions f , g and l are truncated after the
eighth degree. The result can be seen in Figure 1. The
same figure also shows the rational approximation with a
denominator where the highest order term is fixed. As can
be seen the difference is rather small.

In Figure 2, a truncated power series solution of order five
and a rational approximation with fixed denominator have
also been included in the comparison. As can be seen, these
solutions are substantially worse than the earlier rational
approximations. However, the rational approximation with
fixed coefficients are better than the truncated power series
solution.

Concerning stability it can also be shown that the rational
approximation is substantially better than the power series
solution. The region in which the rational approximation
with free denominator is stabilizing the system is x0 ∈
[−0.99, 21], while the truncated power series solution only
stabilizes the system in the region x0 ∈ [−0.99, 0.8].

In the last two figures another advantage with the ra-
tional approximations is illustrated. Here a higher order
approximation of order 8 plus the 6 free parameters in
the denominator. For the rational approximation a higher
order often give a better approximation in a larger region
than a lower one, which happens for this example as seen
in Figure 3. However, for truncated power series a higher
order most often only yields a better fit with the optimal
solution locally around the origin and outside this region
an even worse fit is obtained as can be seen in Figure 4.

4.2 A Phase Lock Loop

Consider a model for a nonlinear phase lock loop (PLL).
The dynamics for the system can be written as

ẋ1 = x2

ẋ2 = − sin(x1) + u

−2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

Fig. 1. A comparison between V ∗ (solid) and two rational
approximations. The dash-dotted line corresponds to
the approximation with free denominator and the
dashed line has fixed highest order term in the de-
nominator.

−1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

x

Fig. 2. A comparison between the optimal cost (solid),
the three different rational approximations and the
truncated power series. The rational approximation
with free denominator and with fixed highest degree
term are indistinguishable from the optimal solution.
The dashed line is the rational with fixed denominator
and the dotted line is the power series.

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

x

Fig. 3. A comparison between the optimal cost (solid) and
two rational approximations of different order. The
dashed line is a eighth order approximation and the
dashed-dotted line is a fifth order one.

The cost function l(x) is chosen as

l(x1, x2) =
1

2
x2

1 + 2x1x2 + x2
2 + x1 sin(x1)

which makes it possible to find an explicit solution as

V (x1, x2) = 2(1 − cos(x1)) + x1x2 + x2
2

For this optimal control problem, the fourth order rational
approximation is computed. As the comparison in Figure 5
shows, the rational approximation describes the optimal
solution rather well. In this example, the terms of order
six and below of the power series of f , g and l are included
in Em(x) and the HJB is also truncated at order six, i.e.,
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35

x

Fig. 4. A comparison between the optimal cost (solid)
and four different approximations. Two of them are
rational with free denominators but with different
order (4 or 8). They are hidden behind the optimal
solution. The other approximations are truncated
power series, one of order 5 (dashed) and order 8
(dash-dotted).

two orders higher than m. The corresponding value of e2
m

became 3 · 10−13.

In the same figure, also a truncated power series solution
of order four is presented. The improvement by using the
rational approximation is quite large, which is even more
clear in Figure 6 where the the error of the rational ap-
proximation is compared with the error for the truncated
power series solution.

In Figure 7, another comparison of errors is shown. The
error that bends upwards and which has the smallest
amplitude corresponds to a rational approximation of
order 4 with the denominator chosen as

QV (x1, x2) = 1 + 1
6x2

1 + 1
6x1x2 + 1

6x2
2

The other error corresponds to a truncated power series.
As can be seen, the rational approximation is still better
than the power series but worse than the rational approxi-
mation with free denominator (which could be seen in the
Figure 6).

Figure 8 shows the error for two higher order approxima-
tions. The order of the rational approximation has been
increased to six and the truncated power series approxi-
mation is of order eight. For the rational approximation,
mh = 8 has been used and the functions are also truncated
at m + 8. It means that the order of rational function is
not that high, but information about the model and the
cost function up to order 14 is included.
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Fig. 5. A comparison between V (dark), the rational
approximation (medium dark) and truncated power
series (light) the applied to the PLL example.
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Fig. 6. A comparison between the errors of the rational
approximation (dark) and of the truncated power
series (light) for the PLL system.

−5

0

5

−5

0

5

−30

−25

−20

−15

−10

−5

0

5

10

15

20

x1x2

Fig. 7. A comparison between the errors of the rational
approximation with fixed denominator (dark) and of
the truncated power series (light) for the PLL system.
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Fig. 8. A comparison between the errors of the rational
approximation of order 6 (dark) and of the truncated
power series of order 8 (light) for the PLL system.
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