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Abstract: We present a design of a leaderless formation controller for networked vehicle
systems, which uses concepts from sliding mode control and dynamic extension. A single gain
varies the importance of the relative and absolute position terms, allowing for tight or loose
formations. This approach is proven mesh stable. Applications include formation flying of
Unmanned Air Vehicles as well as possible extensions to satellites or Autonomous Underwater
Vehicles.
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1. INTRODUCTION

A large body of research has been published in recent
years about motion control and collaborative control of
networked unmanned vehicles. The state of the science
and practice in developing networked unmanned vehicle
systems requires new developments (for example, con-
trol systems with feedback loops through communications
channels, dynamic systems formed of several parts that
are not physically coupled, etc. . . ), and breakthroughs are
needed to effect highly dependable systems, with focus on
real-world demonstrations targeting the avionics, maritime
and automotive industries.

There are multiple applications for formation maneuver-
ing of multiple vehicles, such as satellite interferometry,
gradient/environmental estimation using vehicle forma-
tions, etc. . . In addition, moving vehicles as a group sim-
plifies path planning, as a single path can be specified for
the group with an associated formation shape (Spry and
Hedrick [2004]).

We propose a controller that allows a group of vehicles to
maintain a given formation shape using concepts from slid-
ing mode control and dynamic extension. The controller is
“leaderless”, that is, no specific vehicle is designated as the
leader, which provides redundancy and fault tolerance. In
addition, a single gain allows to vary the weight between
the absolute and relative position terms of the controller,
allowing to place either more emphasis on going to a cer-
tain location or more emphasis on maintaining a particular
formation shape, and less on reaching an exact location.

The remainder of this paper is organized as follows. Section
2 presents a literature review in the field of control of
networked vehicle systems. Section 3 details the leaderless
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controller design and proves our approach is mesh stable.
Section 4 presents simulation results. Finally, Section 5
draws some conclusions and discusses future work.

2. LITERATURE REVIEW

The control of networked vehicle systems has presented
a new challenge to control theory. The challenge comes
from the distributed nature of the problem (Murray et al.
[2003]). For example, in networked multi-vehicle systems,
information and commands are exchanged among multiple
vehicles, and the roles, relative positions and dependencies
of those vehicles change during operations. The control
and computer science communities address this challenge
in the context of distributed hybrid systems, and con-
tribute complementary views and techniques (see Varaiya
et al. [2001]) for an overview of research on distributed
hybrid systems).

Many different control strategies have been considered for
the coordinated control of multiple vehicle systems. There
is no standard taxonomy for the classification of these
control and coordination strategies. Generally speaking
the problem of the control of formations of vehicles is a
single-stage problem as far as there are no modifications
to the topology of the formation. Possible approaches for
the control of formations of vehicles include leader-follower
approaches (Hedrick et al. [1994], Smith and Hadaegh
[2002]) or string- and mesh-stable approaches (Swaroop
and Hedrick [1996], Pant et al. [2002]).

Researchers working on platooning of passenger vehicles
as a means to increase highway capacity without building
new highways (Hedrick and Swaroop [August 1993]) first
noticed that strings of automatically controlled vehicles
exhibited “string instabilities”, i.e., disturbances in the
front of the platoon were amplified as they were propa-
gated upstream. Linear transfer function analysis (Swa-
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roop and Hedrick [1996], Hedrick and Swaroop [August
1993], Sheikholeslam and Desoer [1992]) showed that these
instabilities could be eliminated by the introduction of a
common reference trajectory for all of the vehicles. If all
of the vehicles in the platoon have knowledge of the lead
vehicle’s absolute velocity (Swaroop and Hedrick [1996]),
then “weak string stability” can be achieved, i.e., no dis-
turbance would ever be amplified as it traveled upstream
in the platoon. Also, if all of the vehicles in the platoon
had knowledge of the relative position error between them-
selves and the lead vehicle, then “strong string stability”
could be achieved, i.e., all downstream disturbances could
be geometrically attenuated as they traveled upstream
in the platoon (Swaroop and Hedrick [1996]). The lead
vehicle information needs to be communicated to all of
the vehicles via a wireless communication link.

The concept of string stability is extended to 3-D con-
figurations in (Pant et al. [2002]) and the term “mesh
stability” is used to denote the property of disturbance
attenuation in multi-dimensions. The paper concentrates
on minimizing the communication requirements to achieve
mesh stability and analyses systems with “look-ahead”
sensor information that could be communicated or sensed
directly.

Other possible approaches include virtual structures (Beard
et al. [2001], Tillerson et al. [2003], Leonard and Fiorelli
[2001]), rigid graphs (Olfati-Saber and Murray [2002])
and potential methods (Leonard and Fiorelli [2001], Zohdi
[2003]). Nearest neighbor rules, Lyapunov theory, graph
techniques and non-smooth control results are used to
study how multiple agents eventually move in the same
direction despite the absence of centralized coordination
and despite the fact that each agent’s set of nearest neigh-
bors changes with time as the system evolves (Tanner et al.
[2003a,b]).

3. LEADERLESS FORMATION CONTROLLER

We consider the design of mesh-stable controllers for vehi-
cle formations. For the sake of example, we will consider
a simple model for small fixed-wing UAVs operating in a
2-D plane. A related, mesh-stable approach for helicopters
can be found in (Pant et al. [2001]). A design for fixed
wing aircraft can be found in (Spry and Hedrick [2004]).

In our development, we have used a kinematic model to
represent the aircraft. The reference frames are shown in
Fig. 1.







ẋ = u1 cosψ + Vwx

ẏ = u1 sinψ + Vwy

ψ̇ = u2

(1)

Here, Vwx and Vwy represent the velocity due to wind
in both x and y directions. The directions x and y are
in a frame that is fixed with respect to the ground. The
control variables are u1 and u2, the airspeed and turn rate.
In the case of model aircraft it is common to keep the
airspeed u1 within a fairly small range and use the turn
rate u2 as the primary control variable. We are restricting
ourselves to aircraft moving in the horizontal plane for
now. This is a good assumption, as, at this time, the
antennas available to be mounted on small UAVs have
strong directional patterns, and wireless communications

between aircraft are more reliable if all aircraft are in the
same geometric plane. With a 3D model, the controller
design can be adapted to the 3D case. For the purpose of
controller design, we set the wind velocities to zero.

x

y

u1
u2

ψ

rx

u1
u2

ψ

Fig. 1. Variable definition for kinematic, 2D UAV, bird’s-
eye view with z-axis pointing outwards from the
paper.

3.1 System Analysis

Define our state vector to be

x = [ x y ψ ]
T

and rewrite the system dynamics in the form of

ẋ = f(x) + g1u1 + g2u2.

We have

f(x) = 0, g1 =

(

cosψ
sinψ

0

)

and g2 =

(

0
0
1

)

.

Thus the controllability matrix

C =







cosψ 0 sinψ

sinψ 0 − cosψ

0 1 0







has full rank everywhere, which implies that the system is
locally accessible everywhere. Furthermore, since f(x) = 0
(free dynamics system), the system is controllable.

Choose z = h(x) =

(

x
y

)

, we have the observability

matrix as

O = dG =























1 0 0

0 1 0

0 0 −u1 sinψ

0 0 u1 cosψ

0 0 −u1(cosψ)u2

0 0 −u1(sinψ)u2























.

O has rank 3 if u1 6= 0, which indeed holds for any kind of
realistic flight, thus the system is observable.

3.2 Sliding Mode Controller with Dynamic Extension –
Single Vehicle Case

We start by defining our position vector η, and our desired
position vector ηd.

η =

(

x
y

)

(2)
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ηd =

(

xd

yd

)

(3)

We define e to be the position error vector,

e = η − ηd (4)

We select our sliding surface to be:

S = ė+Ke (5)

If S goes to zero, then we have exponentially decreasing
error dynamics, at a rate set by K, which is a positive
definite matrix that we select as a control parameter.

S → 0 ⇒ ė→ −Ke⇒ e→ 0 (6)

Rewriting the equation for S, we have:

S = η̇ − η̇d +Ke (7)

Defining some notation, we set: V = η̇ and VR = η̇d −Ke.
We then have:

S = V − VR (8)

We now need to focus on finding a strategy to make the
velocity V go to VR. If V=VR, then S equals zero, which
drives the position error to zero, and is our goal. We will
use a strategy called dynamic extension to that aim. We
have:

S =

(

u1 cosψ
u1 sinψ

)

− η̇d +Ke (9)

We take a derivative of our sliding surface S.

Ṡ =

(

u̇1 cosψ − u1(sinψ)ψ̇

u̇1 sinψ + u1(cosψ)ψ̇

)

− η̈d +Kė (10)

Rewriting the above equation in matrix form, and remem-
bering that ψ̇ = u2:

Ṡ =

[

cosψ −u1 sinψ
sinψ u1 cosψ

] [

u̇1

u2

]

− η̈d +Kė (11)

Setting some notation:

A =

[

cosψ −u1 sinψ
sinψ u1 cosψ

]

(12)

ν =

[

u̇1

u2

]

(13)

Notice that the A matrix is invertible for u1 6=0, and this is
not a constraint for controller design as aircraft cannot fly
below a certain speed, so that u1 = 0 is not a possibility
for any kind of realistic flight. We then have:

Ṡ = Aν − η̈d +Kė (14)

We would like to have exponential dynamics for our sliding
surface: Ṡ = −ΛS, where Λ is a positive definite matrix.
Our desired behavior is then:

Ṡ = Aν − η̈d +Kė = −ΛS (15)

We can then get the vector ν from the equation:

ν = A−1 [η̈d −Kė− ΛS] (16)

The vector ν gives us values for u2 and u̇1. What we really
need are values for u1 and u2. We end up passing the ν
vector through a system that integrates the first field, to
obtain the required values.

3.3 Formation Control of Multiple Vehicles

Mesh Stability Analysis In this section we will perform
a stability analysis to show that our formation control law
for a V -shaped vehicle formation is mesh stable.

η42

η32

η22

η11

η21

η31

η41

x

y

i-i
nd

ex j-index

Fig. 2. V -Shape Formation

Each vehicle has an error associated with respect to its
desired inertial position, as well as a relative error defined
by its position with respect to neighboring vehicles (the
vehicle directly in front of it, the vehicle directly behind it,
and the vehicle on the same horizontal row). For example,
η32 has neighbors η22, η42 and η31. To generalize, ηi,j has
neighbors ηi−1,j , ηi+1,j and ηi,j−1 (Note that ηi,j here
stands for the position vector of the vehicle indexed (i, j).
For a V -shaped formation, the j index may only be 1 or
2; when j equals 1, we look at ηi,j+1 instead of ηi,j−1).
We can define error as below, where the Kr gain allows
us to adjust the importance of the inertial term and the
formation shape terms.

ei,j = ηi,j − ηdi,j
+Kr(ηi,j − ηi−1,j − ηd(i,j)(i−1,j)

)

+Kr(ηi,j − ηi+1,j − ηd(i,j)(i+1,j)
)

+Kr(ηi,j − ηi,j−1 − ηd(i,j)(i,j−1)
). (17)

Depending on the formation shape and the vehicle’s po-
sition in the formation, some robots might not have all
the terms (some relative error terms are set to zero if the
vehicle is on the edge of the formation and therefore have
less than 3 neighbors, for instance).

A sliding control law is applied to drive the error to zero.
The sliding surface is defined as follows:

Si,j = ėi,j + q1ei,j (18)

We must force the control law to converge to zero in order
to achieve our control objective. The following control
input will serve this purpose.

ūi,j =
1

1 + 3Kr

[−KSi,j − q1ėi,j +Kr ëi,j ] (19)

where K > 0, q1 > 0 for classic stability, and ei,j :=
ηi−1,j + ηi+1,j + ηi,j−1. The over-bar is used to indicate
that this is the desired acceleration. We will assume that
the actual vehicle acceleration is delayed due to processing
and actuator dynamics modeled by the first order system
(Pant et al. [2001]):

ūi,j = τ u̇i,j + ui,j (20)

The input acceleration is ui,j , thus we will use this notation
in place of η̈i,j . Differentiating (17) twice, and substituting
(19) and (20) into, we obtain a differential equation which
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relates the error dynamics of a particular vehicle with
respect to its neighbors.
(

τ
d3

dt3
+ (1 + 3Kr)

( d2

dt2
+ (K + q1)

d

dt
+Kq1

)

)

ei,j =

Kr

( d2

dt2
+ (K + q1)

d

dt
+Kq1

)

δi,j

(21)

where δi,j = ei−1,j + ei+1,j + ei,j−1

Taking the Laplace transform we get

êi,j(s) =

[

H(s) 0
0 H(s)

]

δ̂i,j(s)

3

with

H(s) =
3Kr

(

s2 + (K + q1)s+Kq1
)

τs3 + (1 + 3Kr)
(

s2 + (K + q1)s+Kq1
) (22)

Each subsystem within the mesh must be mesh stable in
order for the overall structure to be mesh stable (Pant
et al. [2002]). Thus, we can now specify acceptable ranges
and conditions on our gains K, Kr and q1.

Notice that (h(t) = L−1{H(s)} does not change sign for
small values of τ , thus

‖h(t)‖
1

= sup
w

|H(jw)| = H(0) =
3Kr

1 + 3Kr

(23)

H(0) < 1 if Kr > 0.

Examples For the sake of example, let’s consider a
formation of five vehicles organized as shown below.

1

2 3

4 5

Fig. 3. 5-vehicle V -shaped example formation.

The approach presented in Section 3.2 for a single vehicle
is still valid, given that we change the definition of the
position error accordingly. As proved above, this approach
is mesh stable. For the five vehicle case, the position errors
are defined as,

e1 = η1 − ηd1
+
∑

j=2,3

ΛR(η1 − ηj − ηd1j
)

e2 = η2 − ηd2
+

∑

j=1,3,4

ΛR(η2 − ηj − ηd2j
)

e3 = η3 − ηd3
+

∑

j=1,2,5

ΛR(η3 − ηj − ηd3j
)

e4 = η4 − ηd4
+
∑

j=2,5

ΛR(η4 − ηj − ηd4j
)

e5 = η5 − ηd5
+
∑

j=3,4

ΛR(η5 − ηj − ηd5j
)

where ΛR is a positive definite matrix. If ΛR is zero we
revert to the single vehicle case. If ΛR is large, more
emphasis is placed on relative terms than on absolute
position.

We can then define Si = ėi + Kei where “i” is the
vehicle index. For example, for the first vehicle, after some
reorganizing of the terms:

S1 = (I + 2ΛR)η̇1 +
(

−η̇d1

+ ΛR(−η̇2 − η̇d12
− η̇3 − η̇d13

)

+K
(

η1 − ηd1 + ΛR(2η1 − η2

− ηd12
− η3 − ηd13

)
)

)

(24)

We can then set V = η̇1 and

VR = (I + 2ΛR)−1

(

−η̇d1

+ ΛR(−η̇2 − η̇d12
− η̇3 − η̇d13

)

+K
(

η1 − ηd1

+ ΛR(2η1 − η2 − ηd12
− η3 − ηd13

)
)

)

(25)

and apply the approach presented in Section 3.2. Alterna-
tively, we can write the above equations in matrix form:

e =











e1
e2
e3
e4
e5











= (I +Q)(η − η
d
) (26)

where η = [η1; η2; η3; η4; η5], ηd
= [ηd1

; ηd2
; ηd3

; ηd4
; ηd5

],
and

Q =











2ΛR −ΛR −ΛR 0 0
−ΛR 3ΛR −ΛR −ΛR 0
−ΛR −ΛR 3ΛR 0 −ΛR

0 −ΛR 0 2ΛR −ΛR

0 0 −ΛR −ΛR 2ΛR











(27)

It is possible to show that the rows of (I + Q) are
independent for ΛR 6=0. This indicates that (I + Q) is
invertible, so that

e→ 0 ⇒ η → η
d
⇔ η → ηd (28)

Finally, one can apply some notation to the multi-vehicle
case to make it slightly more general and to mirror the
single vehicle case. We define:

ei = ηi − ηir (29)

where ηir = ηdi
−
∑

j 6=i

ΛR(ηi − ηj − ηdij
) is a reference

position. We can use this notation for the single vehicle
case by setting i = 1, with η1r = ηd1 and e1 = η1 − ηd1

.

We let

Si = ėi +Kei = η̇i − (η̇ir −Kei)

= Vi − Vir, (30)

We now have:

Ṡi = η̈i − V̇ir = Aiνi − V̇ir. (31)

Letting νi = A−1

i [V̇ir − ΛSi], we now have

Ṡi = −ΛSi. (32)

4. SIMULATION RESULTS

We present simulation results for the controllers described
above. We have adapted the simulation to reflect ground

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

16030



robots, with which we plan to test the algorithms before
applying then to Unmanned Air Vehicles. Because of our
planned long-term application, we are still requiring that
u1 6=0, even though this is an unusual condition for ground
vehicles.

x (m)

y
(m

)

0 5 10 15 20

-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 4. Robot formation, unconstrained control inputs.

Fig. 4 shows five robots starting at different initial condi-
tions, assembling into a formation, and moving as a for-
mation towards the right of the plot. When detecting the
obstacles (at t = 20 sec in this example, assuming perfect
sensors), they tighten the formation to “squeeze” through
the obstacles, and then expand back to their original shape
(at t = 35 sec) beyond the obstacles. We assume obstacle
detection is decoupled from obstacle avoidance, and for
these simulations we are assuming perfect detection (which
can easily be expanded).
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Fig. 5. Errors ex, ey (showing exponential convergence to
zero) and robot speeds, unconstrained control inputs.

Fig. 5 shows the error signals and the control inputs
corresponding to the run in Fig. 4. The errors converge
exponentially to zero. Fig. 6 shows that the sliding surface
converges to zero as time goes.

In the interest of making the simulations more realistic, we
apply the following constraints to the robot dynamics: the
minimum speed is 0.4m/s, the maximum speed is 0.6 m/s,

S
x

(k
m

/s
)

Sy (km/s) time (s)

S
x
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m
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)

time (s)

S
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Fig. 6. Sliding surfaces converging to zero exponentially,
unconstrained control inputs.

the min/max accelerations are +0.5m/s2 and –0.5m/s2

respectively, and the maximum turn rate is ± 45 deg/sec.

Fig. 7 shows the same scenario as Fig. 4, but with con-
strained control inputs. The error signals, shown in Fig.
8, still converge to zero, although the convergence is not
exponential. Fig. 8 also depicts the robot speeds, which
remain constrained between the minimum and maximum
bounds. The sliding surface converges to zero as time
goes at a slower rate compared to the aforementioned
unconstrained case, as shown in Fig. 9.
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Fig. 7. Robot formation, constrained control inputs.

5. CONCLUSION

We have presented a leaderless formation control algo-
rithm for unmanned vehicles, using concepts from slid-
ing mode control and dynamic extension. The control
algorithm is “leaderless”, which provides redundancy and
fault tolerance, and it is proven mesh-stable. A single gain
adjusts the relative importance of formation-maintaining
terms versus individual position terms, allowing for both
tight and loose formations. Simulation results are pre-
sented.

The strategy presented in this research is used for path
planning purposes. It generates position commands that
are then fed into a vehicle specific autopilot. As such, it
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Fig. 8. Errors ex, ey and robot speeds for constrained
control inputs. A minimum speed was set as well as a
maximum speed, as this algorithm will eventually be
applied to Unmanned Air Vehicles.
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Fig. 9. Sliding surfaces converging to zero at a slower rate
compared to the unconstrained control inputs case ,
constrained control inputs.

can be used with many different types of vehicles. The
performance of the vehicle formation, though, will still
be somewhat limited by whether the steerable unicycle
approximation is reasonable for the vehicle under consid-
eration.

Future work includes testing the algorithm on ground
robots, Unmanned Air Vehicles and Autonomous Under-
water Vehicles.
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