
Distributed Object-based Architecture for

Controlling Autonomous Vehicles

Ronaldo Ap. Silva ∗ Julio E. N. Rico ∗ Leandro B. Becker ∗

Christian Kelber ∗∗

∗ Department of Automation and Systems, Federal University of Santa
Catarina, Florianopolis, Brazil, (e-mail: ronaldo@das.ufsc.br,

julio@das.ufsc.br, lbecker@das.ufsc.br).
∗∗ Department of Electrical Engineering, UNISINOS, Sao Leopoldo,

Brazil, (email: kelber@eletrica.unisinos.br)

Abstract: In autonomous vehicles control, there is a need to interconnect several electronic
component units (ECUs) in a proper manner to allow the embedded computational system to
perform its control task in an efficient and reliable way. Therefore, this paper presents an object-
based communication architecture that provides an infrastructure to design such systems. The
proposed architecture relies in the publisher/subscriber protocol, which is characterized by the
uncoupling between its components, anonymous communication with content-based messages,
and many-to-many communications. Our architecture is based in the concept of sentient-objects,
which are reactive entities distributed across the network that normally represent elements from
the problem-domain. This paper presents the architecture, as well as an application used for
controlling an autonomous vehicle.

1. INTRODUCTION

Technological advances spread the use of mobile robots
in several application fields such as dust suction, mail-
ing delivery, interplanetary and underwater exploration,
etc. Given the large application spectrum, several distinct
methodologies were developed to handle the problems of
modeling, designing, and controlling such specific systems.
One application of special interest in the scope of this
work is the autonomous vehicles navigation (AVN) AMIDI
[1990], OLLERO and AMIDI [1991], MANIGEL and
LEONHARD [1992], SHNITZ [2001], WIT et al. [2004],
JASCHKE [2002]. It can be used for different purposes
including increasing comfort, optimizing gas consumption
and pollution emission, and, the most important, enhanc-
ing safety MANIGEL and LEONHARD [1992], WIT et al.
[2004].

In autonomous vehicles control there is a need to inter-
connect several electronic component units (ECUs) in a
proper manner to allow the embedded computational sys-
tem to perform its control task in an efficient and reliable
way. The automobilist industry has widely adopted the use
of fieldbusses like CAN-bus (BOSCH [1991]) and FlexRay
(FLEXRAY [2005]) to interconnect the ECUs. However,
the increasing complexity of such systems requires not only
a physical interconnection among the ECUs, but also a
logical one, which must be able to represent properly the
interaction model among the components.

In BECKER et al. [2001] it is presented a study that
compares different interaction models among distributed
ECUs that are used to control a robot arm. Obtained re-
sults indicate that the Publisher/Subscriber (P/S) model
is suitable to represent systems whose components are
loosely coupled, that use anonymous communications in a

many-to-many way, and that differ messages by contents.
Such characteristics are also observed in the control sys-
tem considered in this work, allowing us to conclude that
P/S is a natural choice for the proposed communication
architecture.

Despite a proper communication model, an architecture
for autonomous vehicle control must be able to cope with
quality-of-service (QoS) requirements, in special time con-
straints. Such applications require decisions to be per-
formed in a timely manner, requiring real-time guarantees
from the underlying infrastructure.

KAISER et al. [2005] introduced the concept of sentient-
objects, which are autonomous entities that interact
among each other using the P/S model under timing con-
straints. To support this concept authors present the COS-
MIC (COoperating SMart devICes) middleware, which
represent an abstraction layer capable to support the
design of applications using sentient objects on top of
different networks, such as the CAN-bus.

This paper presents the redesign of the control architec-
ture used in an autonomous vehicle, which was originally
constituted by a network of PLCs (Programmable Logic
Controllers). The new architecture presented in this paper
substitutes the PLCs for low-cost computational nodes.
The CAN-bus fieldbus is used to interconnect these nodes,
instead of the proprietary protocol from the PLC manu-
facturer (ALNET BUS) as shown in Fig. 1. Moreover, the
main enhancement introduced in the proposed architec-
ture was the use of the sentient-objects concept, providing
a loosely coupled distributed control architecture.

The rest of the paper is divided as follows: section 2
presents the vehicle used in this study, and also describes
its control system; section 3 describes the middleware
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COSMIC used to support the sentient-objects; section 4
presents the new distributed architecture designed to con-
trol the vehicle; finally, section 5 presents the conclusions
of the paper.
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Fig. 1. Original Control System Architecture.

2. AUTONOMOUS VEHICLE CONTROL

The vehicle used in this study is a Mini-baja prototype,
which was automated and converted into a drive-by-wire
vehicle. This rear wheel drive vehicle weights about 200kg
and is equipped with a 5HP internal combustion engine. In
its original condition it could be guided like a conventional
car and the maximum steering angle is about 0,79rad.
The original control architecture was organized in different
subsystems, being responsible for traction, acceleration,
brakes and steering angle control.

Electrical drives were therefore used to control the throttle
angle, the braking force and the steering wheel angular po-
sition. The drive-by-wire structure originally implemented
in the vehicle was based on an ALTUS PLC network,
with industrial PLCs interconnected to each other by
an ALNET1-Bus. There is one PLC responsible for each
subsystem, such as in a distributed control structure.
Another two PLCs were used two for speed control and
network management. The steering, traction and braking
systems were analyzed separately and for each of them
a specific controller was developed. For speed control an
Adaptive Cruise Control (ACC) was implemented. The
ACC system was separated into two branches, one for
accelerating and the other for braking the car. Each branch
presents some particularities, which were integrated in the
vehicle’s mathematical model. The speed controller has
to accelerate, decelerate, and brake the vehicle, switching
between both accelerating and braking branches. Both
branches must not interfere each other, so a particular
algorithm was designed to operate the switch.

Autonomous vehicle controllers are typically organized in
cascade, as depicted in Fig. 2 (WIT et al. [2004], JUNG

et al. [2005]). At the highest level (level 4) one can find the
navigation planning and the trajectory generation. Path
tracking control algorithms based on kinematics models
are normally located at level 3, while dynamic control is
at level 2. Finally, sensor/actuator control systems are at
level 1. The original control system for the Mini-baja was
organized in 9 computational tasks, as follows:

• T 1 - Kinematics control loop;

• J 2 - System’s model and control law definition;

• J 3 - Reference path definition;

• T 4 - Integration error correction;

• J 5 - Data transmission;

• J 6 - Start application;

• J 7 - Stop application;

• T 8 - beta and theta Dynamic control loop;

• T 9 - Speed dynamic control loop.
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Fig. 2. Cascade-based autonomous vehicle control.

Tasks denoted with T are periodic and tasks denoted
with J are aperiodic, which means that they do not occur
within a fixed interval. Among these tasks, T 1, J 2, T 4,
T 8 and T 9 should run concurrently while the vehicle is
moving. J 3 and J 5 are executed only when the vehicle
is stopped. T 1, T 7 and T 8 have hard deadlines, and
that can never be violated, while the others tasks have
soft deadlines, where violations are tolerated. For example,
the soft condition of J 2 is based on the pre-condition that
the system will never require any parameters redefinition
to treat a critical situation. That is, model and control
law redefinitions during the driving process are assumed
to be necessary for performance optimization, and not
for emergency purposes. Similarly, T 4 is defined as soft
assuming that the periodic integrating error correction will
never let this error accumulate up to critical levels. Finally,
deadlines of the periodic tasks are assumed to be equal to
the task’s period.

Despite of the concurrency aspect, the original system
implementation concentrated implementation from levels
2 to 4 on a single computational node (PLC), while
level 1 was distributed among less powerful PLCs. In
a first look, the available control system seamed to be
distributed. However, it was designed in a tightly coupled

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6904



structure, despite of the fact that it is organized in different
organization levels. Our proposal here aims to decouple
the system both logically and physically. Here, logically
decoupling means to make the system partitioning using
the concept of sentient-objects. The physical decoupling is
related to the deployment of the sentient-objects among
low-cost microprocessed nodes, all interconnected by the
CAN-bus fieldbus, as shown in Fig. 1. The concept of
sentient-objects is supported by the COSMIC middleware,
as described in the next section.

3. COSMIC MIDDLEWARE

The COSMIC (Cooperating SMart devICes) middleware
from KAISER et al. [2005] was specially designed for
embedded applications. It provides an API that abstract
many low-level details from users. For instance, it hides
the different addressing and routing mechanisms of var-
ious physical sub-networks. Moreover, it provides means
to handle the different quality properties that underlying
networks may have. Additionally, the middleware should
support dynamic network configuration issues like chang-
ing or adding components without having to completely
reconfigure all subnets.

Communications using COSMIC are content-based, fol-
lowing the Publisher/Subscriber protocol. Because the
content or subject of a message becomes a major criterion
for routing in such an interaction model, it is well suited
as an overlay to mask the different addressing mechanisms
in a system of interconnected heterogeneous subnets. The
subject of a message has a meaning across multiple net-
works. This is exploited for filtering at the network bound-
aries. If a certain subject is not subscribed outside a spe-
cific subnet, it is not propagated by the respective gateway.
Thanks to such approach, components can be removed,
replaced or new ones can be added without involving an
explicit address configuration effort in the components or
in the application.

The second important point in a control network is the
predictability of communication. Not all messages may
need the same level of predictability and it is desirable to
trade resource demands against predictability. COSMIC
provides means to control this trade-off in an application-
oriented way and particularly handle this for an end-to-end
message transfer across multiple subnets.

To create applications using COSMIC one must use the
API provided with the middleware. Every application
object that communicate through the middleware must
inherit from the BasicObject class. Thereby it can make
full use of the P/S facilities. For instance, the Speed
class from Fig. 3 represents a sentient-object that is
allowed to make full use of the mentioned API. The
<<BasicObject>> stereotype will be further used to
represent elements using the API.

Objects communicating using COSMIC API follow a stan-
dard behaviour. To send a message the object creates an
Event, which is further broadcasted in the related chan-
nel using the publish method. This happens by means of
sending the event from the object to the Event Channel
Handler (ECH), which is in charge of sending the event
to all its subscribers. Events reception can happen either

BasicObjetc

+publish(event : msg_obj)
+receive(event :Event)

Speed

+readValue()

Event

+subject: long
+data: char[]
+data_len: int

ECH

+publish(event : Event)
+subscribe(channel : long)
+unsubscribe(channel : long)
+get_msg(event : Event)

1

0..1

Fig. 3. Structure of the COSMIC API.

by polling or by automatic notification. As mentioned, all
these communication steps follow a standard sequence, as
in Fig. 4. The subscriber remains blocked in a illustrated
loop waiting for the message reception. As the message is
received, the related action is activated. Although a single
subscriber is shown in the figure, such behaviour would be
repeated for as many subscribers as were assigned for the
message.

APublisher:BasicObject

par

1: sendEvent

2: Publish

6: NULL

7: Get_msg

:ECH ASubsriber:BasicObject

3: event_received

loop
[not event received]

5: Get_msg

9: action

4: getEvent

8: Notification

Fig. 4. Standard object interaction using COSMIC.

It is important to highlight the concurrent nature of
the communication sequence presented in Fig. 4. Sending
and receiving messages are actions peformed in different
time instants. This is expressed by the tag par in the
diagram. Another point to be mentioned relates to high
abstraction level provided by the API, hiding many low-
level implementation details from designers.

Next section presents the use of COSMIC and its API
to design the new distributed control architecture for the
Mini-baja vehicle.

4. THE PROPOSED ARCHITECTURE

This section introduces the distributed object-based ar-
chitecture designed to control the autonomous vehicle
described in section 2. The first modifications introduced
in the original architecture were the substitution of the
PLCs used in level 1 by microprocessed nodes based in
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the Coldfire architecture. Additionally, the main control
PLC was substituted by a PowerPC node. Moreover, a
PC was used here to emulate a situation where cars could
communicate with each other by using a wireless network.
Given that COSMIC did not support wireless networks
during the development of this work, we used an Ethernet
connection instead. It is used to connect the PC to the
PowerPC node.

Given the high complexity of the entire control system, we
focused our description in the steering angle subsystem.
Therefore we assumed that the vehicle moves with a
constant and pre-defined speed.

As described in the previous section, all interactions within
COSMIC are event-based. Such events are generated by
the information producers, also known as publishers, which
send their events using channels. Fig. 5 depicts the channel
structure designed for the proposed architecture. The
elements in the middle are the channels itself, while
those elements surrounding the channels are the packages
containing the objects.
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Fig. 5. Event Channel configuration.

We used a UML (OMG [2002]) deployment diagram to
illustrate the computational nodes present in the designed
application, as shown in Fig. 6. This diagram also depicts
the network connections among the involved nodes, as well
as the software components deployed in each node. It is
important to highlight that each node contains an ECH
component, offering an interface for the P/S protocol,
which also means that COSMIC is active in the node.
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ECH
P/S

TCP/IP

<<component>>

CPMB

<<component>>

Reference

<<Component>>

StartOperator

Gateway

<<component>>

<<component>>

RTPos

<<component>>

Crash
<<component>>
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Ethernet
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<<component>>

Speed

<<component>>

Angle

P/S

CAN

Node_Coldfire
CAN

CAN

CAN

Fig. 6. Software components deployment.

Another important aspect from the diagram in Fig. 6
is the Gateway component in the PowerPC node. This
component is in charge of providing the adaptation of
messages exchanged among different networks, in this case
Ehternet and CAN-bus. It also includes responsibilities
from the ECH component, therefore a single Gateway
component is enough to allow COSMIC to properly run
in the node.

Button Display Keyboard

Integrator

+StartPos
+step
+RealPosSensor
+refreshPos
+exportData
+ExportArray
+Integrator
+~Integrator

RealPosSensor

- float RealX
- float RealY

+RealPosSensor

AngleSensor

- float Angle
- float AngleRelRad
- float AngleRelRadI

+ AngleSenor

CrashSensor

- char statusCrash

+ CrashSensor

1

<<BasicObject>>
CPBM

+start
+stop
+run
+RefreshPos
+systemReset
+exportData
+MBPC
+~MBPC

1

1

<<BasicObject>>
OperatorIO

1

Acessa

Comanda

Comanda

- float x
- float  y
- float  teta
- float  fi
- float  t
- unsigned long  i
- float  l
- unsigned long nxyref
- unsigned short  n
- char status=0

PurePursuit

+Abs2Local
+local2Abs
+PurePursuit

1

- float Alpha
- unsigned long dg
- unsigned short n
- unsigned long nref
- float t

# float A
# float B
# float C
# float R
# float K
# float Q
# unsigned h
# float  f
# float ym
# du
# ref
# x
# y
# teta
# fi
# unsigned long nxref
# unsigned short na=2
# unsigend short nb=1
# unsigned short nou=2
# unsigned nin = 2
# unsigned long nref
# lamb
# t = 1
# char  dustat = 0
# char status = 127

float
float
float
float
float
float

float
float

SpeedDriver

Acessa
1

1

# float s
# float t
# char status = 0

<<BasicObject>>
SpeedController

+SpeedController

HeadingDriver

# float s
# float t
# char status = 0

<<BasicObject>>
HeadingController

+ HeadingController

1

- float alpha_r  = 0
- float alpha_l  = 0
- unsigned char offset_r = 0
- unsigned char offset_r = 0

<<BasicObject>>
Reference

- float L
- float V
- float T
- float X
- float Y
- float Teta
- float F
- float Status

+ StartPos
+ sDir
+ sDif
+ EightDir
+ EightDif
+ squareDir
+ squareDif
+ square2Dir
+ square2Dif
+ Reference
+~Reference

<<BasicObject>>
SystemClock

+SystemClock

<<BasicObject>>
Sensor

# char status

Fig. 7. Class diagram of the designed system.

The class diagram of the proposed architecture is pre-
sented in Fig. 7. Special attention should be given to the
use of the <<BasicObject>> stereotype. All classes that
contain this stereotype (either directly of from inheritance)
are able to communicate using the P/S protocol by means
of the COSMIC API. Follows a brief description of such
classes:

• CPBM: implements the control algorithm (a Predic-
tive Based Controller);

• Reference: is in charge of generating the reference
trajectory;

• PurePursuit: implements the pure pursuit algo-
rithm used to create the approximation trajectory;

• Integrator: implements the method in charge of de-
termining, in real-time, the vehicle position in carte-
sian coordinates using numerical integration tech-
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niques;

• AngleSensor: represents the electronic compass;

• RealPosSensor: represents the encoder;

• SpeedController: represents the speed control;

• CrashSensor: represents the anti-colision sensor;

• SystemClock: represents the real-time clock;

• HeadingController: represents the control actions
sent to the steering angle control system;

• OperatorIO: represents the operator interface;

• Driver: contain parameters and characteristics of the
hardware drivers.

Fig. 8 illustrates two common interactions in the designed
system. The figure on left depicts the generation of the
angle information. It is constituted by the communication
between the AngleSensor object with the SensorDevice
object. While the former represents the angle information
obtained from the electronic compass, the latter is in
charge of gathering the raw data from the compass. At
every period t, the sensor data is gathered from the
physical system, requiring the communication between
AngleSensor and SensorDevice objects, which is done
by method invocation. However, communication among
the AngleSensor and the rest of the system is done by
using the P/S protocol. The figure on right depicts the
consumption of the angle information. The CPBM object,
which is interested in the information, is notified by the
middleware on the event occurrence. In this moment, it
runs again the control algorithm and recalculation of the
actuation information, which is further published to the
interested nodes (in this case the steering angle control
subsystem).

:CPBM Integrator

Loop

Integrate

Publish(h_controller)

:AngleSensor :SensorDevice

Loop

Ts = now
readValue

Publish(real_pos_msg))

:Ev_Anglenew

:Ev_Angle

Consume

:Ev_Contr.
new

Fig. 8. Typical interaction scenarios in the designed sys-
tem.

4.1 Evaluation Results

This subsection presents an evaluation of the distributed
control system architecture presented in the paper. This
evaluation consisted in observing if the system would
follow properly the established trajectory. In Fig. 9 we
present the graph from one of such experiments. The
evaluated trajectory consisted of a S circuit, where the
initial position of the reference trajectory (continuous line
in the graph) is located at coordinate (1,1) in the (x,y)

plan. The curves were designed to bound the range to 10
meters, strait paths are no longer than 20 meters, and
the number of S is 3. The vehicle intentionally starts the
trajectory in a different coordinate (-1,-5) (see the doted
line), in order to proof that the control algorithm is able
to forward the vehicle to the correct track.

The graph from Fig. 9 also shows the satisfactory be-
haviour of the vehicle while following the reference tra-
jectory, given that the observed deviations are acceptable
in this kind of control system. This leads to the conclusion
that possible delays introduced by the proposed architec-
ture (network and processing latencies) did not affect the
overall performance of the system. Therefore, it is possible
to assert that the proposed architecture is well adapted for
controlling autonomous vehicles.
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Fig. 9. Reference vs. performed trajectory.

4.2 Discussion

The original control system presented in section 2 was
very dependent of a given hardware platform and com-
munication network. There are several drawbacks of such
approach, including a high dependence from a specific
hardware manufacturer, and the high cost from PLCs in
comparison to standard microprocessed nodes commonly
used by automobiles manufacturers. Although the original
architecture was very robust and reliable, it would never be
adopted by the industry due to the just mentioned draw-
backs. To overcome these problems, the new architecture
presented in this paper has used low-cost microprocessed
node, and a standard communication bus, highly used by
the industry.

Analyzing the previous software structure, one could ob-
serve a tight coupling among all components. The defi-
nition of different layers in the adopted controllers was
more used for documentation purposes than to improve
the quality of the designed application. However, in the
presented architecture all software components are loosely
coupled.

From the designer perspective, the new architecture pro-
vides a huge enhancement by avoiding dealing with specific
platform details, given that they are treated in the mid-
dleware level and not by the application. Moreover, it pro-
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vides a much more natural way of structuring applications,
focusing objects interrelation in the shared information,
and not in the required object references to allow gathering
such information.

5. CONCLUSIONS

This work concerned the study, design, and implementa-
tion of a distributed object-based architecture used to sup-
port the control system used in autonomous vehicles. This
architecture is based in the Publisher/Subscriber (P/S)
protocol, and is supported by the use of the COSMIC
middleware. Such middleware allows software components
to communicate using distinct network mediums, such as
CAN-bus and Ethernet.

The proposed architecture was presented here by means of
UML diagrams, representing both the internal interaction
from the middleware perspective and also from the ap-
plication perspective. Experimental results show that the
decoupled architecture generated is not affected by pos-
sible communication and processing delays. These results
were obtained by using an autonomous vehicle in charge
of following a given trajectory. The simplicity and small
budget of the proposed architecture makes it a suitable
choice for the automobilist industry in real projects.

Additionaly, this architecture would benefit future applica-
tions for autonomous vehicle navigation. This property can
be easily obtained by changing the Ethernet connection for
wireless communication.
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