
Sampling of noisy signals: spectral vs

anti-aliasing filters ⋆

Marian J. B lachuta ∗ and Rafa l T. Grygiel ∗

∗ Department of Automatic Control, The Silesian University of
Technology, 16 Akademicka St., PL44-101, Gliwice, Poland (e-mail:

marian.blachuta@polsl.pl, rafal.grygiel@polsl.pl)

Abstract:
In the paper we study the properties of sampling stochastic signals corrupted by a wide-
band stochastic noise where samples are taken either directly from resulting signal, or as the
output from a continuous-time filter. We consider two types of filters: anti-aliasing filters whose
characteristics depend solely on sampling period, and Kalman filters, whose characteristics
depend on spectra of signals of interest. We also study possible improvement attained by discrete-
time Kalman filtering applied to the sampled signal. We compare the results of two competitive
methods: classical point-wise sampling followed by discrete-time filtering, and continuous-time
filtering prior to sampling possibly followed by digital filtering. The study is performed for
a wide range of sampling periods and noise-to-signal ratios and leads to important practical
conclusions.

1. INTRODUCTION

In scientific literature Feuer & Goodwin (1996); Witten-
mark et al. (2002); Åström & Wittenmark (1997) strong
belief is expressed that additional analog elements in
the form of so called anti-aliasing filters are necessary
to guarantee correct sampling for further digital signal
processing. Although various solutions are possible, these
filters usually take the form of Butterworth filters whose
cutoff frequency equals to the so called Nyquist frequency
ωN = π/h depending solely on sampling period h.

This belief is usually supported by informal speculations
based on Shannon-Kotelnikov Reconstruction Theorem,
e.g. Jerri (1977), which states that in order to reconstruct
the signal s(t) from its samples s(ih),−∞ < i < ∞, the
sampling frequency should be twice the highest frequency
component in the signal. Since the spectra of physical
signals often stretch on infinite frequency range, this gives
rise to the idea of filters that cut off the portion of
frequency spectrum lying outside the region determined by
that theorem. These portions cause the effect of frequency
folding responsible for the spectrum of a sampled process
to differ from its continuous-time original, see Fig. 1. Anti-
aliasing filters prevent the spectrum from folding, which is
supposed to be necessary.

We do not share this view since the only effect of anti-
aliasing filter is deformation of the signal to be sampled,
such that its reconstruction, although theoretically possi-
ble, differs from the original, see Fig. 2 for an example.
This idea, however, makes sense when the signal s(t) is
contaminated with a wide-band noise n(t), and we are
interested in reconstructing samples s(ih) of the original
signal s(t) from samples y(ih) of y(t) = s(t)+n(t), see Fig.
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Fig. 1. Spectral densities: Sc(ω) for y(t); Sd(ω) for y(ih)

a) Butterworth b) Kalman
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Fig. 2. Sc(ω), and Sf
c (ω) of original and filtered signals

3. In this case putting an appropriate analog filter between
the source of y(t) and the sampler might be justified.

We claim that such filter should depend on the spectral
characteristics of both s(t) and n(t) rather than on sam-
pling frequency. In contrast to anti-aliasing filter we will
call it a spectral filter.

We also show that in either case anti-aliasing filter makes
little or no sense except for certain sampling periods for
which the properties of an anti-aliasing filter approach that
of a properly designed spectral filter.
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These claims will be proved by quantitative analysis of
both filtration and sampling problems, and of combina-
tions of them.

2. PROBLEM FORMALIZATION

A model of signal contaminated by noise presented in Fig.
3a) consists of two forming filters represented by transfer
functions Ks(s) and Kn(s) driven by white noise signals

ξ̇s(t) and ξ̇n(t). Further analysis is based on state-space
methods, therefore state-space description of this model is
required.

a) b)

Fig. 3. a) Model of signal contaminated by noise, b)
Simplified model with white noise

2.1 State-space model of signal contaminated by noise

To analyse the properties of sampling we will use state-
space models of the system in Fig.3 consisting of signal

ẋs(t) = Asxs(t) + csξ̇s(t), (1)

s(t) = d′
sxs(t), (2)

and noise model

ẋn(t) = Anxn(t) + cnξ̇n(t), (3)

n(t) = d′
nxn(t). (4)

where dimxs = ns, dim xn = nn, xs(t), xn(t) are state
vectors, As, An are matrices, cs, cn, ds, and dn are vectors
of appropriate dimensions. The initial conditions xs(0)
and xn(0) are assumed to be a normal random vectors,

xs(0) ∼ N (0,Qs,0), xn(0) ∼ N (0,Qn,0). Processes ξ̇s(t)

and ξ̇s(t) are independent continuous-time white noises
with zero means and covariance functions defined as unit
Dirac pulse functions, i.e.:

E [ξ̇s(t)] = 0, E [ξ̇s(t)ξ̇s(τ)] = δ(t − τ); (5)

E [ξ̇n(t)] = 0, E [ξ̇n(t)ξ̇n(τ)] = δ(t − τ). (6)

The disturbed signal y(t) is the sum of the signal of interest
s(t) and noise n(t):

y(t) = s(t) + n(t) (7)

System (1)-(4) with (7) can be aggregated to:

ẋ(t) = Ax(t) + Cξ̇(t), (8)

s(t) = d′
0x(t), (9)

y(t) = d′x(t), (10)

where:

A =

[

As 0
0 An

]

, C =

[

cs 0
0 cn

]

, d0 =

[

ds

0

]

,

d =

[

ds

dn

]

, x(t) =

[

xs(t)
xn(t)

]

, ξ̇(t) =

[

ξ̇s(t)

ξ̇n(t)

]

2.2 Continuous-Time Filters

Representatives of two sort continuous filters are investi-
gated in this paper: Butterworth filter as an anti-aliasing
filter and Kalman filter as a spectral one.

Continuous-time Butterworth filter Transfer function of
Butterworth filter has the form:

Kfa (s) =
1

Bn

(

s
ωo

) , (11)

where Bn (∗) is the n-th degree Butterworth’s polynomial
and ωo is called the cutoff frequency. In this paper ωo will
be assumed as Nyquist frequency ωo = ωN = π

h
. The first

Butterworth’s polynomials are definded as follows:

B1 (x) = x + 1; B2 (x) = x2 +
√

2 · x + 1. (12)

Continuous-time Kalman filter Since there is no noise in
output y(t), the classical Kalman filter for system in (8)–
(10)becomes singular. One way to overcome the problem
is to assume that white noise ν(t) with very small spectral
density η2 is add to the output 1 , i.e. the output equation
instead of (10) becomes:

y(t) = d′x(t) + ν(t), (13)

Then the steady-state continuous-time Kalman filter is
defined by:

˙̂x(t) = Ax̂(t) + kf
c

[

y(t) − d′x̂(t)
]

(14)

with:

kf
c =

Pd

η2
; AP + PA′ − Pdd′P

η2
+ CC ′ = 0 (15)

The filtered value ŝ(t) of s(t) is determined by

ŝ(t) = d′
0x̂(t). (16)

2.3 State-space model of system with analog filter

Either filter, anti-aliasing or Kalman 2 , can be expressed
in the following form

ẋf (t) = Afxf (t) + bfy(t), (17)

yf (t) = df ′
xf (t), (18)

Then the system consisting of a filter in (17)–(18), together
with signal and noise models of (8)-(10) can be aggregated
to the following

ẋo(t) = Aoxo(t) + Coξ̇
o
(t), (19)

s(t) = do′
s xo(t), (20)

y(t) = do′
y xo(t), (21)

yf (t) = do′xo(t), (22)

1 unfortunately, when the value of η is too small, then computing P

from (15) is problematic; a better choice is to replace the continuous-
time filter with a discrete-time one working at sampling frequency
high enough. The output of such filter could be resampled at
lower frequency if necessary. An alternative solution is to use an
approximate continuous-time filter with k

f
c = k

f /h.
2 Superscript ’f ’ marks generally filter. Superscript ’fa’ stands for
anti-aliasing filter, while ’fs’ stands for a spectral filer.
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where:

Ao =





As 0 0
0 An 0

bfd′
s bfd′

n Af



 , Co =

[

cs 0
0 cn

0 0

]

,

do
s =

[

ds

0
0

]

, do
y =

[

ds

dn

0

]

, do =





0
0

df



 ,

xo(t) =





xs(t)
xn(t)
xf (t)



 , ξ̇
o
(t) =

[

ξ̇s(t)

ξ̇n(t)

]

2.4 Instantaneous sampling

Assume that the output yf (t) of the system is sampled
at discrete time instants ti = ih, i = 0, 1, . . .. Then the
system is described at sampling points ih by the following
discrete-time system:

xo
i+1 = F oxo

i + wo
i , (23)

zi = do′xo
i , (24)

where wo
i is a zero mean vector Gaussian noise with

E {wo
i w

o′
i } = W o,

W o =

h
∫

0

eAAAos CoCo′ eAAAo′s ds and F o = eAAAoτ . (25)

Vectors xo
0 and [wo′

i , no
i ] are independent for all i ≥ 0.

2.5 Discrete-time Kalman filter

The best estimate ŝi = E{si|zi} given samples zi, i =
0, 1, . . . is provided 3 by classical discrete Kalman filter in
the following form:

x̂i+1|i+1 = F mx̂i|i + kf (zi+1 − dm′F mx̂i|i), (26)

kf =
Σdm

dm′Σdm , (27)

Σ = W m + F m

(

Σ − Σdmdm′Σ′

dm′Σdm

)

F m′. (28)

3. SIMPLIFIED MODELS

3.1 Continuous-time model

Very often the power spectrum Sn(ω) of noise n(t) defined
by equations (3)-(4), or by transfer function Kn(s), is
much wider than that of the signal of interest s(t). In such
case it can be modeled as white noise n(t)

E [n(t)] = 0, E [n(t)n(τ)] = η2δ(t − τ); (29)

with constant spectral density η2 independent of frequency
ω. The model in (8)-(10) simplifies to

ẋs(t) = Asxs(t) + csξ̇s(t), (30)

y(t) = d′
sxs(t) + ηξ̇n(t), (31)

s(t) = d′
sxs(t) (32)

and the model presented in Fig. 3 simplifies to that of Fig.
3b), with

η = |Kn(0)| = |d′
nA−1

n cn| (33)

3 assuming i large enough

The continuous-time Kalman filter is then defined by:

˙̂x(t) = Asx̂(t) + kf
c

[

y(t) − d′
sx̂(t)

]

(34)

with:

kf
c =

Pds

η2
; AsP + PA′

s −
Pdsd

′
sP

η2
+ csc

′
s = 0 (35)

The filtered value ŝ(t) of s(t) is determined by

ŝ(t) = d′
sx̂(t) (36)

Since only a rough characterization of noise is required,
and filter equations are of lower order, this greatly simpli-
fies analog filtering.

Comparison of exact and simplified Kalman filter for
an example is shown in Fig. 4 displaying the standard
deviation of filtration error ∆s′ = s(t) − ŝ(t).
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Fig. 4. Comparison of exact and approximate continuous-
time Kalman filter – CT(K)

3.2 Simplified continuous-time model with filter

Assume that signal corrupted by noise is modeled by (30)–
(32) instead of (8)-(10), and that an analog filter is present.
Then equations (19)–(22) simplify to

ẋm(t) = Amxm(t) + Cmξ̇
m

(t), (37)

s(t) = dm′
s xm(t), (38)

yf (t) = dm′xm(t), (39)

with the initial condition xm(0) ∼ N (0,Qm
0 ) and:

Am =

[

As 0

bfd′
s Af

]

, Cm =

[

cs 0

0 bfη

]

, dm
s =

[

ds

0

]

,

dm =

[

0

df

]

, xm(t) =

[

xs(t)
xf (t)

]

, ξ̇(t) =

[

ξ̇s(t)

ξ̇n(t)

]

.

Equivalent discrete-time description of sampled system is:

xm
i+1 = F mxm

i + wm
i , (40)

zi = dm′xm
i , (41)

Similarly to (25) wm
i is a zero mean vector Gaussian noise

with E {wm
i wm′

i } = W m,

W m =

h
∫

0

eAAAms CmCm′ eAAAm′s ds and F m = eAAAmτ , (42)

vectors xm
0 and [wm′

i , ni] are independent for all i ≥ 0.
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3.3 Discrete-time model

While appropriate for continuous-time signal processing
modeling, the model in (30)–(32) is completely inadequate
for discrete-time models. This is because sampling of
physically nonexisting continuous-time white noise with
infinite variance can not be defined reasonable.

Therefore we propose a discrete-time model of instanta-
neously sampled noisy signal

xs
i+1 = F sx

s
i + ws

i , (43)

zi = d′
sx

s
i + ni, (44)

si = d′
sx

s
i (45)

in which noise is presented as discrete-time white noise
ni whose variance ρ2 equals to the variance of n(t) of the
original system, i.e. ρ2 = var {ni} = var {n(t)}, and can
be calculated as

ρ2 = d′
nQndn, (46)

where Qn fulfills the following Lyapunov equation:

AnQn + QnA′
n = −dnd′

n (47)

and

F s = eAAAsh, W s =

h
∫

0

eAAAsv csc
′
s eAAA′

s
v dv (48)

To find the estimate ŝi = E{si|zi} classical discrete
Kalman filter is used in the following form:

x̂i+1|i+1 = F sx̂i|i + kf (zi+1 − d′
sF sx̂i|i), (49)

kf =
Σds

d′
sΣds + ρ2

, (50)

Σ = W s + F s

(

Σ − Σdsd
′
sΣ

′

d′
sΣds + ρ2

)

F ′
s. (51)

Again, since only a rough characterization of noise is
required, and filter equations are of lower order, this
greatly simplifies discrete-time filtering.

A comparison between exact and approximate Kalman
filter for the exemplary system is shown in Fig. 5. Again,
there is very little to choose between them except perhaps
for short sampling periods h.

4. SAMPLING QUALITY ASSESSMENT

The quality of sampling will be measured by their standard
deviations from the actual values. Denote ∆s∗(i) the
difference between actual value si and a sample zi, and

∆s∗(i) = si − zi = do′
s xi + do′xi. (52)

and σ2(∆s∗) = lim
i→∞

var {∆s∗(i)} the corresponding vari-

ance, and σ2(∆s) the difference between si and its estimate
ŝi|i produced by the discrete-time Kalman filter,

∆s(i) = si − ŝi|i = do′
s xi − dm′

s x̂i|i), (53)

with corresponding variance σ2(∆s) = lim
i→∞

var {∆s(i)}.

We then have

σ2(∆s) = do′
s V odo

s − 2 · do′
s V ofdm

s + dm′
s V fdm

s , (54)

σ2(∆s∗) = do′
s V odo

s − 2 · do′
s V odo + do′V odo, (55)

with:
V = ΛV Λ′ + ΓW oΓ′ + ΦΦ′νo2, (56)

(νo2=0 is mostly assumed in the paper) where:

Λ =

[

F o 0

k
f
i do′F o F m − k

f
i dm′F m

]

,

Γ =

[

Io

k
f
i do′

]

, Φ =

[

0

k
f
i

]

, V =

[

V o V f,o

V f,o V f

]

.

5. PROPERTIES OF SAMPLING AND FILTERING
SYSTEMS

We will study the properties of various combinations of
continuous-time and discrete-time filters as displayed in
Fig. 6 for an exemplary system defined by

Ks(s) =
1

(1 + 3s)2
, Kn(s) =

kn

T 2
ns2 + 2ζnTns + 1

(57)

Tn = 0.1, ζn = 0.2, (58)

Fig. 6. Configurations of filters and samplers. CT –
continuous-time; DT – discrete-time

5.1 Continuous-time filters: frequency domain analysis

The spectral density of the continuous-time process y(t)
as well as that of discrete-time samples y(ih) for different
sampling periods and kn choosen so that var {n(t)} = 1
are shown in Fig. 1.

In Fig. 2 the spectral density of y(t) is compared with
spectral densities of processes on outputs from analog
filters: a Kalman and an anti-aliasing Butterworth 2-nd
order ones determined for different sampling periods h.
An important observation is that, as one might expect,
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the anti-aliasing filter does not change Sf
c (ω) for small ω

while the Kalman filter does. The latter does not support
the intuition standing behind the idea of anti-aliasing. It is
also interesting that the spectral densities of both filtered
signals do not differ from their sampled counterparts in a
wide range of frequencies, see Fig. 7

a) Butterworth b) Kalman
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Fig. 7. Continuous and discrete power spectral densities
plotted only up to Nyquist frequency

Fig. 8. Models for purely discrete Kalman filter design

Fig. 9. Models of analog path for discrete Kalman filter
design

5.2 Discrete-time filters

Purely discrete-time filters In order to design a discrete-
time Kalman filter working on samples from the observed
signal y(t) a model of that signal is necessary. Models

under consideration are displayed in Fig. 8. From left to
right we have a full model marked Ks + Kn, a model
completetly neglecting noise marked Ks, and a model
marked Ks +ni in which noise is represented as a discrete-
time white noise added to the sampler.

Discrete-time filters following continuous-time filters
When the output from a continuous-time filter is sam-
pled we consider three typical situations depicted in Fig.
9. The first one, marked Ks neglects existence of both
filter and noise, the second marked Kf takes the transfer
function Kf (s) of the filter into account neglecting noise,
and finally, the third approximates the colored noise with
continuous-time white noise.

5.3 Comparison of results

There are three groups of plots in Fig. 10 showing the prop-
erties of various filtering and sampling variants for three
different values of sampling period h. We compare the re-
sults of pure discrete-time Kalman filter, continuous-time
Kalman filter and anti-aliasing Butterworth filter, and a
combination of anti-aliasing filter followed by a discrete-
time Kalman filter designed under various assumptions
concerning the continuous-time filter output model.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

std{n(t)}

s
td

{∆
s

i}

h=0.2

CT(B); (∆s*)
CT(B)+DT; K

s
CT(B)+DT; K

s
,K

f

CT(B)+DT; K
s
,η,K

f

CT(K: K
s
+K

n
) (∆s*)

DT; K
s
+K

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

std{n(t)}

s
td

{∆
s

i}

h=1.5

CT(B); (∆s*)
CT(B)+DT; K

s
CT(B)+DT; K

s
,K

f

CT(B)+DT; K
s
,η,K

f

CT(K: K
s
+K

n
) (∆s*)

DT; K
s
+K

n

Fig. 10. Comparison of different structures

As one might expect the best results are obtained when
process y(t) is filtered with a continuous-time Kalman
filter before being sampled, and the accuracy of results
does not depend on sampling frequency. This result can
be considered the lower bound for achievable accuracy.

For small sampling periods, the purely discrete-time
Kalman filter working on rough samples behaves as good
as the continuous-time one but, as one might expect with
increasing sampling period its quality decreases.

It is interesting to note that the quality of anti-aliasing
filter at high sampling rates is rather poor and increases
at longer sampling periods and not too small magnitudes
of noise.

The sampled output from the anti-aliasing filter can be
further improved using an appropriately designed discrete-
time Kalman filter. The best results are obtained for the
model of continuous-time part consisting of the model of
signal, filter and noise. We used here the simplified model
with continuous-time white noise.

The results are much worse when the model of the filter
output does not contain any model of noise. It is surprising
that even better results are obtained when the model of
filter is omitted. The former is exactly what is suggested in
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the literature, for example in the control context: apply an
anti-aliasing filter, add its transfer function to the transfer
function of the plant and forget about noise, or even about
the disturbance.

Another interesting perspective to study the results is
provided by plots being functions of h with parameter
ρ = std {n(t)}, see Fig. 11–Fig. 12.
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Fig. 11. a) Butterworth vs DT Kalman b) Butterworth
+DT Kalman vs DT Kalman alone
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Fig. 12. a) Butterworth vs CT Kalman b) Butter-
worth+DT Kalman vs CT Kalman, 0 < h ≤ 3

Realizations of filtered output processes, as well as results
of discrete-time Kalman filtering of their samples are
depicted in Fig. 13–Fig. 14

6. CONCLUSION

The range of reasonable sampling periods for anti-aliasing
sampling is rather small, and stretches around optimal
value that depends on the noise level. Augmenting the
sampler with a discrete Kalman filter improves the results
for smaller sampling periods bringing the filtration error
close to the lower limit provided by an analog Kalman
filter. It does however almost not help for sampling periods
greater than optimal. Small noise level results in a small
value of optimal sampling period which makes averaging
sampling useless.

The best solution is to employ an analog Kalman filter to
filter the signal before being sampled, or a discrete-time
Kalman filter at sampling rate high enough. In the latter
case the result can be further re-sampled if a reduction
of sampling rate is necessary. Simplified noise models
contribute to accurate enough and simple filters, both
analog and discrete.
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Control: An Overview. IFAC Professional Brief, January
2002.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7581


