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Abstract: A energy-insensitive explicit guidance design is proposed in this paper by appending newly-
developed nonlinear model predictive static programming technique with dynamic inversion, which
render a closed form solution of the necessary guidance command update. The closed form nature of
the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate real-
time solution. The guidance law is successfully verified in a solid motor propelled long range flight
vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine
propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle
appropriately so that it completes the mission within a tight error bound assuming that the starting
point of the second stage to be a deterministic point beyond the atmosphere. The simulation results
demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout
time.

1. INTRODUCTION

Guidance of solid motor propelled long range flight vehicles
with no thrust cutoff facility is a challenging task. A flight
vehicle with no thrust termination facility, must expend a fixed
amount of energy and still intercept the desired target. As no
thrust termination is available, the flight vehicle must consume
all available energy. The objective of satisfying the free-flight
equation in order to free-fall to an inertial target point must be
met at the time of fuel depletion. The uncertainty in the energy
content of the solid motor limit the knowledge of the actual
burnout time and this may lead to the failure of the mission.
To achieve the goal of intercepting, there is a need of taking
consideration of this uncertainty in the guidance design.

Since the early development of long range flight vehicle (i.e.
launch vehicles and missiles), various guidance schemes have
been developed. To name a few, one can find delta guidance
Battin (1982), cross-product steering Battin (1982), Lambert
guidance Zarchan (1997), general energy management steering
Zarchan (1997), optimal control theory based guidance Padhi
(1999), Bryson (1975) in the literatures.

Optimal control theory based guidance schemes are available
for many real-life problems. However, for the general class
of nonlinear system, the optimal control formulation has not
been that successful. The main reason for this is the inten-
sive computational requirement to obtain the optimal solution,
which makes it practically useless for any real time application.
There has been a wide variety of techniques and approximations
used to overcome the difficulties associated with the nonlinear
optimal control problem. To make them suitable for online
usage (like explicit guidance design), this critical issue must
be addressed, which is the primary objective of the recently-
developed MPSP design Padhi (2006) used in this paper.

In broad sense, closed loop guidance of flight vehicles can
be divided into two groups; namely implicit guidance and
explicit guidance. In case of implicit guidance, the deviation
of the actual trajectory from a predefined nominal trajectory
is minimized at each instant of flight. The main advantages
of this technique are simplified guidance logic and the use of
onboard computers with lesser speed. In the case of explicit
guidance, on the other hand, the complete set of trajectory
equations are solved onboard and new optimum trajectories
are computed on flight. The advantages of explicit guidance
over implicit guidance can be summarized as: (i) The mission
objective can be redefined on flight (consequently, one can opt
for complicated missions) and, more important, (ii) The control
force and moment requirements are normally not as severe as
in implicit guidance.

With liquid engines, the boost phase guidance problem for
flight vehicles gets greatly simplified because of the thrust
cutoff facility. However, a vehicle propelled by liquid engine
is normally not preferable over vehicle propelled by solid mo-
tor(s), because it gives rise to sloshing and tail wags dog
problems Greensite (1970), which are difficult to handle. More
important, the structural weight is higher (which compromised
the payload weight) and, owing to its many components, the
reliability is also lesser. Moreover, preparation time before
launch is also substantially high, which is undesirable in case
of ballistic missiles. On the other hand, vehicles propelled by
solid motors have many desirable properties like instant firing
(less preparation time before launch), low cost, low structural
weight, absence of sloshing and tail-wags-dog problems etc.
However the guidance problem is more difficult, mainly be-
cause of the absence of the thrust cutoff facility, which brings
in a stringent requirement that the vehicle must be put in the
required target-intercepting free-flight trajectory exactly at the
burnout time.
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Fig. 1. Schematic view of mission

In this paper, we use a recently developed nonlinear sub-
optimal control design technique, named as Model Predic-
tive Static Programming (MPSP) Padhi (2006), in conjunction
with the “dynamic inversion approach” Enns (1994),Slotine
(1991),Khalil (1996) to develop a energy-insensitive explicit
guidance scheme, which leads to a closed form guidance his-
tory update. Owing to the closed form nature, the technique is
computationally very efficient and can be implemented online.
Note that the uncertainty in the energy content implies that the
total impulse (area under the thrust-time curve) is not constant
and the burnout time of the motor is uncertain. The MPSP tech-
nique in conjunction with dynamic inversion approach is used
to design a hybrid energy-insensitive guidance scheme, which
makes sure that the free-flight equation is satisfied everywhere
in a finite time segment towards the predicted burnout time.
The forced assurance of satisfying the free-flight equation for
a finite time segment leads to the energy-insensitive design.

2. SYSTEM DYNAMICS AND MISSION OBJECTIVE

The schematic view of a typical ballistic missile mission is
shown in Figure 1. In the first stage of the two stage flight
vehicle, the vehicle follows a fairly mission-independent de-
terministic path. After the first stage burnout, it has crossed the
effective atmosphere and the aerodynamic loading is negligible.
After sufficient build up of the thrust, the second stage guidance
logic is initiated, which is depicted as the GLC (guidance loop
closure) point in Figure 1. Note that because the second stage
is beyond atmosphere, the vehicle can be turned significantly as
compared to the manoeuver within the atmosphere. This guided
second stage ends at the burnout point (the point BO in Figure
1), after which the vehicle follows an unpowered free flight path
to hit the target ‘T’.

With the assumption that the earth is spherical and non-rotating,
the point-mass dynamics of the vehicle beyond atmosphere is
given by the following set of differential equations Padhi (2005)
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where, Re = 6378.4×103 m is the radius of earth
r is the height from center of the earth
γ is the flight path angle wrt the local horizontal
T is the thrust level, m is the mass of the vehicle
V is the velocity of the vehicle
g is the acceleration due to gravity
φ is the range angle to be covered
δ is the shear angle (angle between thrust vector and velocity
vector), which acts as the guidance parameter

Using a polar co-ordinate system, a closed-form solution for the
equation of motion for radial distance r beyond the atmosphere
assuming a spherical and non-rotating earth is given by Zarchan
(1997), Wheelon (1959)

rbo

r
=

1− cosθ

λ cos2 γbo

+
cos(θ + γbo)

cosγbo

(2)

where λ = (rbo ×V 2
bo)/GM. Here GM is the product of uni-

versal gravitational constant and mass of the earth, rbo,Vbo and
γbo are the values of r,V and γ respectively at the burnout time
(tbo), θ is the central angle between rbo and r. Equation (2) is
known as free flight equation (no thrust or aerodynamics forces
act in this segment). If it is desired to hit a target that is at a
distance x along the surface of earth, then the angular distance
(central angle) to be covered is given by φ = x/Re. In that case,
θ = φ and r = rT , the radial distance at the target. The free
flight equation in this case is known as the hit equation Zarchan
(1997), Wheelon (1959), which is given by

rbo

rT

=
1− cos φbo

λbo cos2 γbo

+
cos(φbo + γbo)

cosγbo

(3)

In the first stage of the flight, the vehicle follows a deterministic
path to reach the starting point of second phase. The present
guidance scheme is implemented in the second stage. The
guided phase ends at the burnout time, which is a uncertain,
after which the vehicle follows an unpowered free flight path
to hit the target. The free flight motion, governed by equation
(2), is elliptic in nature so long as λ < 2. If λ ≥ 2 the vehicle
reaches the escape velocity, and leaves the earth permanently.
Moreover, for any target intercepting trajectory at a particular
position rbo and velocity Vbo, the choice of γbo is not unique. In
fact, two choices of γbo are possible, out of these two choices,
one leads to a steep trajectory and the other leads to a shallow
trajectory. Here we have aimed for a shallow trajectory (else,
we found that it is impossible to design an energy-insensitive
guidance scheme without a discontinuity in the shear angle
history). The objective of the guidance scheme is to compute
a shear angle history to satisfy the hit equation at the exact time
of burnout despite the uncertainty in the energy content of solid
motors.

3. GUIDANCE DESIGN: GENERIC THEORY

In this section, for better clarity and generality, we discuss the
theoretical details of the techniques followed in this paper in
a generic sense. The problem specific equation are discussed
separately in Section IV.
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3.1 Model Predictive Static Programming Design

In this section, for completeness, we present the mathematical
details of the newly developed MPSP technique Padhi (2006) in
fair detail. In this design, we consider general nonlinear systems
in discrete form, the state and output dynamics of which are
given by

Xk+1 = Fk(Xk,Uk) (4)

Yk = h(Xk) (5)

where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp and k = 1,2, . . . ,N are the
time steps. The primary objective is to obtain a suitable control
history Uk, k = 1,2, . . . ,N−1, so that the output at the final time
step YN goes to a desired value Y ∗

N , i.e. YN →Y ∗
N . In addition, we

aim to achieve this task with minimum control effort.

For the technique presented here, one needs to start from a
“guess history” of the control solution. In this section, we
present a way to compute an error history of the control vari-
able, which needs to be subtracted from the previous history to
get an improved control history. This iteration continues until
the objective is met i.e. until YN → Y ∗

N . To meet the objective

YN → Y ∗
N , first we define the error in the output as △YN ,

YN −Y ∗
N . Next, using small error approximation (i.e. neglecting

higher order terms in the Taylor series expansion) we write

△YN
∼= dYN =

[

∂YN

∂XN

]

dXN (6)

However from (4), we can write the error in state at time step
k+) as

dXk+1 =

[

∂Fk

∂Xk

]

dXk +

[

∂Fk

∂Uk

]

dUk (7)

where dXk and dUk are the error of state and control at time
step k respectively. Expanding dXN as in (7) (for k = N − 1)
and substituting it in (6), we get

dYN =

[

∂YN

∂XN

]([

∂FN−1

∂XN−1

]

dXN−1 +

[

∂FN−1

∂UN−1

]

dUN−1

)

(8)

Expanding dXk,k = (N − 2),(N − 3), . . . ,1, in a sequential
manner arranging the terms, we get

dYN = A dX1 +B1dU1 + . . .+BN−1dUN−1 (9)

where A ,

[

∂YN

∂XN

][

∂FN−1

∂XN−1

]

. . .

[

∂F1

∂X1

]

Bk ,

[

∂YN

∂XN

][

∂FN−1

∂XN−1

]

. . .

[

∂Fk+1

∂Xk+1

][

∂Fk

∂Uk

]

where k = 1, . . . ,N − 1. Since the initial condition is specified,
there is no error in the first term; which means dX1 = 0. With
this (9) reduces to

dYN =
N−1

∑
k=1

BkdUk (10)

Here we would like to point out that if one evaluates each
of the Bk, k = 1, . . . ,(N − 1) as in equation (10), it will be
a computationally intensive task (especially when N is high).
However, fortunately it is possible to compute them recursively.
For doing this, first we define BN−1 and B0

N−1 as follows

BN−1 =

[

∂YN

∂XN

][

∂FN−1

∂UN−1

]

, B0
N−1 =

[

∂YN

∂XN

]

(11)

Next we compute B0
k ,Bk k = (N −2),(N −3), . . . ,1 as

B0
k = B0

k+1

[

∂Fk+1

∂Xk+1

]

,Bk = B0
k

[

∂Fk

∂Uk

]

(12)

Equations (11)-(12) provides a recursive way of computing
Bk, k = (N − 2),(N − 3), . . . ,1, which leads to substantial
saving of the computational time. In equation (10), we have
(N-1)m unknowns and p equations. Usually p < (N − 1)m,
and hence, it is an under-constrained system of equations. We
take advantage of this opportunity and aim to minimize the
following objective (performance index)

J =
1

2

N−1

∑
k=1

dUT
k RkdUk (13)

The cost function in (13) needs to be minimized subjected to the
constraint in (10). Here Rk > 0 (a positive definite matrix) is the
weighting matrix. Following the theory of static optimization
Bryson (1975), the augmented cost function is given by

J̄ =
1

2

N−1

∑
k=1

dUT
k RkdUk +λ T (dYN −

N−1

∑
k=1

BkdUk) (14)

The necessary conditions of optimality are given by

∂ J̄

∂dUk

= RkdUk −BT
k λ = 0 (15)

∂ J̄

∂λ
= dYN −

N−1

∑
k=1

BkdUk = 0 (16)

Solving for dUk from (15), we get

dUk = R−1
k BT

k λ (17)

Substituting for dUk from (17) into (16), it leads to

Aλ λ = dYN (18)

where Aλ ,
[

∑N−1
k=1 BkR−1

k BT
k

]

. Note that Aλ is a p× p matrix.
Assuming Aλ to be nonsingluar, the solution for λ is given by

λ = A−1
λ dYN (19)

Using (19) in (17), it leads to

dUk = R−1
k BT

k A−1
λ dYN (20)

Hence, the updated control at time step k = 1,2, . . . ,(N − 1) is
given by

Uk = U0
k −dUk = U0

k − R−1
k BT

k A−1
λ dYN (21)

It is clear from (21) that the updated control history solution
in (21) is a closed form solution. Hence, this formulation is
suitable for online implementation. Here, we wish to point out
that to save computational time, only one update can be done at
a time step and the next improvement (iteration) can be carried
at the next time step. More details about this newly developed
technique can be found in Padhi (2006).

3.2 Dynamic Inversion

A relatively simpler and popular method of nonlinear control
design is the technique of dynamic inversion, which is essen-
tially based on the philosophy of feedback linearization Enns
(1994),Slotine (1991),Khalil (1996).

Here we focus on a class of nonlinear systems that are repre-
sented by the following system dynamics

Ẋ = f (X ,U)

Y = h(X) (22)

where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp are the state, control and
output vectors of the system respectively. We assume that the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14025



system is pointwise controllable. The objective is to design a
controller U so that Y → Y ∗ as t → ∞ , where Y ∗(t) is the
commanded signal for Y to track. We assume that Y ∗(t) is
bounded, smooth and slowly-varying.

To achieve the above objective, we first notice that from (22),
using the chain rule of derivative, the expression for Ẏ can be
written as

Ẏ = fY (X ,U) (23)

where fY ,

[

∂h
∂X

]

f (X ,U). Next, defining E , (Y −Y ∗) the

controller is synthesized such that the following stable linear
error dynamics is satisfied

Ė + KE = 0 (24)

where K is chosen to be a positive-definite gain matrix. Next,
using the definition of E and substituting the expression for Ẏ
from (23) in (24) to obtain

(

fY (X ,U)− Ẏ ∗
)

+K (h(X)−Y ∗) = 0 (25)

When fY (X ,U) is not linear in control, there is no straight
forward way to get solution of (25), however, depends on the
form of (25) various approaches can be taken up to get a closed
form solution of control variables. This completes an overview
of the basic steps of the dynamic inversion controller.

4. GUIDANCE DESIGN: PROBLEM SPECIFIC
EQUATIONS

As mentioned in Section I, the objective here is to develop a
robust “energy-insensitive” guidance design scheme to inter-
cept the target without the actual knowledge of burnout time.
In other words, the guidance design scheme must make sure
that dYN → 0 as t → tbo, and this goal should be achieved in
the presence of uncertainty in the energy content of solid motor.
The guidance scheme is designed in two steps. First, we assume
that the motor is guaranteed to burn up to a certain duration of
the predicted burnout time (say 90%) and design the guidance
scheme using the MPSP technique Padhi (2006). Next, we
switch over to dynamic inversion approach Enns (1994),Slotine
(1991),Khalil (1996), which assures that the free flight equation
is satisfied throughout for the remaining time. Based on the
generic theoretical details presented in Section III, problem
specific equations are outlined in this section.

4.1 Guidance Design Using MPSP

The objective of the guidance scheme is to compute the guid-
ance command input to satisfy the hit equation at switch over
time (tso). At the switch over time (tso), the guidance algorithm
is switched over to other guidance scheme which is based
on dynamic inversion approach. In other words, the guidance
scheme must make sure that YN → Y ∗

N at t = tso. To achieve
this objective, we guide the flight vehicle following the devel-
opment in Section III.A by taking the help of the flight vehicle

dynamics in (1). In this problem the state vector X , [r V γ φ ]T

and the control input U , δ (guidance command). Using the
Euler method, discretized state dynamics is given by

Xk+1 = Fk(Xk,Uk) = Xk +∆t f (Xk,Uk) (26)

where f (Xk,Uk) is right hand side expression of state equation
in (1). From (3), the discretized output at k = N (i.e t = tso) is
given by

yN = rT =
r2

N V 2
N cos2 γN

GM(1− cosφN)+ rNV 2
N cos(φN + γN)cosγN

(27)

Here rT is the radial distance from the center of the earth at
target point. As mentioned before the actual motor burnout
time is unknown, and hence, the guidance scheme should be
robust against the uncertainty. To achieve this objective, we
have carried out following algebra to come up with meaningful
condition which make guidance scheme robust against uncer-
tainty. Expanding the hit equation about the switch over time
using Taylor series and neglecting higher order terms, we get

y ∼= yso + ẏso△t (28)

To make guidance scheme insensitive to actual burnout time,
we force the sensitive term ẏso to zero. If the height derivative
term stay near zero, the change in the height will be the
minimum. Taking the advantage of this fact, we have chosen
output YN = [y yso]

T . The error in outputs are calculated as
difference as follows

dYN = YN −Y ∗
N (29)

where Y ∗
N = [r∗T 0]T is desired output at target position, r∗T is

aimed radial distance at the target. The aim here is to compute
the guidance command sequence δk, k = 1, . . . ,(N − 1) so
that dYN → 0. To achieve this objective, the coefficients B1 to
BN−1 are evaluated using (10). Finally, the guidance command
sequence δk,k = 1, . . . ,(N −1) is updated by using (17).

4.2 Guidance Design Using Dynamic Inversion Approach

The steering command obtained from MPSP guidance design is
applied till switch over time tso to satisfy the hit equation. After
switch over time, the occurrence of burnout time is uncertain.
However, for the mission to be successful, the hit equation
should satisfy at the time of burnout. This can be guaranteed
using dynamic inversion approach which forces the hit equation
to be satisfied at each step of time. We shall first define height
error at the target position from (23), as

hTe = y− y∗ (30)

where y is same as yN in (27) and the tracking command is
h∗Te

= Re + 65 km. Following the philosophy presented above,

the goal here is to compute control histories δ such that

ḣTe + k hTe = 0 (31)

where k > 0 is the chosen gain value. Substituting the required
expression in (31), we get

ẏ+ k(y− y∗) = 0 (32)

where

ẏ =
∂y

∂ r
ṙ +

∂y

∂V
V̇ +

∂y

∂γ
γ̇ +

∂y

∂φ
φ̇ (33)

Substituting for ẏ in (32) and after rearranging, we get

∂y

∂V
V̇ +

∂y

∂γ
γ̇ = β (34)

where

β , −

(

k(y− y∗)+
∂Y

∂ r
ṙ +

∂Y

∂φ
φ̇

)

(35)

Substituting for V̇ and γ̇ in (34) from (1) and again rearranging,
we get

∂y

∂V

T

m
cosδ +

∂y

∂γ

(

−
T

m V

)

sinδ = β +βa (36)

where

βa ,
∂y

∂V
g sinγ −

∂y

∂γ

(

V

r
−

g

V

)

cosγ (37)
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Using trigonometric relations, after some algebra, a closed form
expression for guidance command to intersect the target is
given by

δ = sin−1

(

β +βa

A

)

−α (38)

where

A =

[

∂y

∂V

T

m
+

∂y

∂γ

(

−
T

m V

)]0.5

α = tan−1

(

∂y/∂V V

∂y/∂γ

)

5. SIMULATION STUDIES

5.1 Data Generation and Assumptions

As mentioned in Section II, a long range ballistic missile
having a two stage solid-solid motor has been considered for
our simulation studies. From numerical experiment, a research
vehicle was designed from preliminary staging calculation
Padhi (1999). Starting point for the second stage is assumed
to be a deterministic point. The task is to guide the vehicle
in the thrusted region of the second stage so that the missile
falls within the required error bound at the desired target. The
guidance is started at the guidance loop closure (GLC) time,
which is assumed to be 1 sec after the starting of the second
stage. This was done so that sufficient amount of thrust is built
up by that time for the guidance to be effective.

From the results of the staging calculations, the first stage burn
out velocity is fixed at 3300 m/s. Similarly the gross mass of
the vehicle at the starting point of the second stage (which is
assumed to be the point of guidance loop closure) is fixed at
13.1×103 kg. The initial flight path angle is assumed to be 500

(wrt. to the local horizontal). The range covered from the launch
point is assumed to be 30 km. The target for the boost guidance
scheme is assumed to be at a height of r∗T = Re + 65km. As a
simplified yet realistic assumption, the GLC point is assumed
to be sufficiently above the effective atmosphere. The guidance
cycle time is assumed to 100 msec. A height error of ±1 m at
the target is chosen to be the convergence criterion to terminate
the MPSP algorithm.

5.2 Numerical Results

Simulations are carried out for three different missions at the
ranges of 3000, 3500 and 3500 km. The guidance command
histories are shown in figure 2, along with the complete mission
trajectories in figure 3. It can be seen from figure 3 that
the proposed technique successfully guides the missile at the
corresponding target position. The height errors are shown in
figure 4 and it can be observed from the figure that the height
errors stay near zero from switch over time tso to final time t f . If
burnout occurs within this time period, the missile will intersect
the target accurately. These results demonstrate that the energy-
insensitive guidance scheme can successfully be applied with
the uncertainty in the burnout time.

Note that the core idea behind the energy-insensitive guidance
design presented in the paper relies on the technique of dynamic
inversion, which continuously enforces hTe → 0 and ḣTe → 0.
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Fig. 4. Height error at target (hTe ) trajectories

Because of this reason, an early switch over is desired. How-
ever, a drawback of the dynamic inversion design is the large
control magnitude requirement when the error is high. Hence,
there should be a judicious choice of the switch over time,
taking into account the constraints of the vehicle capability and
mission requirement. Keeping this in mind, we carried out a
study for the minimum switch over time; the results of which
are tabulated in Table 1.
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Table 1. Switch over percentage time

Range (km) Switch over time (tso)

3000 0.80 t f

3500 0.85 t f

4000 0.90 t f

It is clear from Table 1 that for smaller ranges, the guidance
scheme is more robust in the sense that the amount of uncer-
tainty can be tolerated for a longer duration of time. A visual
effect of this can be observed from the height error trajectories
from figure 4. From our extensive simulation studies we have
observed that for 3000−4000 km range, the new hybrid guid-
ance scheme assures robustness with respect to 10% (or more)
uncertainty in the predicted burnout time.

6. CONCLUSIONS

Combining nonlinear model predictive static programming
technique with dynamic inversion approach, a hybrid robust
(energy-insensitive) guidance design method is presented in
this paper. This nonlinear guidance method provides a sub-
optimal solution of the necessary guidance command in the
presence of uncertainty in burnout time. The method is used
to design an explicit boost phase guidance scheme for long
range flight vehicles, which leads to a closed form solution of
the necessary guidance command update. The guidance law is
successfully tested in a solid motor propelled ballistic vehicle.
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