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Abstract: This paper addresses the trajectory tracking problem for a remotely controlled quad-
rotor vertical take off and landing aircraft (VTOL), under the restriction that only the inertial
coordinates are available for measurement. The problem is solved in two steps: first, a discrete-
time local exponential observer is designed which allows estimating the roll and pitching angles
as well as all the velocities of the VTOL; Second, a discrete-time dynamic linearizing controller
is proposed and the VTOL actual states variables are replaced by their corresponding estimates.
It is shown that a kind of separation principle holds, in the sense that exponential convergence to
the prescribed trajectory is preserved. Real-time experiments show that the proposed observer-
controller scheme exhibits good performance.

1. INTRODUCTION

The VTOL is a kind of unmanned aerial vehicle. It has
been studied by many researchers, and different control
strategies have been proposed over the past twenty years,
see e.g. Hauser et al. [1992]. However only few of them
have been tested experimentally. One of the main obstacles
to perform real-time experiments is that the control law
needs to feedback all the VTOL states, but not all of them
are available for measuring. Due to this obstacle many
researchers only have tested their results through simula-
tions. The control strategies for VTOL can be divided in
continuous-time and discrete-time designs. Almost all of
the strategies have been proposed in continuous-time, but
few of them have been implemented in real-time experi-
ments. For instance, the continuous-time control strategies
given by Kendoul et al. [2006], Park et al. [2005], Samir
et al. [2004], Tayebi and McGilvray [2004] have been tested
in real-time experiments, but two aspects are not taken
into account in the formal analysis: a) all of them have used
a zero order hold, because they used a digital computer to
implement the control law; b) the velocities are estimated
by using an approximate derivative from the measured
position, and a low pass filter is used to diminish the
inherent noise. These aspects are convenient for testing
the strategies by choosing an appropriate sampling period,
but the convergence is not formally ensured. On the other
hand, the low pass filter introduces new dynamics, and
again the convergence is not formally ensured. The issues
a) and b) above can be analyzed from two points of view:
1) by using a type of observer to estimate those states that
are not available for measuring, such that the convergence
to the actual states is guaranteed; 2) by analyzing the
control scheme in a discrete-time approach.

⋆ The first Author wishes to thank CONACYT-México for financial
support in the form of a scholarship.

The control of nonlinear systems when not all states
are available for feedback has been studied by many re-
searchers. In discrete-time, theoretical results can be found
in Lin and Byrnes [1994]. This work gives necessary and
sufficient conditions for existence of a local exponential ob-
server, and can be seen as the counter part of continuous-
time case given by Xia and Gao [1988]. Although the
theoretical results are available for discrete-time nonlin-
ear systems, there are few formal results for VTOL. For
instance Guisser et al. [2006] and Lozano et al. [2006]. The
former is an interesting work, but the scheme is not tested
in real-time experiments. The latter uses a kind of discrete-
time observer for angular dynamics, but it is not clear how
the inertial velocities have been estimated.

This paper contributes in three directions to real-time
control of a VTOL: 1) sufficient conditions are given for
existence of a local exponential observer. It needs only the
inertial coordinates to estimate the roll and pitch angles,
and all velocities; 2) It is shown that the mathematical
model of VTOL is linearizable by regular feedback after a
proper dynamic extension. It is designed as if all states
were measured; then the actual states are replaced by
their estimates. After that, sufficient conditions are given
to satisfy a kind of separation principle in the sense
that convergence is ensured; 3) the strategy is tested in
real-time. For the coordinates measuring, the positioning
system reported in Rejón and Aranda-Bricaire [2007] is
used. The experimental VTOL prototype used in this work
is the Draganflyer produced by Draganfly Innovations Inc.
shown in fig. 1.

This paper is organized in five sections. In section 2, the
model and basic properties in discrete-time are given. In
section 3, the main results are presented; namely, the local
exponential observer and the linearizing control law are
designed, and a kind of separation principle is derived.
In section 4, some real-time experiments are presented.
Finally in section 5 some conclusions are given.
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Fig. 1. The vertical take off and landing aircraft
(http://www.rctoys.com).

2. THE MODEL AND BASIC PROPERTIES.

2.1 Continuous-time model.

A schematic free-body diagram of VTOL is given in fig. 2.
The dynamic model is quite standard, the reader can see
e. g. Castillo et al. [2007], Madani and Benallegue [2006],
Samir et al. [2004], Tayebi and McGilvray [2004]. Is this
paper the yaw angle ψ is assumed to be zero and the
model includes the remote-control parameters. Then the
simplified model is given by

ẍ = u1

m
sin θ cosφ

θ̈ = −α1

Iy
θ̇ − α2

Iy
θ + α3

Iy
u3

ÿ = −u1

m
sinφ (1)

φ̈ = −β1

Ix
φ̇− β2

Ix
φ+ β3

Ix
u2

z̈ = u1

m
cos θ cos φ− g

where ui, i = 1, 2, 3 are the control inputs,m, Ix and Iy are
the mass and moments of inertia of the VTOL. (x, y, z)
are the cartesian coordinates and θ, φ are the pitch and
roll angles respectively. The parameters αi, βi, i = 1, 2, 3
scale remote-control input voltage and the input force. The
constant g = 9.81 m/s2 is the gravity acceleration. The
inputs satisfy the following equations

u1 =

4
∑

i=1

Fi, u2 = l (F3 − F1) , u3 = l (F4 − F2) ,

where Fi is the thrust force produced by i-rotor and l is
the distance from the rotors to the center of mass of the
aircraft. Since the yaw angle is zero, the four-rotor craft
has five degrees of freedom; however only three of them
are actuated. Let us define the states variables

x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇,

x5 = y, x6 = ẏ, x7 = φ, x8 = φ̇,
x9 = z, x10 = ż,

and the vector

χ = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]
⊺

.

Then the model (1) takes the form

χ̇ = Fc (χ, u) = f(χ) + g(χ)u (2)

where u = [u1, u2, u3]
⊺
,

f(χ) =
[

x2, 0, x4, − α1

Iy
x4 − α2

Iy
x3, x6 (3)

0, x8, − β1

Ix
x8 − β2

Ix
x7, x10, g

]
⊺

,
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Fig. 2. Schematic free-body diagram of four-rotor mini-
helicopter.

g(χ) = [ g1(χ) g2(χ) g3(χ) ] , (4)

g1(χ) =
[

0
c
7
s
3

m
0 0 0

−s
7

m
0 0 0

c
7
c
3

m

]⊺

,

g2(χ) =
[

0 0 0 0 0 0 0 β3

Ix
0 0

]⊺

,

g3(χ) =
[

0 0 0 α3

Iy
0 0 0 0 0 0

]⊺
,

where ci means cos xi y si means sinxi.

Taking Fc (χo, uo) = 0 we can find the equilibria of the
VTOL. Making some algebra, the equilibria are given by

xo = [x1o, 0, 0, 0, x5o, 0, 0, 0, x9o, 0]
⊺
, (5)

uo = [mg, 0, 0]⊺ .

In others words, any point in the space becomes an
equilibrium point if the roll and pitch angles, and all
velocities vanish.

2.2 Discrete-time model.

Consider a discrete-time system

x ((k + 1)T ) = Fd (x (kT ) , u (kT )) , (6)

where T > 0 is the sampling period. In discrete-time
analysis, the input u is considered to be constant ∀t ∈
[kT, (k + 1)T ), k ∈ Z+. In the analysis, the abridged
notation x+ = x ((k + 1)T ), x = (kT ) is used. Then the
discrete-time model (6), can be written as x+ = Fd (x, u).

Using the Euler approximation for continuous-time model
(2), the discrete-time model of the VTOL is given by

χ+ = Fd (χ, u) = χ+ T [f(χ) + g(χ)u] , (7)

where f(χ) and g(χ) are derived by (3), (4).

From condition Fd (χo, uo) = χo, we can find the equilibria
of VTOL. Making some algebra x2o = x4o = x6o = x8o =
x10o = 0 is obtained, and as consequence x3o = x7o = 0
also is obtained. Therefore the equilibria of the discrete-
time model of the four-rotor aircraft are the same as (5).

2.3 Basic properties.

Let us define the output function as those states that
are considered as measurable. In this application we are
considering as measurable states only the cartesian coor-
dinates. Then the output is given by

γ1 = h1 (χ) = x1,
γ2 = h2 (χ) = x5,
γ3 = h3 (χ) = x9.

}

(8)
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The output can be expressed as

γ = Cχ,

where

C =

[

1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

]

.

According to Lin and Byrnes [1994], if the first order
approximation of model (7) has a detectable (A,C) pair,
then there exists a discrete-time local exponential observer
for discrete-time nonlinear system (7).

The first order approximation is given by

χ+ = Adχ+ Bdu, (9)

γ = Cχ,

where

Ad =

[

∂Fd(χ, u)

∂χ

]

χo,uo

∈ R
10×10,

Bd =

[

∂Fd(χ, u)

∂u

]

χo,uo

∈ R
10×3,

Ad =































1 T 0 0 0 0 0 0 0 0
0 1 Tg 0 0 0 0 0 0 0
0 0 1 T 0 0 0 0 0 0
0 0 −Tα2

Iy
a44 0 0 0 0 0 0

0 0 0 0 1 T 0 0 0 0
0 0 0 0 0 1 −Tg 0 0 0
0 0 0 0 0 0 1 T 0 0

0 0 0 0 0 0 −Tβ2

Ix
a88 0 0

0 0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 0 1































,

Bd =







0 0 0 0 0 0 0 0 0 T
m

0 0 0 0 0 0 0 Tβ3

Ix
0 0

0 0 0 Tα3

Iy
0 0 0 0 0 0







⊺

,

a44 =
T (Iy−α1)

Iy
, a88 = T (Ix−β1)

Ix
are parameters.

It is not difficult to check that the first order approxi-
mation (9) satisfies the full rank observability condition
rank(O) = 10. This means that there exists a local expo-
nential observer for discrete-time model of the VTOL.

In the next section a local exponential observer will be
explicitly designed.

3. MAIN RESULTS.

In this section a local exponential observer is designed, it
needs only the cartesian coordinates to estimate the roll
and pitch angles, and all velocities. In order to design a
linearizing control law, a dynamic extension is introduced.
The dynamic extension consists on adding two sampling
delays in the thrust control. The dynamic control law is
designed as if all states were measurable. Then the VTOL
states are replaced by their estimates. Finally, a kind of
separation principle is proven, in the sense that the closed-
loop system converges to desired trajectory.

3.1 Local exponential observer design.

From the theoretical results given by Lin and Byrnes
[1994]. If the discrete-time observer is not of exponential
type, then the separation principle can not be ensured. A

counter-example in which the separation principle is not
satisfied can be found in Sundarapandian [2005]. Therefore
we aim to design a discrete-time local exponential observer
for VTOL. The discrete-time observer needs to satisfy two
conditions:

A) If χo = χ̂o, then χ = χ̂, ∀k ∈ Z+, for all admissible u,

B) Define the error observer by e = χ− χ̂. There exists an
open neighborhood U of the origin of such that

‖e‖ △
= ‖χ − χ̂‖ ≤ Mak ‖χo − χ̂o‖ ,

∀k ∈ Z+ and eo ∈ U , for some positive constants M and
0 < a < 1.

If the observer is defined as a copy of model (7) plus output
error injection, then the condition A is satisfied. In the
sequel, additional conditions are derived to comply with
condition B.

To begin with, note that the model (7) can be rewritten
as

χ+ = χ+ T [f(χ) + g(χ)u]

= Adχ+Bd [u− uo] + Rd (χ, u1) ,

where Rd (χ, u1) = χ+T [f(χ) + g(χ)u]−Adχ−Bd [u− uo],

Rd (χ, u1) = [0, Rd2
(·) , 0, 0, 0, Rd6

(·) , 0, 0, 0, Rd10
(·)]⊺ ,

Rd2
(·) = T

(

u1

m
s3c7 − gx3

)

,

Rd6
(·) = T

(

−u1

m
s7 + gx7

)

,

Rd10
(·) = T u1

m
(c3c7 − 1) .

Note that Rd (χ, u1) is smooth on χ and u1, it implies that

‖Ra (χ, u1)‖ ≤ Tg

√

x2
3 + x2

7 ≤ Tg ‖χ‖ . (10)

Let us define the observer as

χ̂+ = χ̂+ T [f(χ̂) + g(χ̂)u] + Ld(γ − γ̂), (11)

= Adχ̂+ Bd [u− uo] +Rd (χ̂, u1) + LdC(χ− χ̂).

Recall that e = χ− χ̂, then e+ = χ+ − χ̂+ is given by

e+ = Fde (·) = (Ad − LdC) e + Γd (χ, χ̂, u1) , (12)

where

Γd (χ, χ̂, u1) = Rd (χ, u1) − Rd (χ̂, u1) .

In the next Proposition the main result of this subsection
is given.

Proposition 1. Consider the discrete-time VTOL system
(7) and the family of discrete-time nonlinear systems (11),
parameterized by the matrix Ld ∈ R

10×3. Then there
exists a matrix Ld ∈ R

10×3 such that the discrete-time
nonlinear system (11) is a local exponential observer for
discrete-time VTOL.

Proof. As a first step, we need to find the equilibrium
point of observer (12). From the condition Fde (·) = eo and
χ̂ = χ − e, we can find the equilibria for error dynamics
(12). Note that the point eo = 0 is a solution for this
equation. Also, note that in a neighborhood (eo, χ, u1o),
the Jacobian matrix of error expression (12) is given by

[

∂Fde(·)
∂e

]

(eo,χ,u1o)
= (Ad − LdC) − I,

where I ∈ R
10×10 is the identity matrix. Since the

first order approximation is observable, then there exists
Ld ∈ R

10×3 such that the matrix Ad − LdC has all its
eigenvalues strictly into the unit circle. Therefore, the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1755



matrix (Ad − LdC)−I is nonsingular. By Inverse Function
Theorem the point eo = 0 is an isolated equilibrium point.
Moreover in the same neighborhood, the nonlinear terms
given by Γd (·) satisfy

‖Γd (·)‖ ≤ Tg

√

e23 + e27 ≤ Tg ‖e‖ . (13)

In order to prove that the discrete-time model satisfies
condition B, take into account that the matrix Ad − LdC
has all its eigenvalues strictly into the unit circle. Then
there exist a discrete-time Lyapunov function V = e⊺P1e

that satisfies λd11
‖e‖2 ≤ V ≤ λd12

‖e‖2
, where P1 = P

⊺

1 >
0, λd11

= λmin (P1), λd12
= λmax (P1) and P1 is solution of

the discrete-time Lyapunov equation

(Ad − LdC)
⊺
P1 (Ad − LdC) − P1 = −Q1,

for any Q1 = Q
⊺

1 > 0. Let us compute the forward
difference of V along the trajectories of observed error ex-

pression (12), taking into account −λd13
‖e‖2 ≥ −e⊺Q1e ≥

−λd14
‖e‖2

, where λd13
= λmin (Q1), λd14

= λmax (Q1)
and making some algebra as in Rejón and Aranda-Bricaire
[2006], we obtain

△V ≤ −λd13
‖e‖2

+ 2λd12
Tg ‖e‖2

+ λd12
(Tg)

2 ‖e‖2

= −
(

λd13
− 2λd12

Tg − λd12
(Tg)2

)

‖e‖2 .

If

λd13
− 2λd12

Tg − λd12
(Tg)

2
> 0, (14)

is satisfied then by Theorem 28 given in pp. 267 Vidyasagar
[1993] for discrete-time systems, it follows that the ob-
server error converges locally exponentially to zero. There-
fore the system (11) is a local exponential observer for the
discrete-time model of the VTOL. �

3.2 Dynamic control law in discrete-time.

Consider the discrete-time VTOL model (7) and its output
given by (8).

From the method to obtain a static feedback lineariz-
ing controller given by Aranda-Bricaire et al. [1996] and
Monaco and Normand-Cyrot [1987], it is possible to check
that with two forward shifts the output γ+2 is affected by
the control u1. Also it is possible to check that decoupling

matrix D (χ, u) = ∂γ+2(χ,u)
∂u

is singular. Therefore, a lin-
earizing control law by static feedback can not be obtained.
This problem can be solved using a suitable dynamic
extension. This dynamic extension permits to obtain a
linearizing control law, such that the closed loop system in
new coordinates is linear. The dynamic extension is given
by

u1 = ξ1,

ξ+1 = ξ2,
ξ+2 = ū1,

(15)

where ū1 is a new input. Define the vectors

ξ = [ξ1, ξ2]
⊺

,

X = [χ⊺, ξ⊺]
⊺
,

ū = [ū1, ū2, ū3]
⊺

= [ū1, u2, u3]
⊺
.

By using X and ū the augmented discrete-time model has
the form

X+ = Fd(X, ū) = f̄ (X) + ḡ (X) ū, (16)

where

f̄ (X) =

[

χ+ T [f (χ) + g1 (χ) ξ1]
ξ2
0

]

,

ḡ (X) =

[

0 Tg2 (χ) Tg3 (χ)
0 0 0
1 0 0

]

.

Applying again forward shifts to the outputs (8), the
following set of expressions is obtained

γ+4 (X, ū) = b (X) + a (X, ū) (17)
where

a (X, ū) = [a1 (·) , a2 (·) , a3 (·)]⊺ ,

b (X) = [b1 (X) , b2 (X) , b3 (X)]
⊺

,

b1 (X) = x1 + 4Tx2 + 3T 2 ξ1

m
s3c7 + 2T 2 ξ2

m
s+3 c

+
7 ,

b2 (X) = x5 + 4Tx6 − 3T 2 ξ1

m
s7 − 2T 2 ξ2

m
s+7 ,

b3 (X) = x9 + 4Tx10 + 3T 2
(

ξ1

m
c3c7 − g

)

+ 2T 2
(

ξ2

m
c+3 c

+
7 − g

)

− T 2g,

a1 (X, ū) = T 2 ū1

m
s+2
3 c+2

7 , a2 (X, ū) = −T 2 ū1

m
s+2
7 ,

a3 (X, ū) = T 2 ū1

m
c+2
3 c+2

7 ,

s+2
i = sinx+2

i , c+2
i = cos x+2

i ,

x+2
3 =

(

1 − T 2 α2

Iy

)

x3 + T
(

2 − T α1

Iy

)

x4 + T 2 α3

Iy
ū3,

x+2
7 =

(

1 − T 2 β2

Ix

)

x7 + T
(

2 − T β1

Ix

)

x8 + T 2 β3

Ix
ū2.

The model (16) has a decoupling matrix given by

D (X, ū) = ∂γ4(X,ū)
∂ū

= ∂a(X,ū)
∂ū

,

where
|D (X, ū)| = T 10 α3β3

m3IxIy
(ū1)

2
cos x+2

7 .

If ū1 6= 0 and −π
2 < x+2

7 < π
2 are satisfied, then the

decoupling matrix D (X, ū) is not singular.

Note that the dimension of the discrete-time model (16)
is n = 12. This model has a relative vector degree r =

[4, 4, 4]
⊺

and it satisfies
∑3

i=1 ri = 12 = n. Hence the
system (16) is linearizable by regular static state feedback.

For convenience, the design of the linearizing control law
is broken into two steps:

Step 1) Since D (X, ū) = ∂a(X,ū)
∂ū

is nonsingular and by
using the Implicit Function Theorem, the expression

a (X, ū) = v, (18)

where v ∈ R
3, has a solution given by

ū = a−1 (X, v) . (19)

In explicit form

ū1 = m
T2

√

v2
1 + v2

2 + v2
3,

ū2 =
Iy

T2α3
arctan

(

v1

v3

)

− Iy

T2α3

(

1 − T2α2

Iy

)

x3

− Iy

Tα3

(

2 − Tα1

Iy

)

x4,

ū3 = Ix

T2β3
arcsin

(

− v2√
v2
1
+v2

2
+v2

3

)

− Ix

T2β3

(

1 − T2β2

Ix

)

x7 − Ix

Tβ3

(

2 − Tβ1

Ix

)

x8.
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Step 2) Substituting (18) into (17), the next expression
is obtained

γ+r (X, ū) = b (X) + v = w, (20)

where w ∈ R
3 is an external control given by

wj = y
+rj

dj
−

rj
∑

i=1

cji

(

γ
+(rj−1)
j − y

+(rj−1)
dj

)

,

where ydj
are bounded enough desired trajectories,

cji are parameters such that form polynomials with
eigenvalues strictly into the unit circle. System (20) is
linearized by

vj = −bj (X) + wj.

Finally, the exact linearizing control law is given by

ū = a−1 (X, v) , (21)

vj = −bj (X) + wj .

Define new coordinates by

eji = h
+(rj−1)
j (X) − y

+(rj−1)
dj

, (22)

where i = 1, · · · , rj, j = 1, 2, 3. Let us define the vectors

Y =
[

yd1
, · · · , y+3

d1
, yd2

, · · · , y+3
d2

, yd3
, · · · , y+3

d3

]⊺
,

es = [e11, · · · , e14, e21, · · · , e24, e31, · · · , e34]
⊺

.

The closed-loop system (17)-(21) in new coordinates (22)
has the form

e+s = Ases, (23)

where

As = diag
[

Asj

]

, j = 1, 2, 3,

Asj
=







0 1 0 0
0 0 1 0
0 0 0 1
cj1 cj2 cj3 cj4






.

Since the coefficients cji form polynomials which eigenval-
ues are strictly into the unit circle, then matrix Asj

has
all its eigenvalues strictly into the unit circle. Since As is a
block diagonal, then As matrix also has all its eigenvalues
strictly into the unit circle. Then there exists a Lyapunov
function V = e⊺

sP2es that satisfies

λd21
‖es‖2 ≤ V ≤ λd22

‖es‖2

where P2 = P
⊺

2 > 0 , λd21
= λmin(P2) and λd22

=
λmax(P2), and is a solution of the discrete-time Lyapunov
equation

A⊺
sP2As − P2 = −Q2,

for any Q2 = Q
⊺

2 > 0. Let us compute the forward
difference of V along of errors (23)

△V =
(

e+s
)⊺
P2e

+
s − e⊺

sP2es = −e⊺
sQ2es.

From Theorem 28 given in pp. 267 Vidyasagar [1993], it
follows that all errors of the closed-loop system (17)-(21)
converge locally exponential to zero. As a consequence the
closed-loop system converges to the desired trajectory.

3.3 Separation principle.

Before giving the main result. Take into account the
following two considerations for functions related with
discrete-time VTOL:

a) Since the augmented system is smooth enough onX and

ū, it follows that
∥

∥

∥
a (X, ū) − a

(

X̂, ū
)
∥

∥

∥
≤ ρs

∥

∥

∥
X − X̂

∥

∥

∥
,

ρs > 0, X,X̂ ∈ U ⊂ R
12.

b) The Variables ξ1, ξ2 are available to feedback. Therefore

X̂ = [ χ̂⊺ ξ⊺ ]
⊺
.

The main result is given in the next Theorem.

Theorem 2. Consider the discrete-time augmented system
(16), the local exponential observer (11), and the control
law that uses observed states

ū = a−1
(

X̂, v̂
)

,

v̂j = −bj
(

X̂
)

+ ŵj,

ŵj = y
+rj

dj
−

rj
∑

i=1

cjiêji

êji =
(

γ̂
+(rj−1)
j − y

+(rj−1)
dj

)

(24)

where j = 1,2,3, the matrixAd−LdC has all its eigenvalues
strictly into the unit circle, the cji coefficients form poly-
nomials whose eigenvalues are strictly into the unit circle,
the desired trajectory Y is bounded enough and satisfies
‖Y ‖ ≤ δY , δY > 0. Then the closed loop system (16)-(24)-
(11) converges locally exponentially to desired trajectory.

Proof. In order to prove a kind of separation principle,
take into account that the control law ū can be rewritten

as v̂ = a
(

X̂, ū
)

. Defining Γds
(·) = a

(

X̂, ū
)

−a (X, ū), we

can obtain

v̂ = a (X, ū) +
[

a
(

X̂, ū
)

− a (X, ū)
]

= v + Γds
(·) .

By substituting v̂ into (17) the next expression is obtained

γ+4 = b (X) + v̂ (25)

= b (X) + v + Γds
(·) .

From considerations, a) and b) above we can see

‖Γds
(·)‖ =

∥

∥

∥
a

(

X̂, ū
)

− a (X, ū)
∥

∥

∥
≤ ρs

∥

∥

∥
X − X̂

∥

∥

∥

= ρs ‖χ− χ̂‖ .

Since the observer (11) is locally exponential, then there
exists δe > 0 such that ‖e‖ ≤ ‖χo − χ̂o‖ ≤ δe. Therefore

‖Γds
(·)‖ ≤ ρs ‖e‖ ≤ ρsδe. (26)

Note that the closed-loop system (17)-(24) can be seen as
a perturbed system, with vanishing perturbation. Using
the change of coordinates (22), the closed-loop system
γ+4 = b (X) + v can be expressed as e+s = Ases, therefore

e+s = Ases + Γds
(·) . (27)

In order to prove that all errors of the closed-loop system
(17)-(24)-(11) converge to zero, let us recall that As and
Ad − LdC are matrices whose eigenvalues are into the
unit circle. Then there exists a discrete-time Lyapunov
function V = e⊺P1e + e⊺

sP2es, where Pi = P
⊺

i > 0,
λdi1

= λmin (Pi), λdi2
= λmax (Pi) and Pi, i = 1, 2, are

solutions for Lyapunov equations

(Ad − LdC)
⊺
P1 (Ad − LdC) − P1 = −Q1,

A⊺
sP2As − P2 = −Q2,
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Table 1. The quad rotor VTOL parameters and
Ld matrix.

Parameters Ld × 0.01

Ix = Iy = 0.005 Nm2 0.124 0 0

m = 0.48 kg 1.637 0 0

g = 9.81 m/s2 0.714 0 0

T = 0.01 s 3.547 0 0

ζ = 0.9 0 0.124 0

α1 = β1 = 0.00585 0 1.637 0

α2 = β2 = 0.00290 0 −0.714 0

α3 = β3 = 0.0160 0 −3.547 0

ωn = 1.3 rad 0 0 0.069

0 0 0.697

for any Qi = Q
⊺

i > 0. Let us compute the forward
difference of V along of the trajectories errors (12) and
(27),

△V = −e⊺Q1e+ 2e⊺ (Ad − LdC)⊺
P1Γd + Γ⊺

dP1Γd (28)

− e⊺
sQ2es + 2e⊺

sA
⊺
sP2Γds

+ Γ⊺

ds
P2Γds

.

Taking into account −λd13
‖e‖2 ≥ −e⊺Q1e ≥ −λd14

‖e‖2
,

−λd23
‖es‖2 ≥ −e⊺

sQ2es ≥ −λd24
‖es‖2

, where λdi3
=

λmin (Qi), λdi4
= λmax (Qi). Using the bound (13) and

(26), the next expression is obtained

△V ≤ −λd13
‖e‖2

+ 2λd12
Tg ‖e‖2

+ λd12
(Tg)

2 ‖e‖2

− λd23
‖es‖2 + 2λd22

ρs ‖es‖ ‖e‖ + λd22
ρ2

s ‖e‖2

≤ −
(

λd13
− 2λd12

Tg − λd12
(Tg)

2
)

‖e‖2

−
(

λd23
− λd22

ρ2
s

)

‖es‖2
+ 2λd22

ρs ‖es‖ ‖e‖ .

Defining the matrix

Sd =

[

λd13
− 2λd12

Tg − λd12
(Tg)

2 −2λd22
ρs

0 λd23
− λd22

ρ2
s

]

,

we can to rewrite △V as

△V < − [ ‖e‖ ‖es‖ ] [MdSd + S
⊺

dMd]

[

‖e‖
‖es‖

]

(29)

If the local exponential observer satisfies the condition

λd13
− 2λd12

Tg − λd12
(Tg)

2
> 0 and the dynamic control

law satisfies the condition

λd23
− λd22

ρ2
s > 0, (30)

then matrix Sd is positive definite. By Lemma 9.7 given in
pp. 360 Khalil [2002] for M-matrices, then there exists a
positive diagonal matrix Md such that MdSd +S

⊺

dMd > 0.
Let us consider mii > 0 and solving the matrix inequality

4m22
(λd13

−2λd12
Tg−λd12

(Tg)2)
(λd23

−λd22
ρ2

s)
> m11 > 0,

and by choosing

m22 = 1
2

and m11 =
(λd13

−2λd12
Tg−λd12

(Tg)2)
(λd23

−λd22
ρ2

s)
,

then MdSd + S
⊺

dMd > 0 is satisfied. By Theorem 28 given
in pp. 267 Vidyasagar [1993] for discrete-time systems, all
errors of the closed-loop system (17)-(24)-(11) converge
locally exponentially to zero. �

4. SIMULATION AND REAL-TIME EXPERIMENT

For real-time experiments a remotely-controlled prototype
of a VTOL produced by Draganfly Innovations Inc. is used,
it is shown in fig. 1. For the coordinates measurement a

I
I

yI

x I

zI
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-Comparators
-Monostables
-Ultrasonic receivers

Four
micro-
processors
PIC16F84A

Adquisition
data card
Sensoray 616

MATLAB
SIMULINK

Remote
Control
transmitter

- Ultrasonic emitters
-RF sincrony transmitter
-RF remote control receiver

r1

r2

r3

r4

M1

M2 M3

M4

-Sincrony recover
-FM receiver

p1

p2

p3

Fig. 3. The positioning system scheme based on ultrasonic
signals for VTOL.

positioning system based on ultrasonic signals and Newton
method was used. In the Fig. 3 the general scheme is
shown. More details about the positioning system design
can be found in Rejón and Aranda-Bricaire [2007]. The
coordinates are delivered by the positioning system and
are used by the local exponential observer to estimate the
roll and pitch angles, and all velocities. Then, the control
law is computed using the observed states.

The parameters that were used in simulations and real-
time experiments are given in Table 1. The discrete-time
eigenvalues were calculated by using:

λd = exp(Tλ (3ωn)),

where

λ (3ωn) = [λ1, λ
∗

1, λ1, λ
∗

1, λ2, λ
∗

2, λ2, λ
∗

2, λ1, λ
∗

1] ,

λ1 = −ξωn + iωn

√

1 − ξ2, λ2 = 0.95λ1,

λ∗1 = −ξωn − iωn

√

1 − ξ2, λ∗2 = 0.95λ∗1.

The matrix Ld is given in the Table 1. In the simulation,
the initial condition for VTOL model, discrete-time local
exponential observer and desired trajectory were respec-
tively

χo = [ 0.35 0 0 0 0.35 0 0 0 0.45 0 ]
⊺

m,

χ̂o = [ 0.30 0 0 0 0.30 0 0 0 0.40 0 ]
⊺

m,

ξ = [mg mg ]
⊺
,

yd = [ 0.35 0 0 0 0.35 0 0 0 y3d (kT ) 0 ]
⊺

m,

where y3d (kT ) = 0.45+0.05 sin(0.1kT ). The discrete-time
simulation of control scheme is shown in the fig. 4. In this
simulation white noise was added to the states considered
as measurable. We can see that the states converges to
desired trajectories and the observer errors are in the
neighborhood of zero. The real-time experiment is shown
in the fig. 5, the experiment was made in a controlled
laboratory environment. Note that the desired trajectory
is in the neighborhood of the desired trajectory and the
observer errors also are in the neighborhood of zero.

5. CONCLUSION

The trajectory tracking problem by dynamic output feed-
back for remotely controlled quad-rotor VTOL has been
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Fig. 4. Simulation of discrete-time control scheme.
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Fig. 5. Real-time experiment of discrete-time control
scheme.

addressed. The proposed solution is based on a com-
bination of a Luenberger-type observer and a dynamic
feedback linearization scheme. Sufficient conditions have
been stated such that a kind of separation principle holds.
The discrete-time setting in which the results are derived
allows to take into account explicitly the sampling period.
Real-time experiments are provided so as to validate the
observer-controller scheme. One possible extension of this
work would be the inclusion of the yaw angle into the
analysis.
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