
CAN-bus based rapid control prototyping

system for education laboratories

Roberto Bucher
∗

Silvano Balemi
∗

∗ University of Applied Sciences of Southern Switzerland (SUPSI),
Department of innovative technologies, CH-6928 Lugano-Manno,

{roberto.bucher,silvano.balemi}@supsi.ch

Abstract: The central element of the educational activities in mechatronics at SUPSI is the
mechatronics laboratory, where students integrate the topics introduced by various courses.
In order to increase the value of the laboratory to students and to reduce the cost of its creation
and operation, a modular approach has been implemented, which relies on sensors and actuators
communicating through the CAN bus as a standard communication protocol.
A library of interfaces for many CAN capable devices has been implemented both for
Matlab/Simulink and for Scilab/Scicos. Rapid control prototyping techniques can be used to
generate code for existing applications or to build new applications based on available devices.
Additional devices can also be easily added thanks to a 4-tier design of the interfaces.

Keywords: Rapid Controller Prototyping, Computer Aided Control System Design, Education,
CAN bus.

1. INTRODUCTION

The senior bachelor students in mechanical engineering,
electrical engineering and computer science at the Univer-
sity of Applied Sciences of Southern Switzerland (SUPSI)
can opt for a minor in mechatronics.

As the bachelor curricula at SUPSI put particular em-
phasis on practical aspects of engineering, laboratories
play a key role: they allow students to integrate concepts
and theoretical knowledge acquired during various courses.
Therefore, when the minor in mechatronics had to be
prepared, the laboratory of mechatronics was the element
needing more attention.

The following objectives for the laboratory were stated: the
value of the laboratory to students had to be maximized
and the cost of its creation and operation minimized while
avoiding typical problems of mechatronics laboratories
encountered at many universities. In fact, mechatronics
laboratories often rely on hardware and proprietary tools
from different vendors of didactic systems or they consist
of hardware and software solutions built in house. In the
former case, the laboratory is inflexible and its creation
is only possible with important investments; in the latter
case its creation requires considerable work effort. In both
cases, the maintenance of the laboratory is very expensive.

Thus, a concept for the mechatronics laboratory at SUPSI
was defined with the aim to

• offer a standard teaching environment based on tools
that students will find again on the job

• rely on standard components from industry in order
to avoid specific developments and to reduce the
dependence from single source vendors

• simplify the maintenance and reduce its cost

• minimize the time and effort to expand the infras-
tructure

• make the didactic activities more flexible and valuable
to students

The concept includes following key elements (see Figure 1)

• a general purpose computer used both as development
platform and as control hardware

• common CACSD environments
• plants built on commercial CAN capable actuators

and sensors (preferably using the CANopen protocol)
• physical CAN bus interfaces between the computer

and the CAN capable devices

PLANT

sensor actuator

CAN IF

CAN Bus

Fig. 1. PC with CAN interface and and plant with sensors
and actuators communicating through the CAN bus

In the following sections, these elements as well as de-
tails of the hardware and software implementation are
explained and different examples are presented.

2. THE CAN BUS

The CAN bus is a serial communication bus originally
developed for automotive application but now widely used
also in industry.

Many vendors offers sensors and actuators with CAN bus
interfaces, in particular in the motion control area. Proto-
cols are standardized (see for instance the CANopen or De-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9761 10.3182/20080706-5-KR-1001.3587

viceNet protocols). Own developments of CAN bus devices
can rely on numerous development tools (e.g. monitoring
programs) and on the presence of many microprocessors
and DSP with CAN bus interfaces.

The CAN bus was selected because it offers great flexibil-
ity, limited cost, and a large choice of manufacturers. It
represents an excellent choice for an educational labora-
tory and in particular for our particular project because
different providers deliver their CAN bus interfaces for
PCs with open source drivers.

3. THE CONTROL SYSTEM

3.1 Controller Hardware

The laboratory is composed of multiple places consisting of
standard PC (Pentium IV, 2.8 GHz) with a physical CAN
bus interface. Different physical CAN bus interfaces can
be used: the standard one is the PCAN dongle from Peak
Systems GmbH, connected to the parallel port of the PC.
Alternatives are a self-built dongle also connected to the
parallel port or miscellaneous PCI-CAN and USB-CAN
interfaces.

3.2 The operating system: Linux RTAI

The PCs are running under Linux RTAI, a real-time ver-
sion of the known Linux operating system (OS). The RTAI
extension was created as an environment for implementing
low-cost data acquisition and digital controller systems
([1], [2]) and is intended as an open source replacement
for other hard real-time OS’s such as QNX or VxWorks.
This extension adds hard real-time capabilities to Linux,
allowing sample frequencies up to several thousands of
cycles per second with a jitter of just a few microseconds.
Real-time processes can run either in the kernel or in the
user area. The low latencies guaranteed by Linux RTAI
make it possible to implement controllers for systems with
closed-loop bandwidths up to a few hundred Hertz.

One of the authors is member of the development team of
Linux RTAI.

3.3 The CACSD environments

Identification, control design and code generation ex-
ploit common Computer Aided Control System De-
sign (CACSD) environments, in particular the com-
mercial Matlab/Simulink/RTW and the open source
Scilab/Scicos/RTAICodegen suites.

The main advantage of Matlab/Simulink ([Mathworks])
is that it is used at most universities and numerous
industrial companies. On the other side, Scilab/Scicos
([Scilab]) is increasingly used at many universities and
research groups, in particular in developing countries but
also in Italy, France and in Germany. Scilab/Scicos can
be freely downloaded from the web: it is a very powerful
tool and a valid alternative to Matlab/Simulink in various
application fields.

3.4 RTAI-Lab

RTAI-Lab is an open source project integrating the code
generated by a CACSD environment into a Linux RTAI

hard real-time task. At present, four CACSD suites are
supported: the commercial MATLAB/Simulink/RealTime-
Workshop (RTW) suite, the commercial EicasLab suite,
the commercial MatrixX suite and the open source
SCILAB/Scicos suite. The system has been widely de-
scribed in [6], [3], [8], [5] and [7]. The document [9] de-
scribes in detail how to install the full RTAI-Lab tool
chain.

RTAI-Lab provides also a GUI application for remote
monitoring and control of hard real-time generated tasks.

Thanks to RTAI-Lab, the students can generate control
code either from MATLAB/Simulink or from SCILAB/
Scicos, start the real-time control task, monitor the con-
trolled plant and store measurement data on the same PC
used for identification and control design [4].

4. THE SOFTWARE CONCEPT

The definition of the concept for the mechatronics lab-
oratory also implies the highest flexibilty in the use of
components from various sources. In particular, it should
be possible to connect CAN devices (e.g. sensors and
actuators) to the PC using different physical CAN bus
interfaces. Also, the generation of control code should be
possible either from Matlab/Simulink or Scilab/Scicos.

The introduction of specific software interfaces for all the
various combinations of CACSD environment, physical
interfaces and CAN devices had to be avoided because the
effort required for the development and for the following
maintenance and future adaptations would be unmanage-
able. The solution to this problem was found with a 4-tier
implementation of the software interfaces satisfying the
following objectives:

• The introduction of a new CAN bus capable device
should be possible with the implementation of a
unique C-code usable for all combinations of physical
CAN bus interfaces and CACSD tools.

• The introduction of a new physical CAN bus interface
should require the development of a unique C-code
available to all current and future software interfaces.

The solution is presented in figure 2 and explained more
in detail in the following.

4.1 The CACSD specific layer

This layer contains the code needed to interface the CAN
devices to the CACSD environment. This code is im-
plemented as a masked C-MEX S-Function under Mat-
lab/Simulink. The implementation under Scilab/Scicos
requires an interface function, programmed as a “.sci”
function, and an implementation file, programmed in C.

This layer implements the following functions:

• Drawing of the block in the CACSD graphical envi-
ronment.

• Definition of the block parameters through a dialog
box.

• Call of the specific procedures for initialization, in-
put/output and termination of the next layer.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9762

?

6

	�
�

��

?

6

R@
@

@I

	�
�

��

R@
@

@I

specific

layer

message

dispatcher

device

layer

interface

physical

Simulink

block

Scicos

block

CACSD
specific
layer

Fig. 2. The 4-tier architecture

Through the dialog box the CAN bus parameters can be
defined, namely the physical interface, the CAN address
of the device considered and the Baud rate.

4.2 The device specific layer

This layer implements the mechanism to communicate
with a specific CAN device, like a motor, an encoder, etc.
In this layer, the various CAN frames for the specific device
are assembled based on the CAN address, on the block
parameters and on the variables read from the CACSD
block input. For example this means sending a current to
a motor at a known CAN bus address.

Then the frames are sent to and received from the CAN
bus with standard commands defined in the message
dispatcher.

4.3 The message dispatcher

The commands made available to the device specific layer
by the message dispatcher are:

• SUPSICAN init: an initialization function, which ini-
tializes the CAN hardware and sends the frames nec-
essary to set up the CAN device.

• SUPSICAN write: a function for writing to the CAN
device.

• SUPSICAN read: a function for reading from the CAN
device.

• SUPSICAN end: a termination function.

The dispatcher then exchanges messages with the physical
CAN interface layer thanks to the “CAN dev“ structure
below.

struct CANdev{ int fd;

unsigned short port;

int (*write)(struct CANdev dev,

DWORD ID, BYTE DATA[],

int len);

int (*read)(struct CANdev dev,

DWORD ID, BYTE DATA[],

int len);

int (*close)(struct CANdev dev);

};

This structure defines the appropriate read and write
functions for the selected physical interface.

Finally, the dispatcher hands over the data from the
physical layer interface to the device specific layer and vice
versa.

4.4 The physical interface layer

This layer contains the drivers for the different physical
interfaces used to connect the PC running the real-time
application with the CAN bus.

The drivers can be implemented using different ap-
proaches:

(1) a module which calls a Linux driver.
(2) a module which calls a RTDM driver.
(3) a module which implements all I/O commands (inb,

inw, outb, outw etc.) to directly access the CAN
registers.

The first method is immediate because it exploits standard
Linux drivers provided with the CAN interface, but cannot
be used if hard real-time determinism is required. Call
of standard Linux drivers is handled using system calls,
which is performed under Linux RTAI in soft real-time:
this causes a repeated switching from hard real-time to
soft real-time.

RTDM (Real Time Driver Model) drivers can be used
under different real-time Linux variants. Hardware can be
reached without passing through system calls. Some phys-
ical CAN interfaces on the market are already delivered
with a RTDM driver.

The last method is quite simple but it requires detailed
knowledge about the implemented hardware.

4.5 Advantages of the proposed solution

The proposed solution has the following advantages:

• If a new CAN device must be added to the CACSD
environment only the CACSD interface (CACSD spe-
cific layer) and a file for the device specific layer must
be written. Modifications of the other layers are not
necessary.

• If a new physical CAN interface must be added, the
corresponding driver on the corresponding layer must
be implemented. Then, only minimal modifications
are required in the next layer (message dispatcher)

· The code needed to fill the CAN dev struct with
the init, I/O and termination functions must be
added.

· The CACSD interface code must be modified by
adding the new interface to the pop-up menu
of the masked S-function under Simulink. No
modifications are required under Scicos.

5. THE IMPLEMENTED INTERFACES

Interfaces for several devices under both Matlab/Simulink
and Scilab/Scicos have been implemented. All interfaces

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9763

can be used in combination either with the PCAN dongle
from Peak Systems GmbH or with the self-built dongle
both connected to the parallel port.

Figure 3 shows the library with the CAN device blocks
created for the Matlab/Simulink environment. The same
library implemented for Scilab/Scicos is shown in figure 4

sfun_maxon_encoder

Maxon DES50/5 servo
encoder

sfun_maxon_motor

Maxon DES50/5 servo
current

sfun_CANopen_position

CANopen position

sfun_CANopen_motor_X

CANopen motor
position

sfun_CANopen_motor_I

CANopen motor
current

sfun_CANopen_encoder

CANopen encoder

Fig. 3. Simulink library to access the CAN devices

0x601
motor
MAXON

0x601
encoder
MAXON

0x601
current
CANopen

0x601
position
CANopen

0x601
encoder
CANopen

0x3ff
encoder
CANopen

Fig. 4. Scicos library to access the CAN devices

6. LABORATORY PLANTS

Miscellaneous plants are available at the SUPSI mecha-
tronics laboratory. They are based on various CAN bus
capable commercial devices like encoders, motor drivers,
PLCs, joysticks but also on custom-built devices where
necessary.

Some examples of plants are the classical inverted pendu-
lum, a crane, disks and spring systems, a mass and spring
system, a SCARA robot and a force-feedback manipulator.

6.1 The disks-and-spring process

This is the one of the first experiments proposed to the
students. Two motorized disks are connected together by
a flexible joint (Figure 5).

The position of the right disk must be controlled by actu-
ating the motor on the left. Sensors collect the positions
of both motors. The right motor can be used to introduce
a disturbance signal to the right disk.

First, students must perform a non-parametric and a
parametric identification of the plant, and then implement

Fig. 5. The disks-and-spring plant

a state-feedback controller. Figure 6 presents the block
used to interface the hardware with the code generated
by Matlab/Simulink.

2

phi2

1

phi1

interface for disks and spring

sfun_maxon_encoder

Motor 2 − Phi2

sfun_maxon_motor

Motor 2 − I2

sfun_maxon_encoder

Motor 1 − Phi1

sfun_maxon_motor

Motor 1 − I1

2
M2

1
M1

Fig. 6. Simulink block (top) and its content (bottom)

Figure 7 shows Bode diagrams from the non-parametric
and from the parametric identification of the disks-and-
spring plant.

10
−1

10
0

10
1

10
2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Fig. 7. Non-parametric and parametric identification of the
disks-and-spring plant

The controller has been designed for the following 4 cases:

• State-feedback controller using pole placement with
full-state and with reduced-order observer.

• State-feedback controller with a LQR design, with a
full-state and with reduced-order observer.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9764

Figure 8 shows the controller implemented in the Mat-
lab/Simulink environment.

ref

interface for disks and spring

scope

rk / yk uk

controller+observer

Disturbance

Fig. 8. Simulink file for the controlled plant

6.2 The inverted pendulum

The classical inverted pendulum at SUPSI also exploits
the communication through the CAN bus (see Figure 9).

Fig. 9. The inverted pendulum

The actuator is given by a DC motor from Maxon (RE 40
with Epos driver 70/10). The same motor driver delivers
the motor angle (i.e. the chart position) obtained from the
incremental encoder of the motor. The angle of the pole
is measured using a wireless incremental encoder, which
sends the impulses to a wireless-CAN bridge. Figure 10
shows the block used to interface the hardware with the
code generated by Scilab/Scicos.

sat_I

0x608
current
EPOS

0x608
encoder
EPOS

−K−

gain_phi

rp

gain_x

−pi
1s
INIT ENC

0
1s
INIT ENC

11

11

22

11

0x3ff
baumer
Encoder

Fig. 10. Inverted pendulum - Block used for real-time
controller

SCOPE
Scope

Safety block

−K−

Mux

y=Cx+Du
x+=Ax+Bu

11

Real Plant

Car Position

0

Fig. 11. Inverted pendulum - Controller

The LQ controller is implemented in the Linux RTAI PC
using the Scicos environment (see Figure 11).

6.3 The Delta Haptic device

A haptic delta manipulator has been built for the SUPSI
laboratory. Figure 12 shows this device. Each of the

Fig. 12. The delta haptic device

three motors was connected to a CANopen capable driver
(EPOS 24/5 from Maxon) for which the drivers were
already available. Two Simulink files have been created.
The first file generates the control code for the delta
haptic device (Figure 13), the second one the visualization
program which exploits the virtual reality toolbox of
Matlab/Simulink.

The communication between the hard-real-time control
process and the visualization program is guaranteed by
a FIFO block (see Figure 14).

Subsystem

transform_sphere.center

transform_sph1.scale

transform_sph1.translation

transform_curs.translation

transform_sphere.center

transform_sph1.scale

transform_sph1.translation

transform_curs.translation

Position

Out1

Out2

FIFO receive

DELTA position

Out1

Out2

Fig. 14. Simulink diagram for virtual reality representation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9765

PosX

PosY

PosZ

Vx

Vy

Vz

Current 1

Current2

Current3

control+force feedback

x

y

z

Vx

Vy

Vz

Working Volume

Current 1

Current 2

Current 3

angle 1

angle 2

angle 3

Haptic device

SEND to FIFO

FIFO send DELTA position

geometric model

Angle −−> Position

Fig. 13. Controller of the delta haptic device

7. BENEFIT FOR EDUCATION

The benefits for the students are in particular related with
the possibility to conceive and realize new plants by using
already available hardware. It suffices to assemble known
CAN bus capable devices with the help with the necessary
mechanical parts.

Moroever, new CAN devices can be integrated in the given
architecture with minimal effort. The development of code
for a new device can be immediately used in combination
with all possible CACSD environments and physical CAN
interfaces.

Students can learn how to conceive, build, characterize and
control mechatronic systems using standard tools. There
is no need for the students to learn didactic environments
which they will never see again in their life.

8. INDUSTRIAL APPLICATIONS

The usefulness of the concept above is not restricted to
didactical activities alone. In an industry related project
the same concept was applied to the development of a
test and characterization system based on a CompactPCI
platform running the Linux RTAI operating system.

The use of CAN bus devices from the mechatronics labora-
tory only required the development of the specific C-code
for the new physical CAN bus interface (a CompactPCI
board from HICOCAN).

The complete system with the CAN devices and with
other CompactPCI boards interfacing the plant was up
and running within a couple of days.

9. CONCLUSIONS

The paper presented a concept for the infrastructure of
mechatronics laboratories thought to increase the value for
students while minimizing the investment and operation
costs. It is based on a rapid control prototyping system
using the CAN bus to connect various devices composing
the plant to be controlled.

The concept has shown to be valid, with the laboratory
being well appreciated by the students. The low mainte-
nance cost and the high flexibility have been proven both
during educational activities as well as in the context of
research activities.

REFERENCES

[1] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Man-
tegazza, and S. Papacharalambous. RTAI: real time
applications interface. Linux Journal, April 2000.

[2] E. Bianchi and L. Dozio. Some experience in fast hard
real-time control in user space with RTAI-LXRT. In
Real Time Linux Workshop, Orlando, 2000.

[3] R. Bucher. Interfacing Linux RTAI with
Scilab/Scicos. In Real Time Linux Workshop,
Singapore, 2004.

[4] R. Bucher and S. Balemi. Rapid controller proto-
typing with Matlab/Simulink and Linux. Control
Engineering Practice, 12(2):185–192, 2006.

[5] R. Bucher and S. Balemi. Scilab/Scicos and Linux
RTAI - A unified approach. In IEEE conference on
Control Applications, Toronto, 2005.

[6] R. Bucher and L. Dozio. CACSD with Linux RTAI
and RTAI-Lab. In Real Time Linux Workshop,
Valencia, 2003.

[7] Roberto Bucher. Targeting the Scicos Code Generator
- The Linux RTAI Example. In SCILAB Research,
Development and Applications, Wuhan, China, 2005.

[8] Roberto Bucher, Lorenzo Dozio, and Paolo
Mantegazza. Rapid Control Prototyping with
Scilab/Scicos and Linux RTAI. In International
Scilab Conference, Paris, 2004.

[9] Roberto Bucher, Simone Mannori, and
Thomas Netter. RTAI-Lab tutorial: Scilab,
Comedi and real-time control, 2006. URL
www.rtai.org/RTAILAB/RTAI-Lab-tutorial.pdf.

[Mathworks] Mathworks. The MathWorks. URL
http://www.mathworks.com.

[Scilab] Scilab. A Free Scientific Software Package. URL
http://www.scilab.org.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9766

