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Abstract:
We present here a method and some tools developed to build linear models of multi-body
systems for space applications (typically satellites). The multi-body system is composed of a
main body (hub) fitted with rigid and flexible appendages (solar panels, antennas, propellant
tanks, ...etc). Each appendage can be connected to the hub by a cantilever joint or a pivot joint.
More generally, our method can be applied to any open mechanical chain. In our approach,
the rigid six degrees of freedom (d.o.f) (three translational and three rotational) are treated all
together. That is very convenient to build linear models of complex multi-body systems. Then,
the dynamics model used to design AOCS, i.e. the model between forces and torques (applied
on the hub) and angular and linear position and velocity of the hub, can be derived very easily.
This model can be interpreted using block diagram representation.

Keywords: Modeling, Dynamics, Flexible modes, Effective mass.

INTRODUCTION

Spacecraft are very complex mechanical multi-body sys-
tems including flexible and/or rotating appendages. The
design of the AOCS requires a linear model taking into
account all the rigid and flexible couplings between the
hub (where the AOCS acts) and the various appendages.
Note that the linear assumption is quite realistic for such
systems since perturbations and so motions are very small
(except for very dexterous observation satellites). This
linear assumption is furthermore valid in the field of future
missions for deep space exploration involving formation
flying of several spacecraft. For this kind of formation
flying mission, it is more and more accepted that the 3
rotation d.o.f. and the 3 translation d.o.f. must be treated
all together (Gaulocher et al. [2005]).

Therefore, a 6 d.o.f. model including couplings between ro-
tations and translations must be developed. Lots of multi-
body software are available to build such kind of models
but they address the nonlinear behavior and they are too
much loud to be handled at the early prototyping phase.
So a tool is required to develop quickly the dynamic model
and to prototype the AOCS or to analyze and to optimize
the main dynamic parameters of the mechanical structure
or AOCS and finally to assess the global performance of
the system.

Here we propose some tools developed with Matlab/SI-
MULINK to built efficiently the linear dynamic model
of any open mechanical chain. More precisely, the linear
multi-body model considered here is depicted on Figure

1. This model, called inverse dynamic model, gives the
relationship between the inputs, which are composed of:

• the six external forces
#»

F
ext

and torques
#»

T
ext,O

applied
on the hub (base) by the Attitude and Orbit Control
System(AOCS) at a reference point O,
• the n drive torques Cm(i) applied at the pivot joint i

(i = 1, · · · , n, n is the number of pivot joints) between
an appendage and the hub,

and the output, which is composed of:

• the six linear and angular accelerations of the hub at
point O (resp. #»aO and #̇»ω ),
• the angular acceleration θ̈(i) of the pivot point i (for
i = 1, · · · , n).

Fig. 1. General inverse dynamic model

This paper introduces gradually each complexity of the
modeling problem. The first section concerns the sim-
plest case of two interconnected rigid bodies. Let us recall
that the approach assumes that the hub (or central body or
base) is rigid. In the second section flexible appendages
are taken into account using effective mass representation.
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The way how a motorized pivot joint between an ap-
pendage and the hub can be taken into account is described
in section 3. A model validation is proposed in section
4.

1. INTERCONNECTED RIGID BODIES MODEL

Let us consider a spacecraft composed of a rigid main body
or hub (called here after the base B) with its center of
mass at point G, and a rigid appendage A cantilevered
to the base B at point P (see Figure 4). Let us denote
RG = (G, x, y, z) the reference frame rigidly attached
to the hub at G and RP = (P, x, y, z) the same frame
translated to point P . In the sequel the dynamic model of
the appendage will be obviously given in the frame RP .

Fig. 2. A simple spacecraft model, two rigid bodies con-
nected at point P

1.1 Dynamic model of the base B at point G

Let us consider the base B alone (without appendage),
according to the Newton’s and Euler’s equations, the
dynamic model of the base B at its center of mass G reads
as follows:[ #»

F
ext

#»

T
ext,G

]
= DB

G

[
#»aG

#̇»ω

]
=

[
mI3 0

0 JBG

][
#»aG

#̇»ω

]
(1)

where

• m is the mass of the body B,
• In is the n× n identity matrix,
• JBG is the inertia matrix (in kg.m2) at point G of the

body B in the frame RG,
• #»ω is the absolute angular velocity vector of the body
B (i.e. the angular velocity of the frame RG w.r.t the
inertial frame Ri in (rad/s)).
• and #̇»ω = d #»ω

dt |RG
= d #»ω

dt |Ri , since
#»ω has the same

coordinates in RG and Ri.

In (1), the three translational accelerations and the three
angular accelerations are considered together. Note that
for the rotation dynamics, the relation

#»

T ext,G = JBG
#̇»ω

is a linear approximation, the actual non-linear dynamic
equation reads:

#»

T ext,G = JBG
#̇»ω + #»ω × JBG #»ω

where × is the cross product.

The nonlinear term ( #»ω × JBG #»ω ) on the right hand side of
the equation above can be neglected if angular velocity #»ω
is small enough (linear assumption).

1.2 Transport of the dynamic model of B from point G to
point P

Let us recall that the relation between the velocities at
points P and G is :

#»

V P =
#»

V G +
#    »

PG× #»ω =
#»

V G + (∗PG) #»ω (2)
where (∗PG) is the antisymmetric matrix associated with
the vector

#    »

PG. That is, if [x, y, z]TRc
is the coordinate

vector of
#    »

GP projected in any frame Rc then (∗GP ) reads:

(∗GP ) =

[ 0 −z y
z 0 −x
−y x 0

]
Rc

, (∗PG) =

[ 0 z −y
−z 0 x
y −x 0

]
Rc

.

Note that equation (2) allows a vector product to be
transformed into a matrix-vector product and can be
projected in any frame.

Then, the six d.o.f. kinematic vectors νG and νP of the
body B respectively at points G and P are given by :[

#»

V G
#»ω

]
︸ ︷︷ ︸
νG

=
[
I3 (∗GP )
0 I3

]
︸ ︷︷ ︸

τGP

[
#»

V P
#»ω

]
︸ ︷︷ ︸
νP

(3)

τGP is called the (6 × 6) kinematic model between the
points G and P .

Now, let us consider the inertial accelerations at points P
and G :

#»aP =
d

#»

V P
dt
|Ri

and #»aG =
d

#»

V G
dt
|Ri

It is well-known that :

#»aP = #»aG + #̇»ω × #    »

GP + #»ω ×

((
d

#    »

GP

dt

)
|RG

+ #»ω × #    »

GP

)
For a rigid body, (

d
#    »

GP

dt

)
|RG

= 0

and, as explained before, all nonlinear terms can be ne-
glected. The acceleration at point P is then deduced from
the acceleration at point G by the linear relation :

#»aP = #»aG + (∗PG) #̇»ω (4)

From equation (4) one can derive the following kinematic
relationship :[

#»aG

#̇»ω

]
= τ

GP

[
#»aP

#̇»ω

]
=

[
I3 (∗GP )

0 I3

][
#»aP

#̇»ω

]
. (5)

To obtain the relationship between the 6 d.o.f external
force vectors at point G and at point P , it is interesting to
express the external force power computed along a virtual
velocity field :

P
ext

=

[
#»

V G
#»ω

]T [ #»

F ext

#»

T
ext,G

]
=

[
#»

V P
#»ω

]T [ #»

F
ext

#»

T ext,P

]
(6)

Combining (3) and (6), one can easily obtain :[ #»

F
ext

#»

T ext,P

]
= τT

GP

[ #»

F ext

#»

T
ext,G

]
=

[
I3 0

−(∗GP ) I3

][ #»

F ext

#»

T
ext,G

]
(7)
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From (5) and (7), the direct dynamic model DB
P of the

base B at point P becomes:

[ #»

F
ext

#»

T
ext,P

]
= τT

GP

[
mI3 0

0 JBG

]
τ

GP

[
#»aP

#̇»ω

]
= DB

P

[
#»aP

#̇»ω

]
(8)

Thus the transport of the direct dynamic model of a body
B from a point G to a point P reads:

DB
P = τTGPD

B
GτGP =

[
mI3 m(∗GP )

−m(∗GP ) JBG −m(∗GP )2

]
.

(9)

1.3 Connection with a rigid appendage

If we consider now that a rigid appendage A is cantilevered
to the base B at point P, the reaction force

#»

FB/A and
torque

#»

T B/A,P at point P between the base and the
appendage must be taken into account in the dynamic
model of the base. Thus equation (8) becomes:[ #»

F ext −
#»

FB/A
#»

T ext,P −
#»

T B/A,P

]
= DB

P

[
#»aP

#̇»ω

]
. (10)

The appendage A is characterized by its own dynamic
model DA

P at point P 1 . If we assume that the only force
and torque applied on the appendage A are the reaction
force and torque with the base B, then one can write:[ #»

FB/A
#»

T B/A,P

]
= DA

P

[
#»aP

#̇»ω

]
(11)

Substituting (11) in (10) we get the equation of motion of
the whole system at point P :

[ #»

F ext

#»

T ext,P

]
= (DA

P +DB
P )

[
#»aP

#̇»ω

]

= (DA
P + τT

GP
DB
GτGP

)

[
#»aP

#̇»ω

]
(12)

It could be more interesting to express the whole dynamic
model at the center of mass G of the base B, since the
external forces and torques will correspond to the AOCS
(reaction wheel and thrust) which are mounted on the
base. Then, one can directly write:[ #»

F
ext

#»

T
ext,G

]
= (τT

P G
DA
P τP G

+DB
G)

[
#»aG

#̇»ω

]

= (DA
G +DB

G)

[
#»aG

#̇»ω

]
(13)

1 If
#    »
PC is the vector between P and the center of mass C of the

appendage in the frame RP , we can also write:

DA
P = τT

CP

[
mI3 0

0 JA
C

]
τCP

This equation introduces the dynamic model of the ap-
pendage at the point G: (DA

G). We can also compute the
inverse dynamic model (which will be used for designing
the AOCS):[

#»aG

#̇»ω

]
= (DB

G +DA
G)−1

[ #»

F ext

#»

T
ext,G

]

= (DSatellite
G )−1

[ #»

F
ext

#»

T
ext,G

]
(14)

It can be shown that:

(DB
G +DA

G)−1 = DB−1

G

(
I6 + τT

P G
DA
P τP G

DB−1

G

)−1

(15)

Equation (14) can be expressed with the block diagram
presented in Figure 3 which highlights that the dynamic
model of appendage acts as a feedback between accelera-
tion and forces at point G on the base B. Such a block
diagram representation will be very useful to introduce
uncertainties in the various geometric or dynamic param-
eters.

a
G

B/A,P
T

τ

−̇→ω

τ

−̇→ω

P
a

PG
T
PG

F

s
1-1][ G

BD

P
ADB/A

ext,GT

F
ext

s
1

+
-

Fig. 3. Block Diagram of the inverse Dynamic Model

1.4 Rigid Connection With Rotation:

In the general case, a rotation matrix R3×3 between the
frame RAP = (P, xP , yP , zP ) (in which the dynamic model
DA
P will be described) and the frame RP = (P, x, y, z)

(parallel to RG at point P ) must be taken into account.
That is illustrated in Figure 4 in the special case where
the appendage is rotated with an angle θ around z−axis,
that is:

R3×3 =

 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (16)

To write the equation of motion of the whole system at
point G (equation (14)), that is to compute DA

G, we have
to take into account the rotation on the dynamic model
DA
P before to transport this dynamic model from P to G:

DA
G = τT

P G

[
R3×3 0

0 R3×3

]
︸ ︷︷ ︸

R6×6

DA
P

[
R3×3 0

0 R3×3

]T
τ

P G
(17)
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Fig. 4. Rigid connection between the hub and a rotated
solar array.

2. CONNECTION OF A FLEXIBLE APPENDAGE

Flexibility of an appendage will be represented by the
effective mass approach (Imbert and Mamode [1977]).
This representation is very useful when one want to
study dynamic couplings between the flexible modes of
the appendage and the rigid modes of the whole system
without analysis of internal deformations (or loads) of the
appendage. The so called "‘Cantilever Hybrid Model"’ (see
Cumer and Chrétien [2001]) will be used: at point P , the
static dynamic model of the appendage A (equation (11))
is now removed by the following differential equations:

[ #»

FB/A
#»

T B/A,P

]
= DA

P

[
#»aP

#̇»ω

]
+ LTP η̈ (18)

η̈ + diag(2ξiwi)η̇ + diag(w2
i )η = −LP

[
#»aP

#̇»ω

]
(19)

where LP = [l1P
T

l2P
T · · · lkP

T ]T .

liP (1×6), wi, ξi are the modal contribution 2 at point P ,
the frequency, and the damping ratio of the flexible mode
i respectively, for i = 1, ..., k (k is the number of flexible
modes taken into account). η is the vector of flexible modal
coordinates.

The direct dynamic model of the appendage can also be
described by the state-space representation:[

η̇

η̈

]
=

[
0k×k Ik

−Kk×k −Dk×k

][
η

η̇

]
+

[
0k×6

−LPk×6

][
#»aP

#̇»ω

]
[

#»
FB/A

#»
TB/A,P

]
=
[
−LT

PK −LT
PD
] [ η

η̇

]
+ (DA

P − L
T
PLP )

[
#»aP

#̇»ω

]
(20)

where D = diag(2ξiwi) and K = diag(w2
i ).

This state-space representation allows the direct transfer
matrix MA

P (s) between force and acceleration of the ap-
pendage at point P (also called dynamic mass matrix)
to be computed:

[ #»

FB/A
#»

T B/A,P

]
= MA

P (s)
[

#»aP
#̇»ω

]
(21)

2 if modal contribution matrix is given at point C (the appendage
center of mass) and denoted LC , then one can write: LP = LCτCP .

with :

MA
P (s) = DA

P − LTPLP +[
−LTPK −LTPD

]
6×k

[
sIk −Ik
K (sIk +D)

]−1 [
0k×6

−LPk×6

]
.

In the case where flexible mode damping ratios are ne-
glected (D = 0), this transfer matrix can be re-arranged
in the following way:

MA
P (s) = DA

P0
+

k∑
i=1

DA
Pi

w2
i

s2 + w2
i

where:

• DA
P0

is the residual mass matrix rigidly cantilevered
to the base B at point P and is given by:
DA
P0

= DA
P − LTPLP = DA

P −
∑k
i=1 l

i
P
T
liP ,

• DA
Pi

= liP
T
liP is rank-1 effective-mass matrix of the

ith mode,
• DA

P is the static gain (DC gain) of MA
P (s).

To build the dynamic model of the whole system (rigid
base + flexible appendage), we only have to remove DA

P

by MA
P (s) (defined by state space representation (20)) in

equations (12) to (15) and (17) and in the block diagram
depicted in Figure 3.

3. PIVOT JOINT BETWEEN BASE AND
APPENDAGE

In the case where the base B and the appendage A are
linked by a pivot joint (around the zP axis 3 ), the reaction
torque about the zP axis is null. Then (21) projected in
the frame (P, xP , yP , zP ) becomes:

FB/Ax

FB/Ay

FB/Az

TB/A,Px

TB/A,Py

0


= MA

P (s)



aPx

aPy

aPz

ω̇x

ω̇y

ω̇z + θ̈


(22)

where θ̈ is the relative angular acceleration, along the pivot
zP -axis, of the appendage A w.r.t the base B.

If the pivot joint is motorized with a motor applying a
torque Cm around zP axis (i.e. a torque applied by the
base B on the appendage A), the dynamic model of the
appendage at point P becomes:

3 It is assumed here that the pivot joint is along zP axis in the
frame RA

P attached to the appendage. It is always possible to meet
this assumption using a rotation matrix R3×3 (see section 1.4).
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

FB/Ax

FB/Ay

FB/Az

TB/A,Px

TB/A,Py

Cm


= MA

P (s)



aPx

aPy

aPz

ω̇x

ω̇y

ω̇z + θ̈


(23)

Therefore, a new input Cm and a new output θ̈ are
introduced to the whole inverse dynamic model which is
depicted in Figure 5 and replaces the model described by
equation (14).

Fig. 5. A schematic illustration of the inputs and outputs
when pivot joints are added.

From (23), the equation for the last row reads 4 :

Cm = MA
P (s)(6, 1 : 5)



aPx

aPy

aPz

ω̇x

ω̇y


+MA

P (s)(6, 6) (ω̇z+θ̈) (24)

thus the pivot angular acceleration θ̈ is equal to:

θ̈ =
1

MA
P (s) (6, 6)


Cm −MA

P (s) (6, 1 : 5)



aPx

aPy

aPz

ω̇x

ω̇y




− ω̇z .

(25)

The inverse dynamic model [DSatellite
G ]−1 can be described

by the functional diagram depicted in Figure 6.

4. GENERALISATION AND VALIDATION

The purpose of this section is to validate the inverse
dynamic model ([DSatellite

G ]−1 see Figure 5) tacking into
account some pivot joints between the base and some
appendages by comparison with the direct dynamic model
assuming that all appendages are cantilevered on the base
DSatellite
G,cantilever.

If we consider the direct model of the rigid base DB
G and n

flexible appendages Ai (defined by dynamic mass matrix
MAi

Pi
(s), i = 1, · · · , n) cantilevered to the base at point

Pi through a rotation matrix Ri6×6, then using previous
4 Matlab syntax is used to defined by F (s)(i : j, k : l) the subsystem
between outputs i to j and inputs k to l in the system F (s).

a
G

mC

ext,GT

F
ext −→̇

ω

ττ
PG

T
PG

ω̇z

θ̈

B/A
F

B/A,P
T

MP
A

+
-[eye(5) 0]

[0 0 0 0 0 1]

+
- -1][ G

BD

(s)

(6,1:5)(s)MP
A

-+

1

(6,6)(s)MP
A

(1:5,:)

Fig. 6. Block Diagram of the Inverse Dynamic Model with
pivot joint

results of sections 1 and 2, one can compute the 6×6 direct
dynamic model of the whole system:

DSatellite
G,cantilever = DB

G +
n∑
i=1

τTPiGRi6×6M
Ai

Pi
(s)RiT6×6τPiG .

If we assume now that these n appendages are not can-
tilevered but are connected with pivot joints, then the re-
sult of section 3 allows to build the whole inverse dynamic
model [DSatellite

G ]−1 (see Figure 5).

This model can be detailed in the following way:
#»aG

#̇»ω

θ̈
n×1

 =

[
T116×6 T126×n

T21n×6 T22n×n

]
#»

F ext

#»

T
ext,G

Cmn×1

 (26)

T11 is the transfer function between

[
#»aG

#̇»ω

]
and

[ #»

F
ext

#»

T
ext,G

]
.

T12 is the transfer function between

[
#»aG

#̇»ω

]
and Cmn×1 .

T21 is the transfer function between θ̈
n×1 and

[ #»

F ext

#»

T
ext,G

]
.

T22 is the transfer function between θ̈
n×1 and Cmn×1 .

From model [DSatellite
G ]−1, one can lock pivot joints by

nulling the pivot acceleration:
θ̈n×1 = 0n×1, (27)

and then emulate cantilevered joints: indeed from equation
(26) and (27) and eliminating Cm, one can derive:

[
#»aG

#̇»ω

]
6×1

=
[
T11 − T12T

−1
22 T21

] [ #»

F
ext

#»

T
ext,G

]
6×1

. (28)

Then one can verify that the direct dynamic model
DSatellite
G,cantilever is recovered:

DSatellite
G,cantilever =

[
T116×6 − T126×nT

−1
22n×n

T21n×6

]−1

.
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An other way to lock pivot joints is to feedback the
pivot positions to pivot torques through a very significant
stiffness according to Figure 7. Then the new inverse
dynamics model exhibits a high frequency flexible modes
which can be reduced to provide the inverse cantilevered
dynamic model.

Fig. 7. Pivot joints are locked using a feedback though an
infinite stiffness k.

5. CONCLUSION AND PERSPECTIVES

In this paper, the linear dynamic model of a spacecraft
composed of a rigid base and various flexible and rigid
appendages connected to the base by a cantilever joint or
a pivot joint has been developed. The build of this model
lies on basic operations:

• transportation of a dynamic model to one point to an
other,
• connection of 2 dynamic models,
• use of effective masses to handle dynamic mass matrix
for a flexible appendage,
• subdivision of the dynamic mass matrix to take into
account a pivot joint.

All these operations can be simply represented by a block
diagram and can be performed recursively to model any
kind of open mechanical chain. The reader will find in
http://personnel.supaero.fr/alazard-daniel
/demos/SDT a Matlab package called Spacecraft Dynamics
Toolbox to develop such models and an illustrative exam-
ple.

The short-term perspectives of this work are the following:

• to take into account an on-board kinetic momentums,
• to take into account a metrological model between
the accelerations at the reference point and what
is measured by the sensors (linear and angular ac-
celerometers),
• to interface our toolbox with the Linear Fractional
Representation (LFR) toolbox to handle uncertain
dynamic parameters in the modeling process (Magni
[2004]).

REFERENCES

D. Alazard and J.P. Chrétien. Commande Active Des
Structures Flexibles. Lecture notes, SUPAERO, 2004.

S.C. Chapra and R. Canale. Numerical Methods For
Engineers. McGrow Hill, 2002.

C. Cumer and J.P. Chrétien. Minimal lft form of a
spacecraft built up from two bodies. In AIAA Guidance,
Navigation, and Control Conference. ONERA/DCSD,
AIAA, 2001.

R.C. Dorf and R. Bishop. Modern Control Systems.
Prentice Hall, 2001.

S. Gaulocher, Ch. Pittet, and J.-P. Chrétien. Six-DOF
formation flying modeling and control with an appli-
cation to space interferometry. In 6th International
ESA Conference on Guidance, Navigation and Control
Systems, Loutraki, Greece, 17 - 20 October 2005. ESA.

J.F. Imbert and A. Mamode. The effective mass concept
in base motion dynamics and application to solar array
dynamics. pages 343–354, Munich, Germany, 1977.
Nastran User’s Conference.

J.-F. Magni. Extension of the linear fractional represen-
tation toolbox. In IEEE, editor, Proceedings of the
IEEE International Coference on CACSD, Taipei, 2 -
4 September 2004. IEEE.

K. Ogata. Modern Control Engineering. Prentice Hall,
2002.

D.A. Wells. Theory and Problems of Lagrangian Dynam-
ics. Wiley, 1993.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11153


