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Abstract: In this paper we propose an invariant nonlinear observer (i.e. a “filter”) for estimating
the velocity vector and orientation of a flying rigid body, using measurements from low-cost
Earth-fixed velocity, inertial and magnetic sensors. It has a nice geometric structure which
respects meaningful physical symmetries of the system. It can be seen as an easier-to-tune and
computationally much simpler alternative to an Extended Kalman Filter.
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1. INTRODUCTION

Aircraft, especially Unmanned Aerial Vehicles (UAV),
commonly need to know their orientation and velocity to
be operated, whether manually or with computer assis-
tance. When cost or weight is an issue, using very accu-
rate inertial sensors for “true” (i.e. based on the Schuler
effect due to a non-flat rotating Earth) inertial naviga-
tion is excluded. Instead, low-cost systems –sometimes
called velocity-aided Attitude Heading Reference Systems
(AHRS)– rely on light and cheap “strapdown” gyroscopes,
accelerometers and magnetometers “aided” by velocity
sensors (provided for example in body-fixed coordinates
by an air-data or Doppler radar system, or in Earth-fixed
coordinates by a GPS engine). The various measurements
are then “merged” according to the motion equations
of the aircraft assuming a flat non-rotating Earth, usu-
ally with a linear complementary filter or an Extended
Kalman Filter (EKF). For more details about avionics,
various inertial navigation systems and sensor fusion, see
for instance the books Collinson [2003], Kayton and Fried
[1997], Grewal et al. [2007] and the references therein.

In this paper we propose as an alternative to an EKF a
simple nonlinear observer. It has a nice geometric structure
which respects meaningful physical symmetries of the
system and is derived from the general method developed
in Bonnabel et al. [2007]. It should be easier to tune
and computationally much simpler than an EKF, with a
similar local performance and an expected larger domain
of convergence. Several nonlinear observers have recently
been designed for various strapdown systems, though with
different sensors, e.g. Thienel and Sanner [2003], Mahony
et al. [2005], Hamel and Mahony [2006], Bonnabel et al.
[2006], Cheviron et al. [2007], Baldwin et al. [2007], Martin
and Salaün [2007].

The paper is organized as follows. Section 2 presents the
model used to design the observer. Section 3 recaps the
general method of Bonnabel et al. [2007], which is used in
section 4 to derive an observer for the system under study.
Section 5 is devoted to the choice of the observer tuning
parameters. Finally, section 6 illustrates on simulations the
good behavior of the observer while section 7 compares it
on actual data to a commercial device.

2. PHYSICAL EQUATIONS AND MEASUREMENTS

2.1 Motion equations

The motion of a flying rigid body (assuming the Earth is
flat and defines an inertial frame) is described by

q̇ =
1

2
q ∗ ω

V̇ = A+ q ∗ a ∗ q−1,

where

• q is the quaternion representing the orientation of
the body-fixed frame with respect to the Earth-fixed
frame

• ω is the instantaneous angular velocity vector
• V is the velocity vector of the center of mass with

respect to the Earth-fixed frame
• A = (0 0 g)T is the (constant) gravity vector in North-

East-Down coordinates
• a is the specific acceleration vector, i.e. all the non-

gravitational forces divided by the body mass.

The first equation describes the kinematics of the body,
the second is Newton’s force law. It is customary to use
quaternions (also called Euler 4-parameters) instead of
Euler angles since they provide a global parametrization of
the body orientation, and are well-suited for calculations
and computer simulations. For more details about this
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section, see any good textbook on aircraft modeling, for
instance Stevens and Lewis [2003], and Martin and Salaün
[2007] for useful formulas used in this paper.

2.2 Measurements

We use four triaxial sensors, yielding twelve scalar mea-
surements: 3 gyros measure ωm = ω + ωb, where ωb is a
constant vector bias; 3 accelerometers measure am = asa,
where as > 0 is a constant scaling factor; 3 magnetometers
measure yB = q−1 ∗ B ∗ q, where B = (B1 0 B3)

T is
the Earth magnetic field in NED coordinates; the velocity
vector V is provided by the navigation solutions yV of a
GPS engine (the GPS velocity is obtained from the carrier
phase and/or Doppler shift data, and not by differentiating
the GPS position, hence is of rather good quality). All
these measurements are of course also corrupted by noise.

There is some freedom in the modeling of the sensors
imperfections. A simple first-order observability analysis
reveals that up to six unknown constants can be estimated.
The two extra constants could be used to model two
imperfections on yB , or one on yB and one more on am.
Nevertheless, it is not possible to use them to model three
imperfections on am: in particular if we write am = a+ ab,
with ab a constant vector bias, only two components of
ab are observable; moreover, only one imperfection on
am can be estimated without relying on the possibly
disturbed magnetic measurement yB . The choice adopted
here, 3 biases on the gyros and one scaling factor on the
acceleros, ensures that in level flight the estimated velocity
equals the measured velocity (see §5.2).

2.3 The considered system

To design our observers we therefore consider the system

q̇ =
1

2
q ∗ (ωm − ωb) (1)

V̇ = A+
1

as

q ∗ am ∗ q−1 (2)

ω̇b = 0 (3)

ȧs = 0, (4)

where ωm and am are seen as known inputs, together with
the output

(
yV

yB

)

=

(
V

q−1 ∗B ∗ q

)

. (5)

This system is observable provided B × (q ∗ am ∗ q−1) 6= 0
since all the state variables can be recovered from the
known quantities ωm, am, yV , yB and their derivatives. In-

deed from (2), as = ‖am‖
‖ẏV −A‖ and am

‖am‖ = q−1 ∗ ẏV −A
‖ẏV −A‖ ∗ q.

We thus know the action of q on the two known vectors B
and ẏV −A, which are independent by the above assump-
tion; this completely defines q in function of yB , ẏB , am.
Finally ωb = ωm − 2q−1q̇ is determined from (1).

3. THEORY OF INVARIANT OBSERVERS

We briefly recall here the main ideas of Bonnabel et al.
[2007]. The theory is constructive and is directly applicable
to the system considered in this paper.

3.1 Invariant systems and compatible outputs

Definition 1. Let G be a Lie Group with identity e and Σ
an open set (or more generally a manifold). A transforma-
tion group (φg)g∈G on Σ is a smooth map

(g, ξ) ∈ G× Σ 7→ φg(ξ) ∈ Σ

such that:

• φe(ξ) = ξ for all ξ
• φg2

◦ φg1
(ξ) = φg2g1

(ξ) for all g1, g2, ξ.

By construction φg is a diffeomorphism on Σ for all g.
The transformation group is local if φg(ξ) is defined
only for g around e. In this case the transformation law
φg2

◦ φg1
(ξ) = φg2g1

(ξ) is imposed only when it makes
sense. We consider in the sequel only local transformation
groups. “For all g” thus means “for all g around e, and
“for all ξ” means “for all ξ in some neighborhood”.

Consider now the smooth output system

ẋ = f(x, u) (6)

y = h(x, u) (7)

where x belongs to an open subset X ⊂ R
n, u to an open

subset U ⊂ R
m and y to an open subset Y ⊂ R

p, p ≤ n.

We assume the signals u(t), y(t) known (y is measured,
and u is measured or known as a control input).

Consider also the local group of transformations on X ×U
defined by (X,U) =

(
ϕg(x), ψg(u)

)
, where ϕg and ψg are

local diffeomorphisms.

Definition 2. The system ẋ = f(x, u) is G-invariant if
f
(
ϕg(x), ψg(u)

)
= Dϕg(x) · f(x, u) for all g, x, u.

The property also reads Ẋ = f(X,U), i.e., the system is
left unchanged by the transformation.

Definition 3. The output y = h(x, u) is G-compatible if
there exists a transformation group (̺g)g∈G on Y such
that h

(
ϕg(x), ψg(u)

)
= ρg

(
h(x, u)

)
for all g, x, u.

With (X,U) =
(
ϕg(x), ψg(u)

)
and Y = ̺g(y), the

definition reads Y = h(X,U).

3.2 Invariant preobservers

Definition 4. (Preobserver). The system ˙̂x = F (x̂, u, y) is
a preobserver of (6)-(7) if F

(
x, u, h(x)

)
= f(x, u) for all

x, u.

An observer is then a preobserver such that x̂(t) → x(t)
(possibly only locally).

Definition 5. The preobserver ˙̂x = F (x̂, u, y) is G-
invariant if F

(
ϕg(x̂), ψg(u), ρg(y)

)
= Dϕg(x̂) · F (x̂, u, y)

for all g, x̂, u, y.

The property also reads
˙̂
X = F (X̂, U, Y ), i.e., the system

is left unchanged by the transformation.

The key idea to build an invariant observer is to use an
invariant output error.

Definition 6. The smooth map (x̂, u, y) 7→ E(x̂, u, y) ∈ Y
is an invariant output error if

• the map y 7→ E(x̂, u, y) is invertible for all x̂, u
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• E
(
x̂, u, h(x̂, u)

)
= 0 for all x̂, u

• E
(
ϕg(x̂), ψg(u), ρg(y)

)
= E(x̂, u, y) for all x̂, u, y

The first and second properties mean E is an “output
error”, i.e. it is zero if and only if h(x̂, u) = y; the third

property, which also reads E(X̂, U, Y ) = E(x̂, u, y), defines
invariance.

Similarly, the key idea to study the convergence of an
invariant observer is to use an invariant state error.

Definition 7. The smooth map (x̂, x) 7→ η(x̂, x) ∈ X is an
invariant state error if

• it is a diffeomorphism on X × X
• η(x, x) = 0 for all x
• η
(
ϕg(x̂), ϕg(x)

)
= η(x̂, x) for all x̂, x.

We now state the two main results –based on the Car-
tan moving frame method– in the special case where
g 7→ ϕg(x) is invertible (i.e. when G is of dimension n),
see Bonnabel et al. [2007] for the general case. The moving
frame x 7→ γ(x) is obtained by solving for g the so-
called normalization equation ϕg(x) = c for some arbitrary
constant c; in other words ϕγ(x)(x) = c.

Theorem 8. The general invariant preobserver reads

F (x̂, u, y) = f(x̂, u) +

n∑

i=1

(
Li(E, I) · E

)
wi(x̂),

where:

• wi,i = 1, . . . , n, is the invariant vector field defined by

wi(x̂) =
[
Dϕγ(x̂)(x̂)

]−1
·
∂

∂xi

,

with ∂
∂xi

the ith canonical vector field on X
• E is the invariant error defined by

E(x̂, u, y) = ργ(x̂)

(
h(x̂, u)

)
− ργ(x̂)(y)

• I is the (complete) invariant defined by

I(x̂, u) = ψγ(x̂)(u)

• Li, i = 1, . . . , n, is a 1×p matrix with entries possibly
depending on E and I, and can be freely chosen.

Theorem 9. The error system reads η̇ = Υ(η, I) where η
is the invariant state error defined by

η(x̂, x) = ϕγ(x)(x̂) − ϕγ(x)(x).

This result greatly simplifies the convergence analysis of
the preobserver, since the error equation is autonomous
but for the “free” known invariant I. For a general non-
linear (not invariant) observer the error equation depends
on the trajectory t 7→

(
x(t), u(t)) of the system, hence is

in fact of dimension 2n.

4. CONSTRUCTION OF THE OBSERVER

4.1 Invariance of the system equations

The physical system is obviously unaffected by a constant
velocity translation in the Earth-fixed frame and a con-
stant rotation of the body-fixed frame. It is natural to
expect a similar behavior from an observer. We therefore
consider the following transformation group generated by
rotations, translations and scaling

ϕ(q0,V0,ω0,a0)






q
V
ωb

as




 =






q ∗ q0
V + V0

q−1
0 ∗ ωb ∗ q0 + ω0

asa0






ψ(q0,V0,ω0,a0)

(
ωm

am

)

=

(
q−1
0 ∗ ωm ∗ q0 + ω0

a0q
−1
0 ∗ am ∗ q0

)

ρ(q0,V0,ω0,a0)

(
yV

yB

)

=

(
yV + V0

q−1
0 ∗ yB ∗ q0

)

.

There are 3 + 2 ∗ 3 + 1 = 10 parameters: the unit
quaternion q0, the R

3-vectors V0, ω0 and the positive scalar
a0. The group law ⋄ is given by






q1
V1

ω1

a1




 ⋄






q0
V0

ω0

a0




 =






q0 ∗ q1
V0 + V1

q−1
1 ∗ ω0 ∗ q1 + ω1

a0a1




 .

The system (1)–(4) is of course invariant by the transfor-
mation group since

˙︷ ︸︸ ︷
q ∗ q0 = q̇ ∗ q0

=
1

2
(q ∗ q0) ∗

(
(q−1

0 ∗ ωm ∗ q0 + ω0)

− (q−1
0 ∗ ωb ∗ q0 + ω0)

)

˙︷ ︸︸ ︷

V + V0 = V̇

= A+
1

asa0
(q ∗ q0) ∗ (asq

−1
0 ∗ am ∗ q0) ∗ (q ∗ q0)

−1

˙︷ ︸︸ ︷

q−1
0 ∗ ωb ∗ q0 + ω0 = q−1

0 ∗ ω̇b ∗ q0 = 0

˙︷︸︸︷
asa0 = ȧsa0 = 0,

whereas the output (5) is compatible since
(

V + V0

(q ∗ q0)
−1 ∗B ∗ (q ∗ q0)

)

= ρ(q0,V0,ω0,a0)

(
V

q−1 ∗B ∗ q

)

.

4.2 Construction of the general invariant preobserver

We solve for (q0, V0, ω0, a0) the normalization equations

q ∗ q0 = 1

V + V0 = 0
and

q−1
0 ∗ ωb ∗ q0 + ω0 = 0

asa0 = 1

to find the moving frame

γ(q, V, ωb, as) =






q−1

−V
−q ∗ ωb ∗ q

−1

1/as




 .

We then get the 6-dimensional invariant error
(
EV

EB

)

= ργ(q̂,V̂ ,ω̂b,âs)

(
ŷV

ŷB

)

− ργ(q̂,V̂ ,ω̂b,âs)

(
yV

yB

)

=

(
ŷV − yV

B − q̂ ∗ q−1 ∗B ∗ q ∗ q̂−1

)

=

(
ŷV − yV

B − q̂ ∗ yB ∗ q̂−1

)

and the 6-dimensional complete invariant

(
Iω
Ia

)

= ψγ(q̂,V̂ ,ω̂b,âs)

(
ωm

am

)

=





q̂ ∗ (ωm − ω̂b) ∗ q̂
−1

1

âs

q̂ ∗ am ∗ q̂−1



 .
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Notice that Iω,Ia,EV and EB are functions of the es-
timates and the measurements. Hence they are known
quantities which can be used in the construction of the
preobserver. It is straightforward to check they are indeed
invariant. For instance,

EB(q̂ ∗ q0, V̂ + V0, q
−1
0 ∗ ω̂b ∗ q0 + ω0, âsa0, q

−1
0 ∗ yB ∗ q0)

= B − (q̂ ∗ q0) ∗ (q−1
0 ∗ yB ∗ q0) ∗ (q̂ ∗ q0)

−1

= B − q̂ ∗ yB ∗ q̂−1

= EB(q̂, V̂ , ω̂b, âs, yB).

To find invariant vector fields, we solve for w(q, V, ωb, as)
the 10 vector equations



Dϕγ(q,V,ωb,as)






q
V
ωb

as









 · w(q, V, ωb, as)

=






ei

0
0
0




 ,






0
ei

0
0




 ,






0
0
ei

0




 ,






0
0
0
e10




 , i = 1, 2, 3,

where the ei’s are the canonical basis of R
3 (we have

identified the tangent space of the unit norm quaternions
space to R

3). Since



Dϕ(q0,V0,ω0,a0)






q
V
ωb

as









 ·






δq
δV
δωb

δas




 =






δq ∗ q0
δV

q−1
0 ∗ δωb ∗ q0
a0δas




 ,

this yields the 10 independent invariant vector fields





ei ∗ q
0
0
0




 ,






0
ei

0
0




 ,






0
0

q−1 ∗ ei ∗ q
0




 ,






0
0
0

ase10




 , i = 1, 2, 3.

These vector fields are invariant. Indeed for instance,



Dϕ(q0,V0,ω0,a0)






q
V
ωb

as









 ·






ei ∗ q
0
0
0




 =






(ei ∗ q) ∗ q0
0
0
0






=






ei ∗ (q ∗ q0)
0
0
0




 .

The general invariant preobserver then reads

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +

3∑

i=1

(LV iEV + LBiEB)ei ∗ q̂

˙̂
V = A+

1

âs

q̂ ∗ am ∗ q̂−1 +

3∑

i=1

(MV iEV + LBiEB)ei

˙̂ωb =

3∑

i=1

q̂−1 ∗ (NV iEV +NBiEB)ei ∗ q̂

˙̂as = âs(OV EV +OBEB),

where the LV i, LBi, MV i, MBi, NV i, NBi, OV , OB are
arbitrary 1 × 3 matrices with entries possibly depending
on EV , EB , Iω and Ia. Noticing

3∑

i=1

(LV iEV )ei =

(
LV 1

LV 2

LV 3

)

EV = LV EV ,

where LV is the 3 × 3 matrix whose rows are the LV i’s,
and defining LB , MV , MB , NV and NB in the same way,
we can rewrite the preobserver as

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LV EV + LBEB) ∗ q̂ (8)

˙̂
V =

1

âs

q̂ ∗ am ∗ q̂−1 +A+ (MV EV +MBEB) (9)

˙̂ωb = q̂−1 ∗ (NV EV +NBEB) ∗ q̂ (10)

˙̂as = âs(OV EV +OBEB). (11)

As a by-product of its geometric structure, the preobserver
automatically has a desirable feature: the norm of q̂ is
left unchanged by (8), since LV EV + LBEB is a vector
of R

3 (see Martin and Salaün [2007]); moreover âs remains
positive.

4.3 Error equations

The invariant state error is given by





η
ν
β
α




 = ϕγ(q,V,ωb,as)






q̂

V̂
ω̂b

âs




− ϕγ(q,V,ωb,as)






q
V
ωb

as






=








q̂ ∗ q−1 − 1

V̂ − V
q ∗ (ω̂b − ωb) ∗ q

−1

âs

as

− 1







.

It is in fact more natural –though completely equivalent–
to take η = q̂ ∗ q−1 (rather than η = q̂ ∗ q−1 − 1), so that
η(x, x) = 1, the unit element of the group of quaternions.
In the same way, we take α = âs

as
to keep α in R

+. Hence,

η̇ = ˙̂q ∗ q−1 + q̂ ∗ (−q−1 ∗ q̇ ∗ q−1)

= −
1

2
η ∗ β + (LAEA + LCEC) ∗ η

ν̇ =
˙̂
V − V̇

= Ia − αη−1 ∗ Ia ∗ η + (MV EV +MBEB)

β̇ = q̇ ∗ (ω̂b − ωb) ∗ q
−1 − q ∗ (ω̂b − ωb) ∗ q

−1 ∗ q̇ ∗ q−1

+ q ∗ ( ˙̂ωb − ω̇b) ∗ q
−1

= (η−1 ∗ Iω ∗ η) × β + η−1 ∗ (NV EV +NBEB) ∗ η

α̇ =
˙̂as

as

= α(OV EV +OBEB).

Since we can write

EV = ν and EB = B − η ∗B ∗ η−1,

we find as expected that the error system

η̇ = −
1

2
η ∗ β + (LAEA + LCEC) ∗ η (12)

ν = Ia − αη−1 ∗ Ia ∗ η + (MV EV +MBEB) (13)

β̇ = (η−1 ∗ Iω ∗ η) × β

+ η−1 ∗ (NV EV +NBEB) ∗ η (14)

α̇ = α(OV EV +OBEB) (15)

depends only on the invariant state error (η, ν, β, α) and
the “free” known invariants Iω and Ia, but not on the
trajectory of the observed system (1)–(4).

The linearized error system around (η, ν, β, α) = (1, 0, 0, 1),
i.e. the estimated state equals the actual state, is given by
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δη̇ = −
1

2
δβ + (LV δEV + LBδEB)

δν̇ = −2Ia × δη − δαIa + (MV δEV +MBδEB)

δβ̇ = Iω × δβ + (NV δEV +NBδEB)

δα̇ = (OV δEV +OBδEB),

where

δEV = δν

δEB = −δη ∗B ∗ η−1 − η ∗B ∗ (−η−1 ∗ δη ∗ η−1)

= 2(η ∗B ∗ η−1) × (δη ∗ η−1)

= 2B × δη.

5. CHOICE OF THE OBSERVER PARAMETERS

5.1 Choice of the gain matrices

The linearized error system without correction terms turns
out to be decoupled into 4 independent subsystems (see
§5.3) when Ia is constant and Iω = 0 (in particular when
the aircraft is in level flight). To ensure a simple tuning,
the gain matrices should respect this decoupling. On the
other hand, the Earth magnetic field is quite perturbed in
urban areas, which are usual sites for a small UAV. We do
not want these magnetic disturbances – which unavoidably
corrupt the heading estimation – to affect too much the
attitude and velocity estimations. The idea is thus to rely
on the magnetic measurement yB as little as possible.

Therefore we choose
LV EV = −lV Ia × EV LBEB = lB〈B × EB , Ia〉Ia
MV EV = −mV EV MBEB = 0
NV EV = nV Ia × EV NBEB = −nB〈B × EB , Ia〉Ia
OV EV = oV 〈Ia, EV 〉 OBEB = 0

with (lV , lB ,mV , nV , nB , oV ) > 0.

5.2 Equilibrium points of the observer equations

When the observer have converged, the two last equations
of the observer write

NV EV +NBEB = 0 and OV EV = 0.

With the choice of gain matrices above it leads to

Ia × EV = 0 and 〈Ia, EV 〉 = 0.

So even if the model is wrong, for example if the Earth
magnetic field is perturbed, the observer equations ensure
V̂ = V once it has converged. This important property
led us to consider the fourth bias as in addition to the
usual biases ωb on the gyros. Similar conclusion is not
possible with the Euler angles even if we consider another
additional biases: EB = 0 does not ensure that the yaw
angle, for example, is correctly estimated.

5.3 First-order approximation and coordinate change

Considering the gain matrices described above, the lin-
earized error equations around the equilibrium point
(1, 0, 0, 1) write

δη̇ = −
1

2
δβ − lV Ia × δEV + lB〈B × δEB , Ia〉Ia

δν̇ = −2Ia × δη − δαIa −mV δEV

δβ̇ = Iω × δβ + nV Ia × δEV − nB〈B × δEB , Ia〉Ia
δα̇ = oV 〈Ia, δEV 〉

with δEV = δν and δEB = 2B × δη.

We change the coordinate in order to have the estimated
specific acceleration vector Ia vertical. Let η0 be this frame
rotation defined by

η−1
0 ∗ Ia ∗ η0 = −kA, where k > 0 (16)

η−1
0 ∗B ∗ η0 = B̃ with B̃ = (B̃1 0 B̃3). (17)

It follows

η̃ = η−1
0 ∗ η ∗ η0 ν̃ = η−1

0 ∗ ν ∗ η0

β̃ = η−1
0 ∗ β ∗ η0.

The error system then becomes

δ ˙̃η = 2δη̃ × (η−1
0 ∗ η̇0)

−
1

2
δβ̃ + klV A× δẼV + k2lB〈B̃ × δẼB , A〉A

δ ˙̃ν = 2δν̃ × (η−1
0 ∗ η̇0) + 2kA× δη + kδαA−mV δẼV

δ
˙̃
β = 2δβ̃ × (η−1

0 ∗ η̇0)

+ Ĩω × δβ̃ − knV A× δẼV − k2nB〈B̃ × δẼB , A〉A

δα̇ = −oV k〈A, δẼV 〉

with δẼV = δν̃ and δẼB = 2B̃ × δη̃.

We suppose now that the system is moving along “smooth”
trajectory, i.e η̇0 and Iω are first order terms. All the
terms of the form · × (η−1

0 ∗ η̇0) then disappear and k is
now constant. The error system splits into three decoupled
subsystems and one cascaded subsystem:

• the longitudinal subsystem




δ ˙̃η2
δ ˙̃ν1

δ
˙̃
β2



 =






0 klV g −
1

2
−2kg −mV 0

0 −knV g 0










δη̃2
δν̃1
δβ̃2





• the lateral subsystem




δ ˙̃η1
δ ˙̃ν2

δ
˙̃
β1



 =






0 −klV g −
1

2
2kg −mV 0
0 knV g 0










δη̃1
δν̃2
δβ̃1





• the vertical subsystem
(

δ ˙̃ν3
δα̇

)

=

(
−mV kg
−kgoV 0

)(
δν̃3
δα

)

• the heading subsystem
(

δ ˙̃η3

δ
˙̃
β3

)

=

(

−2k2g2lBB̃
2
1 −

1

2
2k2g2nBB̃

2
1 0

)(
δη̃3
δβ̃3

)

+

(
2k2g2lBB̃3B̃1

−2k2g2nBB̃3B̃1

)

δη̃1.

Thanks to this decoupled structure, the tuning of the
gains lV , lB ,mV , nV , nB , oV is straightforward. Obviously
the lateral, longitudinal and vertical subsystems do not
depend on the magnetic measurements, so will not be
affected if the magnetic field is perturbed.

5.4 Influence of magnetic disturbances on static behavior

We now investigate how the equilibrium point (1, 0, 0, 1) is
modified when the magnetic field is (statically) perturbed.
We show that only the yaw angle ψ is affected while
all the other variables, in particular the attitude angles
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φ, θ, remain unchanged. Here the Euler angles φ, θ, ψ
correspond to the error quaternion η̃ in the new frame (16)-
(17).

The equilibrium points (η̃, ν̃, ω̃, α̃) are defined by

(lV kA× ν̃ + lB〈B̃ × ẼB , kA〉kA) ∗ η̃ −
1

2
η̃ ∗ β̃ = 0

−kA+ αη̃
−1

∗ kA ∗ η̃ −mV ν̃ = 0

η̃
−1

∗ (−nV kA× ν̃ − nB〈B̃ × ẼB , kA〉kA) ∗ η̃

+(η̃
−1

∗ Ĩω ∗ η̃) × β̃ = 0

oV 〈kA, ν̃〉α = 0.

We ensure β̃ = 0 by choosing LV EV + LBEB colinear to
NV EV +NBEB , that is nV

lV
= nB

lB
, σ. This implies ν̃ = 0,

αη̃ ∗A ∗ η̃
−1

−A = 0 and 〈B̃ × ẼB , kA〉 = 0.

Finally (η̃, ν̃, β̃, α̃) = (η̃, 0, 0, 1); moreover φ = θ = 0 and

ψ is determined by 〈B̃ × ẼB , kA〉 = 0, where the Euler
angles φ, θ, ψ correspond to the error quaternion η̃.

6. SIMULATION RESULTS

We first illustrate on simulation the behavior of the invari-
ant observer

˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) + (LV EV + LBEB) ∗ q̂ + λ(1 − ‖q̂‖

2
)q̂

˙̂
V =

1

âs

q̂ ∗ am ∗ q̂−1 +A+ (MV EV +MBEB)

˙̂ωb = q̂−1 ∗ (NV EV +NBEB) ∗ q̂

˙̂as = âs(OV EV +OBEB)

with the choice of gain matrices described in §5.1. The
added term λ(1 − ‖q̂‖

2
)q̂ is a well-known numerical trick

to keep ‖q̂‖ = 1. Notice this term is invariant.

We choose here time constants around 10s by taking
lV = nV = 4e− 2, lB = nB = 2e−3, mV = 5, oV = 1e−2
and λ = 1. The system follows the trajectory defined by

as = 1.1 ωb =

(
.01

−.012
.08

)

V =

(
3 − 2 cos(.3t)

3 − 2.8 cos(.25t+ π/4)
−1 − 1.7 sin(.3t)

)

ωm =

(
sin(.5t)
sin(.3t)
− sin(.5t)

)

,

which is quite representative of a small UAV flight. The
states are initialized far from their true values.

At t = 30s, the magnetic field is changed fromB = (1 0 1)T

to B = (1 0.4 1)T .

Though we have no proof of convergence but local, the
domain of attraction seems to be large enough, see Fig. 1–
3. As expected, only the estimated yaw angle ψ is strongly
affected by the magnetic disturbance. Because of the
coupling terms Ĩw and Ia, there is some dynamic influence
on the other variables.

7. EXPERIMENTAL RESULTS

We now compare the behavior of our observer with the
commercial INS-GPS device MIDG II from Microbotics
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Inc. We feed the observer with the raw measurements
from the MIDG II gyros, acceleros and magnetic sensors,
and the velocity provided by the navigation solutions
of its GPS engine. The estimations of the observer are
then compared to the estimations given by the MIDG II
(computed according to the user manual by some Kalman
filter). In order to have similar behaviors, we have chosen
lV = 2.8e − 3, lB = 7e − 3, nV = 4e − 5, nB = 1e − 4,
mV = 0.9, oV = 9.4e− 5 and λ = 1.
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7.1 Dynamic behavior (Fig. 4–6)

We wait a few minutes until the biases reach constant val-
ues, then move the system in all directions. The observer
and the MIDG II give very similar results (Fig. 4 and 5).
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Fig. 7. Usefulness of correction terms (experiment)

7.2 Usefulness of the observer terms (Fig. 7–10)

As explained in §5.1 we have chosen the correction terms
so as the magnetic measurements correct essentially the
yaw angle and its corresponding bias, whereas the velocity
measurements act on the other variables.

We highlight this property as well as the importance of
correction terms on the following experiment. Once the
biases have reached constant values, the system is left at
rest during 50 minutes:

• for t < 700s the results are very similar for the
observer and the MIDG II (Fig. 7 and 8)

• at t = 700s the “magnetic correction terms” are
switched off, i.e. the gains lB and nB are set to 0. The
yaw angle estimated by the observer diverges because
the corresponding bias is not perfectly estimated.
Indeed, these variables are not observable without the
magnetic measurements. The other variables are not
affected (Fig. 7 and 8)

• at t = 1700s the “velocity correction terms” are also
switched off, i.e. lV , mV , nV and oV are set to 0.
All the estimated angles and velocities now diverge
(Fig. 7 and 8). Zooming around t = 1700s, we see
on Fig. 10 that the estimated pitch angle diverges
with a slope corresponding to the almost-constant
difference between the estimated and actual pitch
biases. This explains why the estimated velocity Vx

diverges quadratically in time.

7.3 Influence of magnetic disturbances (Fig. 11-12)

Once the biases have reached constant values, the system
is left motionless for 60s. At t = 13s a magnet is put close
to the sensors for 10s. As expected only the estimated yaw
angle is affected by the magnetic disturbance (Fig. 11- 12);
the MIDG II exhibits a similar behavior.
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