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Abstract: The in situ characterisation of thermocouple sensors is a challenging problem. Recently the 

authors introduced a novel blind characterisation technique based on the cross-relation method of blind 

identification that allows in situ characterisation of temperature measurement probes consisting of two-

thermocouple sensors with differing time constants. While the technique has a number of advantages over 

competing methods, including low estimation variance and no need for a priori estimation of the time 

constant ratio, it was found to be positively biased and becomes unstable at high noise levels. In this paper 

the origin of the stability issues and bias are analysed. It is shown that an alternative normalised cost 

function formulation, which eliminates the stability problem, results in negatively biased time constant 

estimates at high noise levels.  Further, it is demonstrated that this bias is less significant when temperature 

variations are broadband. All results are verified using Monte-Carlo simulations.  

�

1. INTRODUCTION 

In general, the frequency response of thermocouples used to 

measure the temperature in a liquid or gas flow can be 

adequately described by a first-order lag model with time 

constant, W , and unity gain (Tsuji et al., 1992). This 

simplified model can be written mathematically as 

dt

tdT
tTtT

)(
)()(f W� ,  (1) 

where fT  is the true temperature of the flow and T is the 

thermocouple output measurement. The time constant, W , is 

a function of the thermocouple wire diameter d and the flow 

velocity v, that is 

vd 3vW .  (2) 

While W  can often be determined a priori, this is not feasible 

in varying gas/liquid flow environments (e.g. in the exhaust 

of an internal combustion engine) due to its dependency on v. 

Consequently, in situ characterisation is needed.  

In situ characterisation is a very challenging problem since 

only the thermocouple output measurements are available, 

i.e. we do not have access to the input signal.  In the field of 

system identification this is referred to as a blind 

identification problem. In the absence of additional 

information the problem is in fact unsolvable. Various 

methods have been proposed over the years which exploit 

additional information to obtain blind identification 

characterisation algorithms. Much of this work has been done 

in the signal processing community in the context of channel 

equalization and image restoration problems. Broadly 

speaking these methods can be classified as either 

deterministic or non-deterministic techniques. The former 

rely on structural redundancy when using multiple sensors, 

while the latter exploit knowledge of the statistics of the input 

to the sensor.  

In addressing the problem of in situ thermocouple 

characterisation, several researchers have independently 

developed techniques which essentially fall into the former 

category. Pfriem (1936) was the first to observe that using 

two thermocouples with differing time constants to measure 

the same temperature provided sufficient information to 

allow in situ characterisation of both thermocouples. His 

method relied on a priori knowledge of the ratio of the time 

constants, D , defined as 

1,
2

1 � D
W
W

D ,  (3) 

a parameter which is approximately invariant to flow velocity 

fluctuations (Kee et al. 1999). (In (3) the subscripts 1 and 2 

refer to the two thermocouples with different W  values). 

Independently, Strahle and Muthukrishman (1976) and 

Cambray (1986) developed similar ideas. More recently 

several researchers have developed more sophisticated 

identification algorithms which can characterise the two-

thermocouple probe without requiring knowledge of the time 

constant ratio. These include Tagawa et al. (1998, 2003) who 

developed a number of frequency domain techniques and 

Hung et al. (2005) who developed difference equation time 

domain algorithms. All these developments appear to have 

been made in isolation of the work done by the signal 

processing community on blind system identification. 

In contrast, Hung et al. (2007) proposed a two-thermocouple 

probe (TTP) characterisation technique based on a 
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deterministic blind identification method from the signal 

processing community, referred to as the cross-relation (CR) 

method (Liu et al., 1993). The algorithm was shown to have 

several advantages over competing methods including low 

estimation variance and no need for a priori estimation of the 

time constant ratio. However, Monte-Carlo analysis showed 

that the algorithm was positively biased in the presence of 

measurement noise and became unstable at high noise levels. 

In this paper the origin of the stability issues and bias are 

explored in detail. It is shown that an alternative normalised 

cost function formulation, which eliminates the stability 

problem, results in negatively biased time constant estimates 

at high noise levels.  Further, it is demonstrated that this bias 

is less significant when temperature variations are broadband. 

All results are verified using Monte-Carlo simulations. 

Following some preliminaries in Section 2 a brief overview 

of the CR characterisation technique is provided in Section 3. 

The stability problem and its solution are demonstrated in 

Section 4. A mathematical analysis of the bias introduced in 

the MSE and NSME formulations by measurement noise is 

presented in Section 5. Monte-Carlo simulation results in 

support of this analysis are then presented in Section 6. 

Discussion and conclusions follow in the final section. 

2. PRELIMINARIES 

Throughout the paper analysis will be performed with the aid 

of two simulated data sets generated in MATLAB® using the 

block diagram shown in Fig. 1. Here two thermocouples, 

modelled as low-pass filters with unity gain and time 

constants, ms8.231  W and ms,8.1162  W  respectively, are 

connected to a common input representing the fluctuating gas 

or liquid temperature signal.  The first simulated signal 

represents sinusoidal temperature variations and is defined as 

5.50)20sin(5.16)(f � ttT S ,  (4) 

while the second is a broadband signal generated using 

Matlab’s normally distributed random signal generator. 

Samples of each signal, along with the corresponding 

thermocouple measurements are given in Fig. 2. Each data 

set consists of 1500 samples at a sample rate of 2 ms 

collected after initial condition transients have decayed away. 
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Fig. 1. Block diagram representation of the simulated two-

thermocouple measurement system 
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Fig. 2. Simulated case studies: (a) sinusoidal; and (b) 

broadband temperature fluctuations 

When adding zero-mean white Gaussian measurement noise 

to each thermocouple output, the amount of noise introduced 

is quantified in terms of the noise level, eL , defined as 

2,1,%100
)(var

)var(

f

 � i
T

n
L i

e .  (5) 

In all experiments noise of equal power is added to each 

thermocouple, i.e. )var()var( 21 nn  . 

3. BLIND CHARACTERISATION 

To exploit the information provided by output measurements 

from two systems of known structure but unknown 

parameters, the method of cross-relation (CR) proposed by 

Liu et al. (1993) can be employed. The implementation of the 

method for a two-thermocouple probe is illustrated in Fig. 3. 

Here, the two thermocouple output signals )(1 tT  and )(2 tT  

are passed through two different synthetic thermocouples 

modelled by first-order transfer functions: 

1
1

ˆ1

1
)(ˆ

Ws
sG

�
  and   

2
2

ˆ1

1
)(ˆ

Ws
sG

�
 , (6) 

where )(ˆ
1 sG  and )(ˆ

2 sG  are estimates of the transfer 

functions of the two thermocouples )(1 sG  and )(2 sG . A 

mean-square-error cost function 

,ˆ,ˆ,][)ˆ,ˆ( 21
2

21MSE WWWW � eEJ  (7) 

where 

)()( 2112 tTtTe � ,  (8) 

is then minimised to give estimates of 1̂W  and 2Ŵ . 

e

unknown system 

)(1 sG )(ˆ
2 sG

)(ˆ
1 sG)(2 sG

Σ
_

)(f tT

)(1 tT

)(2 tT

)(12 tT

)(21 tT

 

Fig. 3. Two-thermocouple cross-relation characterisation 
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Commutation is a fundamental requirement for the CR 

property underpinning the method, hence, the thermocouple 

models are both assumed to be linear. In addition, the 

thermocouples are assumed to be experiencing the same 

environmental conditions, i.e. measuring the same flow 

element with uniform temperature and velocity. Two further 

conditions are necessary in order for the time constants to be 

identifiable: (i) the input temperature signal, )(f tT , must be 

persistently exciting; (ii) the diameters of the two 

thermocouples must be different (Xu et al., 1995), that is: 

2121 WW z�z dd . (9) 

Finally, while recursive implementations of the CR method 

are possible, here only the constant parameter 

implementation is considered, hence v is assumed to be 

constant over the characterisation interval, such that 1W  and 

2W  are time-invariant. 

While it is clear that the cross-relation cost function 

)ˆ,ˆ( 21MSE WWJ  is ideally zero when 11̂ WW   and 22
ˆ WW  , in 

practice it will not be possible to match 12T  exactly with 21T . 

This is due to factors such as measurement noise on 

thermocouple outputs and violations of the assumption that 

the two thermocouples are experiencing identical 

environmental conditions. A 3-D surface plot and contour 

map of the MSEJ  cost function for the sinusoidal case study 

are shown in Fig. 4(a). Due to its non-quadratic nature, MSEJ  

cannot be minimised using linear techniques such as least 

squares. More importantly, it is multimodal with a second 

minimum at f  21
ˆˆ WW . This is because the low-pass filters 

in (6) behave as open-circuits when the time constants are 

infinite, hence, e will always be zero. It should be noted that 

the minimum at infinity exists irrespective of the noise 

conditions or any violations of the modelling assumptions 

and is in fact the global minimum. 
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Fig. 4. (a) MSEJ for the sinusoidal case study using noiseless 

thermocouple measurements; (b) projection of the 1-D CR 

cost function onto the 2-D cost function contour map 

Without loss of generality, to enhance the clarity of graphical 

representations and simplify the mathematical expressions 

presented in the following sections, analysis will be restricted 

to a one-dimensional implementation of the CR method. This 

is obtained by exploiting a priori knowledge of the time 

constant ratio D  (3) to eliminate one of the time constants, 

that is 

)ˆ()ˆ,ˆ()ˆ,ˆ( 2MSE22MSE21MSE WWWDWW JJJ oo . (10) 

The resulting 1-D CR cost function corresponds to a vertical 

section through the 2-D cost function along the line radiating 

from the origin through the true time constants. This is 

illustrated graphically in Fig. 4(b). 

4. CROSS-RELATION COST FUNCTION INSTABILTY 

In Hung et al. (2007) the authors discovered that the 

minimum at infinity significantly impacts on the stability of 

the CR scheme. In addition to the obvious problem of 

bounding the desired local minimum when using gradient 

based optimisation algorithms, it turns out that the local 

minimum disappears as the noise level increases with the 

result that the time constant estimates diverge to infinity.  

Figure 5 shows a plot of the 1-D MSE CR cost function for 

various noise levels and clearly demonstrates how the CR 

method breaks down as the noise level increases. As the 

noise increases the local minimum becomes more and more 

shallow and eventually disappears for 7|eL . 
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Fig. 5. Plot of the 1-D MSE CR cost function for different 

noise levels, eL  

To counter these problems Hung et al. (2007) proposed an 

alternative normalised MSE cost function formulation which 

eliminates the minimum at infinity by penalising large time 

constants, that is: 

)]var()[var(5.0

][
)ˆ,ˆ(

2112

2

21NMSE
TT

eE
J

�
 WW . (11) 

The 3-D surface plot and contour map for this cost function 

are given in Fig. 6(a).  The corresponding 1-D cost function 

is plotted in Fig. 6(b) and clearly shows that the NMSE 

eliminates the stability problem. This is verified in Fig. 7 

which shows the 1-D NMSE CR cost function for different 

noise levels, eL .   

In addition to the stability problems Hung et al. (2007) 

observed that  MSEJ  produced positively biased parameter 

estimates in the presence of noise while those produced by 

NMSEJ  were negatively biased. Note, that these patterns are 

also evident in Figs. 5 and 7. In the next section the origin of 

these biases will be investigated with the aid of a 

mathematical analysis of noise corrupted CR cost functions. 
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Fig. 6. Plot of (a) NMSEJ  for the sinusoidal case study using 

noiseless thermocouple measurements; (b) the 1-D MSE and 

NMSE CR cost functions 
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Fig. 7. Plot of the 1-D NMSE CR cost function for different 

noise levels, eL  

5. ANALYSIS OF BIAS 

5.1  Noise Corrupted MSE Cost Function 

A mathematical expression for the effect of noise on the MSE 

CR cost function can be developed as follows. When dealing 

with linear systems superposition applies, therefore the cross-

relation signals 12T  and 21T  in Fig. 3 can be expanded as 

f1f112 nTT � , f2f221 nTT �  (12) 

where f1T  and f2T  are the filtered noise free thermocouple 

signals and f1n  and f2n are the corresponding filtered noise 

terms.  The noise corrupted version of MSEJ , denoted MSE

~
J , 

can then be expressed as 

.][][

][][])[(
~

2
f2

2
f1MSE

2
f2

2
f1

2
f2f1MSE

nEnEJ

nEnETTEJ

�� 

��� 
 (13) 

The first term is the mean-square-error (MSE) due to 

incorrect time constant estimates and is independent of the 

noise present in the data. The second and third terms are the 

contributions to the cost function error by the filtered 

measurement noise.  

The expression ][ 2
f1nE  is the noise power of the filtered noise 

signal, f1n . For zero-mean white noise this can be expressed 

as the product of the input noise power density 2
0K  and the 

noise bandwidth of the low pass filter, )(ˆ
2 sG . Since noise 

bandwidth is proportional to the 3 dB bandwidth it follows 

that 

21
2
f1

ˆ][ WknE  . (14) 

Similarly, ][ 2
f2nE can be expressed as 

2221
2
f2

ˆ)ˆ(ˆ][ WWDW kkknE  c c . (15) 

Here, kk c,1  and 2k  are scalars arising from input signal 

noise power, noise bandwidth, non-ideal filter correction and 

time constant ratio factors. Substituting these expressions into 

(13) gives 

2MSEMSE
ˆ

~
WnkJJ � , (16) 

where 21 kkkn � . Thus, the noise term on the MSE cost 

function, 

2MSE ŴnkN  , (17) 

is inversely proportional to the time constant estimate. Scalar, 

nk , is proportional to the noise power and therefore increases 

as a function of the square of the noise level. 

5.2  Noise Corrupted NMSE Cost Function 

Noting that for zero mean signals, ][)var( 2
ff ii TET { , the 

noise corrupted version of the NMSE cost function can be 

expressed as 

]ˆ)var()[var(5.0

ˆ~

22ff1

2MSE
NMSE W

W

n

n

kTT

kJ
J

��

�
 . (18) 

For a sinusoidal input signal with frequency Z  radians/sec, 

the filter output signal power can be expressed as 

2
2

1
f1

)ˆ(1

)var(
)var(

WZ�
 

T
T . (19) 

Therefore, provided 1ˆ2 !!WZ  the decay in the cross-relation 

signal power with 2Ŵ  can be approximated as 

2
21f1 ˆ)var( WcT  . (20) 

Similarly, )var( 2fT  can be expressed as 

2
22f2 ˆ)var( WcT  . (21) 

Here, 1c  and 2c  are constants. Substituting (20) and (21) into 

(18) gives 

]ˆˆ[5.0

ˆ~

2

2
2

2MSE
NMSE

WW

W

np

n

kc

kJ
J

�

�
 , (22) 

where 21 ccc p � . Expressing the cost function in the form 

NMSENMSENMSE

~
NJJ �  (23) 

yields the NMSE noise term as 
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Noting that near the true time constant estimates 0MSE |J , 

and provided 2Ŵnp kc !! , this can be approximated as 

22NMSE
ˆˆ2 WW p

p

n k
c

k
N  |  (25) 

and hence,  

2NMSENMSE
ˆ

~
WpkJJ �| . (26) 

For signals containing multiple frequencies the expression in 

(19) is no longer valid. Instead the output power is obtained 

by integrating (19) over the frequency spectrum of the input 

signal. In the most general case of a white noise (broadband) 

signal 

21f1
ˆ)var( WcT o  (27) 

and the noise term on the NMSE cost function reduces to 

¸
¸

¹

·

¨
¨

©

§

�

�
 

np

p

p

n

kc

Jc

c

k
N

2MSE
NMSE

ˆ
2

W
, (28) 

which is approximately constant in the vicinity of the true 

time constant estimates, i.e. 

p
p

n k
c

k
N  | 2NMSE , (29) 

and hence,  

pkJJ �| NMSENMSE

~
. (30) 

5.3  Bias on Time Constant Estimates 

From these expressions the bias on the time constant 

estimates can be predicted. Differentiating each cost function 

with respect to 2Ŵ  gives 

222
ˆˆˆ

~

WWW w
w

�
w
w

 
w
w NJJ

. (31) 

At the true minimum 0ˆ
2  ww WJ , but because of the noise 

term N, the noise corrupted cost function gradient may not be 

zero. If  0ˆ
2 !ww WN  J

~
will have a lower value, and hence a 

minimum, to the left of the true minimum point, i.e. it will 

generate negatively biased estimates. Alternatively, by a 

similar argument if 0ˆ
2 �ww WN  time constant estimates will 

be positively biased. Unbiased estimates will only be 

obtained if 0ˆ
2  ww WN . Clearly, therefore, MSE

~
J will be 

positively biased for all signals and NMSE

~
J  will be 

negatively biased for narrow band signals, but with a 

tendency to become unbiased for broadband signals. 

6. MONTE-CARLO SIMULATIONS 

To verify the statistical properties of the MSE and NMSE CR  

algorithms, a set of Monte-Carlo simulations were performed 

for the sinusoidal and broadband case studies over a range of 

noise levels. For each noise level algorithm performance was 

assessed in terms of the percentage error in estimating 2W , 

that is 

%100
ˆ

2

22 �
�

 
W
WW

We . (32) 

The mean and standard deviation of this estimation error, 

computed over 100 simulation runs, are recorded in Table 1 

and Table 2 for the sinusoidal and broadband signals, 

respectively. The percentage of runs for which the MSE CR 

algorithm converged at each noise level is also recorded. In 

the cases where not all runs converged the statistics were 

computed based only on the converged subset.  In the 

sinusoidal case study the MSE CR algorithm failed to 

converge for noise levels of 8% and above, while in the 

broadband case study complete breakdown did not occur 

until the noise level exceeded 25%.  

Table 1.  Mean and (standard deviation) of time constant 

estimation errors – sinusoidal case study 

Noise 

Level 
1 5 6 7 10 15 20 

% of runs

converged
100 100 99 40 0 0 0 

MSE 
0.17 

(0.50)

6.72 

(2.90)

11.42 

(4.67) 

14.45 

(4.63) 
* * * 

NMSE 
-0.28 

(0.45)

-5.44 

(2.42)

-6.76 

(3.12) 

-9.08 

(3.64) 

-14.98 

(4.52) 

-26.98 

(6.01)

-37.84 

(6.30)

  * algorithm divergence for all simulation runs. 

Table 2.  Mean and (standard deviation) of time constant 

estimation errors – broadband case study 

Noise 

Level 
1 5 6 7 10 15 20 

% of runs

converged
100 100 100 100 100 96 45 

MSE 
0.27 

(0.65)

3.61 

(3.59)

4.43 

(3.74) 

6.15 

(5.20) 

13.54 

(6.67) 

29.14 

(10.33)

54.53 

(13.01)

NMSE 
-0.03 

(0.70)

0.38 

(3.26)

0.35 

(4.04) 

0.00 

(4.40) 

0.59 

(6.68) 

0.97 

(9.57)

-0.43 

(12.98)

   

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

τ
2
 (sec)

N

 

 

Sinusoidal

mean

95% C.I.

N
NMSE

N
MSE

true τ
2
 = 0.1168

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

τ
2
 (sec)

 

 

Broadband

mean

95% C.I.

true τ
2
 = 0.1168

N
NMSE

N
MSE

 

Fig. 8. MSE and NMSE noise terms (N) for: (a) sinusoidal; 

and (b) broadband temperature fluctuations 

To further validate the results of the mathematical analysis 

the noise terms (as a function of 2W ) were estimated at a 

           (a)    (b)  
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noise level of 8%, by subtracting the noise free cost functions 

from the noise corrupted versions ( JJN � 
~

) and averaging 

over 36 Monte-Carlo simulation runs. These estimates are 

plotted in Fig. 8 (a) and (b) for the sinusoidal and broadband 

signals, respectively. 

7. DISCUSSION AND CONCLUSIONS 

Overall the results are in excellent agreement with the 

deductions of the mathematical analysis. The estimate of 

MSE noise term (NMSE), which is identical for both signal 

types, is inversely proportional to 2Ŵ  with a constant of 

proportionality, 005.0|nk . For the sinusoidal data sets the 

NMSE noise term (NNMSE) is approximately linear with a 

slope 45.0|pk , where as in the case of the broadband signal 

NNMSE is almost constant in the vicinity of 2W . In addition, 

the Monte-Carlo simulation results in Tables 1 and 2 confirm 

the predicted bias effects arising from the different noise 

profiles, namely a positive bias with MSE

~
J for both signal 

types, a negative bias with NMSE

~
J  for the sinusoidal signal 

and the absence of a bias in the case of the broadband signal.   

The Monte-Carlo results also highlight the instability of the 

MSE CR algorithm. The nature of this instability (and also 

the bias on estimates) can easily be understood by plotting J, 

N and J+N on the same axis for each of the algorithm- 

problem combinations as illustrated in Fig. 9.  
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Fig. 9. Plots of J, N and J+N, at a noise level of 8% for: (a) 

MSE (sinusoidal data); (b) NMSE (sinusoidal data); (c) MSE 

(broadband data); and (d) NMSE (broadband data) 

From Fig 9(a) and 9(c) it can be seen that the effect of the 

2ˆ1 W  noise term is to introduce a positive bias in the estimate 

of 2W . When this bias exceeds the basin of attraction of the 

noise free minimum the local minimum disappears leaving 

only the global minimum at infinity. In contrast the NMSE 

cost function is convex and therefore stable at all noise 

levels. However, in this instance the noise term has a positive 

slope for narrowband signals. This has the effect of shifting 

the minimum point to the left, hence the negatively biased 

time constant estimates. While, the NMSE CR algorithm is 

essentially unbiased for broadband temperature fluctuations, 

in practise the user will not have control over the frequency 

spectrum of the signals being measured. Consequently, in 

general, NMSE CR will produce negatively biased estimates. 

Reducing estimation bias in CR blind characterisation 

algorithms, or eliminating it completely, through appropriate 

formulation of the cross-relation cost function, is the subject 

of ongoing research. 
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