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Abstract: the paper deals with the problem of finding models and making predictions within
a large set of time series or random processes. Nothing is assumed about their mutual influence
and dependence. The problem can not be tackled efficiently, starting from a classical system
identification approach. Indeed, the general optimal solution would provide a large number of
models, since it would consider every possible interdependence. Then a suboptimal approach
will be developed. The proposed technique will present interesting modeling properties which
can interpreted in terms of graph theory. The application of this procedure will also be exploited
as a tool to provide a clusterization of time series. Finally, we will show that it turns out to be
a dynamical generalization of other techniques described in literature.

1. INTRODUCTION

Deriving information from data is a crucial problem in
science. During the years a variety of contributions has
been developed with different objectives in many fields,
such as engineering, physics, biology and economy (see
e.g. Eisen et al. [1998] and Tumminello et al. [2007]).
The modeling approach can be seen as the attempt to
derive a mathematical relation describing the dynamics of
measured signals. Many techniques have been developed
in scientific literature, especially in the econometrics and
engineering fields. The Auto-Regressive Moving-Average
(ARMAX) and Box-Jenkins models are among the most
common approaches in the linear framework (see Kailath
et al. [2000] and Alexander [2001]). The problem of the
clusterization, instead, deals with the search of similarities
and relations inside the original values, trying to catch
the internal connections which divide the data into homo-
geneus subsets. The artificial neural network approach is
based on the definition of a learning algorithm capable of
detecting analogies and differences in the processed data
set (see Rojas [1996] for a general overview). Data mining
relies on methodologies to sort large amounts of data
where the information is assumed implicit and previously
unknown. Though these tools were developed in different
fields and with different objectives, it is remarkable how
“close” to each other they often result. In this paper we
propose a modeling technique based on frequency analysis,
which also provides a clusterization of the data set. In-
troducing the hypothesis of linear dynamical connections
among the original values, a simplified model is first de-
rived. Then, the result is interpreted in terms of graph
theory and some clusterization properties are presented.
The proposed approach is compared to some results in
literature. It is remarkable that it turns out to be the

dynamical extension of a well-known technique succesfully
employed in the economic field.

Notation

• Z(·) denotes the Zeta-transform of a signal
• E[·] denotes the mean operator
• RXY (τ) := E[X(t)Y (t + τ)] is the cross-correlation

function which does not depend upon t if the pro-
cesses X and Y are stationary.

• RX(τ) := RXX(τ) is the autocorrelation
• ΦXY (z) := Z(RXY (τ)) is the cross-power spectral

density
• ΦX(z) := ΦXX(z) is the power spectral density
• With abuse of notation ΦX(ω) = ΦX(eiω)
• Causal truncation {·}C

• �·� and �·� denote the ceiling and the floor function
respectively

2. PROBLEM FORMULATION

Let us consider a set of N scalar time series {Si}i=1,...,N .
Assume that it is possible to remove from them any
deterministic component in order to obtain N stochastic
processes {Xi}i=1,...,N which are wide sense stationary and
with zero mean (see Shiryaev [1995]). We intend to derive a
mathematical model describing, in a quantitative way, the
possible connections and the mutual influences among the
time series. We decide to depict each stochastic process Xi

as the superposition of linear dynamical transformations
of the other processes’ outputs:

Xj(t) = ej(t) +
N∑

j=1,j �=i

Wji(z)Xi(t) (1)

where Wji(z) is a suitable transfer function and ej is
the model error. In this framework, it can be considered
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interesting to find the set of {Wji(z)}i,j=1...N,i �=j which
allows us to best describe the time series according to the
least squares criterion

min
∑

j

E
[
(Qj(z)ej)2

]
(2)

where Qj(z) are dynamical weight functions. The descrip-
tion provided by (1) according to (2) could be exploited in
order to make predictions or detect dynamical relations
between random processes. The problem with such an
approach is due to the complexity of the final model since
it may be given by an apriori large number of transfer
functions, namely N(N − 1). Hence, it is quite natural
to develop a suboptimal strategy to reduce its complex-
ity. A very intuitive approach is to consider only those
transfer functions providing a most significative reduction
of the cost. In this paper, for the sake of simplicity, we
limit ourselves to the case of just a transfer function per
process. Even though this is the simplest case, it still may
provide useful insights about the connection topology and
interesting theoretical properties.

3. NON CAUSAL SCENARIO

Given two stochastic processes Xi, Xj and a transfer
function W (z), let us consider the quadratic cost

E
[
(εQ)2

]
(3)

where
εQ := Q(z)(Xj − W (z)Xi) (4)

being Q(z) an arbitrary stable and causally invertible
function weighting the error Xj − W (z)Xi. Then, the
problem of evaluating the transfer function Ŵ (z) such
that the quadratic cost (3) is minimized is well-known in
scientific literature and its solution is referred to as the
Wiener filter (see Kailath et al. [2000]).
Proposition 1. (Wiener filter). The Wiener filter modeling
Xj by Xi is the linear stable filter Ŵ ji minimizing the
filtered quantity (3). Its expression is given by

Ŵji(z) =
ΦXiXj

(z)
ΦXi

(z)
(5)

and it does not depend upon Q(z). Moreover, the mini-
mized cost is equal to
min E

[
(Q(z)ε)2

]
=

=
1
2π

∫ π

−π

|Q(ω)|2 (
ΦXj

(ω) − |ΦXjXi
(ω)|2Φ−1

Xi
(ω)

)
dω

Observe that the stable implementation of the Wiener
filter Ŵji(z) is non-causal, in general. That is, its output
Ŵji(z)Xi depends on both past and future values of the
input process Xi. The Wiener filter, in this formulation,
is interesting from an information and modeling point of
view, but, of course, we would need a causal filter in order
to make predictions.
Since the weighting function Q(z) does not affect the
Wiener filter, but only the energy of the filtered error we
choose Q(z) equal to Fj(z), the inverse of the spectral
factor of ΦXj

(z), that is

ΦXj
(z) = F−1

j (z)(F−1
j (z))∗ (6)

with Fj(z) stable and causally invertible (see Sayed and
Kailath [2001]). In such a case the minimum cost assumes
the value

minE[ε2
Fj

] =
∫ π

−π

(
1 − |ΦXjXi

(ω)|2
ΦXi

(ω)ΦXj
(ω)

)
dω. (7)

This peculiar choice of Q(z) makes the cost depend explic-
itly on the coherence function of the two processes

CXiXj
(ω) :=

|ΦXjXi
(ω)|2

ΦXi
(ω)ΦXj

(ω)
(8)

which turns to be non negative and symmetric with respect
to ω. It is also well-known that the Cross-Spectral Density
satisfies the Schwartz Inequality. Hence, the coherence
function is limited between 0 and 1. The choice Q(z) =
Fj(z) can be now understood as motivated by the necessity
to achieve an adimensional cost function not depending on
the power of the signals as in (7).
Let us consider, now, a set of discrete zero mean and wide
sense stationary stochastic processes Θ. The cost obtained
by the minimization of the error εFj

using the Wiener filter
as before allows us to define on Θ the binary function

d(Xi,Xj) :=
[

1
2π

∫ π

−π

(
1 − CXiXj

(ω)
)
dω

]1/2

(9)

∀Xi,Xj ∈ Θ

Proposition 2. The function d(·, ·), as defined in (9) is a
metric on Θ, that is

• d(X1,X2) ≥ 0
• d(X1,X2) = 0 ⇔ X1 = X2

• d(X1,X2) = d(X2,X1)
• d(X1,X3) ≤ d(X1,X2) + d(X2,X3)

for all X1,X2,X3 ∈ Θ

Proof. The only non trivial property to prove is the triangle
inequality (or sublinear additivity). Let Ŵji(z) be the
Wiener filter between Xi,Xj ∈ Θ computed according to
(5) and eji the relative error. The following relations hold:

X3 = Ŵ31(z)X1 + e31

X3 = Ŵ32(z)X2 + e32

X2 = Ŵ21(z)X1 + e21

Since Ŵ31(z) is the Wiener filter between the two processes
X1 and X3, it performs better at any frequency than any
other linear filter, such as Ŵ32(z)Ŵ21(z). So we have

Φe31(ω) ≤ Φe32(ω) + |Ŵ32(ω)|2Φe21(ω)+

+ Φe32e21(ω)Ŵ ∗
32(ω) + Ŵ32(ω)Φe21e32(ω) =

≤ Φe32(ω) + |Ŵ32(ω)|2Φe21(ω)+

+ 2|Φe32e21(ω)||Ŵ32(ω)| ≤
≤ (

√
Φe32(ω) + |Ŵ32(ω)|

√
Φe21(ω))2 ∀ ω ∈ R

For the sake of simplicity we neglect to explicitly write the
argument ω in the following passages. Normalizing with
respect to ΦX3 , we find

Φe31

ΦX3

≤ 1
ΦX3

(
√

Φe32 + |Ŵ32|
√

Φe21)
2

and considering the 2-norm properties
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Fig. 1. The figures illustrates in a nine-node network all
the possible connections between two nodes (dashed
lines). The solid lines depict a forest as it were the
result after the application of the algoritm A.

(∫ π

−π

Φe31

ΦX3

dω

) 1
2

≤

≤
(∫ π

−π

Φe32

ΦX3

dω

) 1
2

+
(∫ π

−π

|Ŵ32|2 Φe21

ΦX3

dω

) 1
2

=

=
(∫ π

−π

Φe32

ΦX3

dω

) 1
2

+
(∫ π

−π

|ΦX3X2 |2
ΦX3ΦX2

Φe21

ΦX2

dω

) 1
2

where we have substituted the expression of Ŵ32. Finally,
considering that

0 ≤ |ΦX3X2 |2
ΦX3ΦX2

≤ 1,

we find
d(X1,X3) ≤ d(X1,X2) + d(X2,X3).

�
According to what we have described in Section 2, we
would like to model every single process Xj as the output
of a SISO linear system whose input is the process Xi

providing the largest reduction on the cost function (2).
Considering the previous results, the solution to this
problem can be provided by the following algorithm
Algorithm A:

1. initialize the set A = ∅
2. for every process Xj (j = 1, ..., N)

2a. for every i = 1, ..., N, i �= j
compute the distance dij := d(Xi,Xj);

2b. define the set M(j) := {k|dkj = mini dij}
2c. choose, if possible, m(j) ∈ M(j) such that

(m(j), j) /∈ A
2d. choose the model

Xj = Ŵjm(j)(z)Xm(j) + ejm(j)

2e. add the couple (j,m(j)) to A.

It is possible to depict the previous procedure in terms
of a graph theory intepretation (see Diestel [2006]) as
illustrated in Figure 1. Represent every process Xj as a
node and for each couple (j,m(j)) connect the j-th and
m(j)-th nodes with an arc whose weight is dm(j)j .

Proposition 3. The graph resulting from the algorithm A
has the following properties:

• on every node there is at least an incident arc
• if there is a cycle, then all the arcs of the cycle have

the same weight
• there are at least �N/2� and at most N arcs.

Proof. The proof of the first property is straightforward
because for every node the algorithm considers an inci-
dent arc. Let us suppose there is a cycle and be k the
number of nodes n1, ..., nk and arcs a1, ..., ak of such a
cycle. Every arc a1, ..., ak has been chosen at the step 2e
when the algorithm was taking into account one of the
nodes n1, ..., nk. Conversely, every node n1, ..., nk is also
responsible for one of the arcs a1, ..., ak. Indeed, if a node
ni causes the selection of an arc â /∈ {a1, ..., ak}, then we
are left with the k arcs which cannot all be chosen by k−1
nodes.
Let us consider the node n1. Without loss of generality
assume that it is responsible for the selection of the arc a1

with weight d1 and linking it to the node n2. According
to the previous results, n2 can not be responsible for the
choice of a1. Let a2 be the arc selected because of n2

with weight d2 and connecting it to n3. Observe that
necessarily d2 ≤ d1. We may repeat this process till the
node nk−1. Hence, we obtain that every node ni is con-
nected to ni+1 by the arc ai whose cost is di ≤ di−1, for
i = 2, ..., k− 1. Finally consider nk. It must be responsible
for ak which has to connect it to n1 with cost dk ≤ dk−1.
Since dk is incident to n1 it holds that d1 ≤ dk Therefore
d1 ≤ dk ≤ dk−1... ≤ d2 ≤ d1 and we have the assertion of
the second property.
About the third property, the upper bound N follows from
the consideration that every node causes the choice of
at most a new arc. In step 2c of the algorithm, it may
happen at most �N/2� times that we are forces to pick
up an arc which is already in A. So we have at least
N − �N/2� = �N/2� arcs �
The presence of cycles is a pathological situation as
stressed in the following remark.
Remark 4. A necessary condition of existence for a cycle
is the presence of more than two nodes with common
multiple minimum cost arcs. Therefore, a mild sufficient
condition in order to avoid cycles in the graph is to assume
that every node has a unique minimum cost arc. If the
costs of the arcs are obtained by estimation from real data
the probability to obtain a cycle is zero almost everywhere
(see Shiryaev [1995]). Consequently, in such a case the
expected topology of the graph is a forest (a graph with
no cycles).
Remark 5. In general, nothing can be said about the
connectivity. Therefore, the modeling procedure depicted
by the algorithm A provides a clusterization of the original
processes Xi which, for every node, minimizes the cost (3)
according to the criterion of linear dynamic dependency.
It is possible to modify the procedure in order to suitably
satisfy other constraints about the graph topology. For
instance, if we deal with a connectivity condition the
algorithm can be easily replaced by a minimum spanning
tree search.
Remark 6. The modelization we have derived makes use
of non causal Wiener filters, thus it can be useful to detect
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linear dependencies of any sort between the elements of
the set Θ.

Unfortunately, the adoption of non causal filters can not
be employed to make predictions. To this aim, the causal
approach is faced in the next section.

4. CAUSAL FORMULATION

Given two stochastic processes Xi, Xj and a transfer
function W (z), let us consider again the quadratic cost
(3). Analogously to the non causal case it is possible to
derive a causal linear filter minimizing (3). The causal
filter providing such a minimization is referred to as causal
Wiener filter (see Kailath et al. [2000]).
Proposition 7. (Causal Wiener filter). The Causal Wiener
filter modeling Xj by Xi is the causal stable linear filter
ŴC

ji (z) minimizing the filtered quantity (3). Its expression
is given by

ŴC
ij (z) = F−1

j (z)
{

Fj(z)
ΦXiXj

(z)
ΦXi

(z)

}
C

(10)

and it does not depend upon Q(z).

Since the weighting function Q(z) does not affect the
Wiener filter, but only the energy of the filtered error,
we can choose again Q(z) equal to Fj(z), the inverse of
the spectral factor of ΦXj

(z). This choice simply operates
a normalization of the error spectrum at every frequency.
Thus, similarly to what we have done in the non causal
framework, we can define the function

dC(Xi,Xj) :=
{

E
[
(F (z)(Xj − ŴC

ij (z)Xi))2
]} 1

2
(11)

to represent the modeling error on the process Xi due
to the application of the causal Wiener filter to Xj .
To highlight the properties of the present approach, let
us derive first the main defference between dC and the
function d defined by (9). It is straightforward to observe
that dC is not symmetric. Therefore, dC can not be a
metric and that provides us with a less general tool to
handle the connections among the processes. However,
(11) still defines a quantitative description of the modeling
errors in terms of their minimum powers in the causal
framework. Hence, the original problem can be solved by
minimizing the cost (2) applying the following algorithm
Algorithm B:

1. define the set A := ∅
2. for every process Xj (j = 1, ..., N)

2a. for every i = 1, ..., N, i �= j
compute dij := d(Xi,Xj);

2b. define the set M(j) := {k|dkj = mini dij}
2c. choose any m(j) ∈ M(j)
2d. choose the model

Xj = Ŵjm(j)(z)Xm(j) + ejm(j)

2e. add the ordered couple (j,m(j)) to A

As in the non causal case, this algorithm admits a usefull
and more evocative graphical interpretation as depicted in
Figure 2. For every process Xi define a node ni. Then, for
each couple (j,m(j)) ∈ A take the directed arc linking the
node nm(j) to nj . As expected form the loss of symmetry,
the causal model is depicted by a digraph. Therefore, the
causality constraint, introduced to provide a prediction

Fig. 2. The figures illustrates in a nine-node network all
the possible connections between two nodes (dashed
lines). The solid lines depict the clusters as they were
the result after the application of the algoritm B. Each
cluster has exactly one cycle with possible detours.

model, led us to represent the processes through a more
complex network. However, the digraph obtained by the
causal approach has still some important properties that
we want to highlight.
Proposition 8. The graph resulting from the algorithm B
has the following properties:

• on every node there is exactly an entering arc
• the graph has always at least a cycle
• every cycle is a directed cycle
• every connected component of the graph has exactly

one cycle

Proof. The first property is a direct consequence of the
setting up procedure which takes exactly an entering arc
for each node.
For the second, observe that according the rule 2c it
is impossible to choose the same directed arc evaluating
different nodes. Thus, every node is responsible for the
choice of a different arc, which implies that there is at least
a cycle, because the graph has always exactly N nodes and
N arcs.
The third property can be proved by contraddiction.
Consider a cycle and suppose that it is not a directed
loop. Then, there must be at least one node with two arcs
directed to it, but according to the rule 2d each node has
exactly one arc directed to it, which is a contraddiction.
Finally, we will prove the forth property in two steps. First,
consider a connected component of the graph and be k the
number of its nodes. Because every node is responsible for
the choice of just one different directed arc, there are also
k arcs. This implies the presence of a cycle, that turns out
to be a directed loop according to the third property. Now,
let us proceed by contraddiction. Suppose that there exist
at least two different cycles C1, C2 in the same connected
component. Because of the connectivity property, the two
loops must share at least a common node. Indeed, if they
do not, there must be a path linking them. Then, consider
the two terminal points of this path. Clearly, each of them
belongs to a cycle, so there is an arc of the cycle entering it.
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Thus, their connections to the path must start from them,
which implies that there must be a node in the linking path
with two entering arcs. That can not be possible, then the
two loops must have a common node. Therefore, consider
C1 and find its node ni which does not belong to C2, but
that is connected with a directed arc strarting from it to a
node nj , shared by the two cycles. Because nj belongs also
to C2, there are two arcs of this cycle which are incident to
nj . According to the third property, one of them enters the
node, but nj has already an arc directed to it and starting
from ni and so it turns out to be a contraddiction. Hence,
every connected component of the graph has exactly one
cycle. �
After the application of the algorithm, we obtain N causal
models which can be exploited on order to make predic-
tions. Unfortunately, the fact that we have to deal with a
digraph prevents us to use some common tools to analyze
or decompose the graph extracting topological informa-
tion. However, we must consider that the algorithm itself
ends providing a clusterization of the set Θ. In fact, the
nodes are grouped together according to the prediction
performances they can reciprocally provide.

5. RESTRICTION TO GAIN MODELS

In the previous two sections we have considered modeling
and prediction problems for a set of random processes Θ.
The best models and predictors (in the mean square sense)
have been found in the space of linear transfer functions.
We have observed that, in the non causal case, an apt
choice of the error function allows one to define a metric on
Θ. Conversely, in order to have useful predictors we need to
limit ourselves to the space of causal systems. In this way,
though, the cost function loses some interesting properties
which would provide an easier topological analysis. In
particular, we have seen that in the causal case the graph
is more difficult to handle since it is oriented.
In Mantegna and Stanley [1995] and Mantegna and Stan-
ley [1996] a technique to derive topological information
from a set of random processes is described. N realizations
of N random processes Xi are considered. First, an esti-
mation of the correlation index ρij related to every couple
Xi, Xj is computed, along with the associated distances

dij :=
√

2(1 − ρij) . (12)

Then, a graph is defined where every node represents a
random process and the arc linking two nodes is weigthed
according to (12). Eventually, the minimum spanning tree
is extracted by the graph. This procedure has been success-
fully exploited to provide a quantitative and topological
analysis of time series, expecially in the economic field (see
Mantegna [1999], Tumminello et al. [2007] and Naylora
et al. [2007]). It is worth considering that such a technique
can be seen as a special case of the algorithms described in
this paper. Indeed, it can be obtained by considering the
set of all static gains as the model space along with the
connectivity constraint. Consider the problem of modeling
a process Xj by scaling another process Xi with a suitable
constant αji. Choosing

αji =

√
E[X2

j ]
E[X2

i ]
, (13)

we find that

E
[
(Xj − αjiXi)2

]
=

= E[X2
j ] · E

⎡
⎢⎣

⎛
⎝ Xj√

E[X2
j ]

− Xi√
E[X2

i ]

⎞
⎠

2
⎤
⎥⎦

= 2 E[X2
j ](1 − ρij) .

Hence, the distance (12) can be interpreted as the model-
ing error, properly normalized, when the simple gain (13)
is used. It is important to remark that the choice of (13) is
not optimal even in the space of models given by constant
gains. Indeed, it is immediate to prove that the best choice
of αji, in the sense of the least square error, is given by

α̂ji =
RXjXi

RXi

(14)

and the relative quadratic error amounts to

E[e2
ji] = RXj

− R2
XjXi

RXi

(15)

(see Kailath et al. [2000]). The choice of (14) is equivalent
to the approch we followed in previous sections, but just
narrowing the model space to the set of constant gains
only. Indeed, let us proceed as in Section 3 in order to
define an adimensional cost function not depending on the
signal powers. To this aim, we consider again the square
root of the normalized mean square error, obtaining

d(Xi,Xj) :=

√
E[e2

ji]
RXj

=

=

√
1 −

R2
XiXj

RXi
RXj

=
√

1 − ρ2
XiXj

. (16)

It is worth observing that (16) satisfies the same properties
of (9), so it is a distance exactly as (12).
Proposition 9. The function (12) represents a distance on
Θ.

Proof. The only non trivial property to show is the triangle
inequality. Consider the following relations involving the
optimal gains α̂31, α̂32, α̂21

X3 = α̂31X1 + e31

X3 = α̂32X2 + e32

X2 = α̂21X1 + e21 .

Since α̂31 is the best constant model, we have that it
must perform better than any other constant model (in
particular α̂32α̂21)

RX3 −
R2

X3X1

RX1

≤ E[(e32 + α̂32e21)2] =

= E[e2
32] + α̂2

32E[e21)2] + 2α̂32E[e32e21] ≤

≤
(√

E[e2
32] + |α̂32|

√
E[e21)2]

)2

.

Normalize with respect to RX3 and consider the square
root
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√
1 − ρ2

X1X3
≤

√
1

RX3

(√
E[e2

32] + |α̂32|
√

E[e2
21]

)2

≤

≤
√

E[e2
32]

RX3

+ |α̂32|
√

E[e2
21]

RX3

=

=

√
E[e2

32]
RX3

+ ρX2X3

√
E[e2

21]
RX2

Since |ρX2X3 | ≤ 1, we have the assertion. �
In Mantegna and Stanley [1995], the minimum spanning
tree is extracted from the graph, according to the weights
(12). This is equivalent to define a hierarchical structure
of the time series relying on the adoption of linear gain
models (13) between the processes. We stress that (13)
represents a normalization of the random process energies,
before applying the clusterization algorithm. On the other
hand the choice of (14) allows one to set up the best gain
model in the sense of least squares. From a system theory
point of view, it can be said that both the approaches are
static. Indeed, the models do not have a state, thus they
do not have any dynamics. They simply capture a direct
relation between two process samples at the same time
instant. The use of Wiener filters we propose allows one
to take into account more complex behaviors such as the
presence of delays or even auto-regressive moving average
dynamics. Hence, the more general procedure developed
in this paper is expected to capture a larger amount
of information. In particular, due to the filtering action,
it is likely that the high frequency behaviour could be
more accurately described (for an alternative approach see
Bonanno et al. [2001]).

6. CONCLUSIONS

In this paper, we started from the problem of describing
dynamical relations or making predictions within a large
set of time series or random processes. No assumptions has
been made about the relative influences and dependencies.
The general optimal solution would provide a too large
number of models since it would consider every possible
dependence. Then a suboptimal approach has been taken
into account. Every process has been described as the
output of a SISO linear system driven by the process
providing the “best” model. The procedure stems from
the classic modeling/identification point of view, but an
interpretation in terms of graph theory has been provided.
Such an interpretation has allowed one to compare the
technique with other ones in literature. It particular it has
been shown that it generalizes some analysis techniques
which have been successfully employed especially in the
economic and financial fields. The main novel contribu-
tion of paper is in the fact that the proposed technique
attempts to capture a topological structure describing not
only static, but also dynamic relations between the time
series. Only a theoretical framework has been taken into
account leaving the application to real data as an object
of future research.
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