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Abstract: In the present work a systematic methodology for computing output stabilizing
feedback control laws for nonlinear systems subject to saturating inputs is presented. In
particular, the class of L’ure type nonlinear systems is considered. Based on absolute stability
tools and a modified sector condition to take into account input saturation effects, an LMI
framework is proposed to design the controller. Both regional (local) and global stabilization
results are presented. The controller structure is composed by a linear part, an anti-windup loop
and a term associated to the output of the dynamic nonlinearity. Convex optimization problems
are proposed in order to compute the controller matrices aiming at the maximization of the
basin of attraction, or the performance enhancement with a guaranteed region of stability. A
numerical example illustrates the potentialities of the methodology.
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1. INTRODUCTION

The design of most practical control systems requires
to consider the presence of the nonlinearities that are
inherent to the plant dynamics and/or to the physical
actuator or sensor limitations, both in the analysis and
in the synthesis phases. To cope with the presence of
such nonlinearities, among the various existing nonlinear
control systems approaches, absolute stability theory has
been considered in the literature for analysis and synthesis
of the so-called Lur’e systems (Khalil [2002], Liberzon
[2006]). More recently, the research on absolute stability
has been intensified, mainly due to the possibility of using
the Linear Matrix Inequality (LMI) framework and the
existing related efficient numerical tools for computations
(Boyd et al. [1994]).

Considering linear systems with saturating inputs, a large
amount of works can be found in the literature. We can
cite, for instance the following ones (see also references
therein): Pittet et al. [1997], Hindi and Boyd [1998] and
Hu et al. [2002], considering state feedback control laws;
Kapila and Haddad [2000], Kiyama and Iwasaki [2000] and
Gomes da Silva Jr. et al. [2005] regarding dynamic output
feedback controller synthesis; Mulder et al. [2001], Grimm
et al. [2003] and Gomes da Silva Jr. and Tarbouriech [2005]
addressing the anti-windup synthesis. On the other hand,
just few works deal with the problem of controlling non-
linear systems with saturating inputs in a systematic way.
⋆ The first and third authors are partially supported by
CNPq/Brazil.

In the same line of the works cited above, LMI conditions
have also been proposed to synthesize stabilizing control
laws for nonlinear systems subject to actuator amplitude
limitations and for which the dynamics can be decomposed
into the feedback interconnection of a linear system with
a sector bounded nonlinearity: Castelan et al. [2005, 2006,
2008 (to appear] for precisely-known systems and Caste-
lan et al. [2007] for some uncertain nonlinear systems. It
should however be pointed out that, as in Arcak et al.
[2003], Arcak and Kokotovic [2001], the considered control
law consists of the feedback of the systems states and of
the non-linearity associated to the plant dynamics.

In the above context of nonlinear systems subject to
control saturations, the present work extends the results
in Castelan et al. [2005] by considering the synthesis
of a dynamic output feedback controller. The controller
structure is composed by a linear compensator presenting
the following inputs: the plant output, an anti-windup
term (related to the input saturation) and the value
of the plant sector bounded nonlinearity. Based on this
structure, on the use of a quadratic Lyapunov function,
and on sector conditions, LMI sufficient conditions are
stated to ensure the local stability of the closed-loop
system in a specific region or, provided some additional
hypothesis are satisfied by the open-loop system, to ensure
global asymptotic stability. From these conditions convex
optimization problems are proposed in order to compute
the controller matrices aiming at the maximization of
the estimates of the basin of attraction of the closed-
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loop system, or the performance enhancement with a
guaranteed region of stability.

It should be pointed out that similar control problems
have been studied in Kiyama et al. [2005], where the
authors separately consider a particular sector bounded
nonlinearity (with dead-zone behavior) associated the dy-
namics of the plant or a static saturation nonlinearity,
using in both cases a classical sector condition, which
leads to BMI stabilization conditions. Differently from that
work, our approach consider simultaneously a dynamic
nonlinearity and a static input saturation. Furthermore,
the stated conditions will be stated directly in LMI form.
Thus, the proposed results can be thought as an additional
contribution for the treatment of more realistic nonlinear
control systems, also in a more efficient computational way.

The paper is organized as follows. Section 2 presents the
problem statement. Some preliminary results are presented
in section 3. Section 4 is concerned with the proposition
of the local and global stabilization conditions, and also
presents some convex optimization problems for synthesis
of the dynamic controller. Numerical examples are pre-
sented and commented in section 5. The paper finishes
with some concluding remarks.

Notations. For two symmetric matrices, A and B, A > B means

that A − B is positive definite. A′ denotes the transpose of A and

He{A} = A+A′. A(i) denotes the ith row of matrix A. ⋆ stands for

symmetric blocks; • stands for an element that has no influence on

the development. I denotes an identity matrix of appropriate order.

diag{A,B} is the block-diagonal matrix

[

A 0
0 B

]

.

2. PROBLEM STATEMENT

Consider a nonlinear continuous-time system represented
by the Lur’e type system:

ẋ(t) = Ax(t) +Bu(t) +Gφ(z(t))
y(t) = Cx(t)
z(t) = Lx(t)

(1)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state and the control
input, respectively, y(t) ∈ ℜp corresponds to the measured
output and z(t) ∈ ℜq is the input to the nonlinear vector
valued function φ(·) : ℜq → ℜq. A, B, C, G and L are real
constant matrices of appropriate dimensions.

Regarding system (1) the following assumptions are con-
sidered:

A1. The nonlinearity φ(z) is continuous and verifies a cone
bounded sector condition, i.e., φ(0) = 0 and there exists a
symmetric positive definite matrix Ω ∈ ℜq×q such that

φ(z)′∆(φ(z) − Ωz) ≤ 0, ∀z ∈ S1 ⊆ ℜq (2)

where ∆ ∈ ℜq×q is any diagonal matrix defined as follows:

∆ =

{

diag(δl), δl > 0, if φ(·) is decentralized;
δIq , δ > 0, otherwise.

The matrix Ω is supposed to be known. On the other
hand, as it will be seen in the sequel, the matrix ∆ will
represent a degree of freedom in the controller design
method (Castelan et al. [2007]). If S1 = ℜq, then the
sector condition (2) is globally verified, otherwise, it is only
locally verified, as it will be characterized in the sequel.

A2. The system output y(t) and the output of nonlinearity
φ(z(t)) are available for measurement.

A3. The control inputs are supposed to be bounded as
follows:

−u0(i) ≤ u(i) ≤ u0(i), i = 1, . . . ,m (3)

In consequence of the control bounds, the actual control
signal to be injected in the system is a saturated one, i.e,
considering the signal sent to the actuator given by v(t),
we have

u(t) = sat(v(t)) (4)

where each component of sat(v) is defined, ∀i = 1, ...,m,
by: sat(v)(i) = sat(v(i)) = sign(v(i))min(u0(i), |v(i)|).

Consider now a nonlinear dynamic output feedback con-
troller with the following structure:

ẋc(t) = Acxc(t) +Bcuc(t)+
Ec(sat(v(t)) − v(t)) +Gcφ(z(t))

yc(t) = Ccxc(t) +Dcuc(t) + Fcφ(z(t))
(5)

where xc(t) ∈ ℜn is the controller state, uc(t) is the
controller input and yc(t) is the controller output, matrices
Ac, Bc, Cc, Dc, Ec, Fc and Gc are of appropriate
dimensions. The term Ec(sat(v(t))−v(t)) corresponds to a
static anti-windup loop to mitigate the undesirable effects
of windup caused by input saturation. The interconnection
between the plant and the controller is given by: v(t) =
yc(t), uc(t) = y(t).

In this paper, we are interested in the synthesis of dynamic
output feedback controllers (5) (i.e. the computation of
the controller matrices Ac, Bc, Cc, Dc, Ec, Gc and Fc),
taking into account the control saturation effects and the
nonlinear closed-loop behavior, in order to ensure regional
(local) or, when possible, global asymptotic stability of
the origin of the closed-loop system. In the regional case,
we are interested in ensuring the asymptotic stability for
a certain set of admissible initial conditions. An implicit
problem in this case consists in computing the controller
in order to maximize the domain of attraction of the
closed-loop system. Another interesting problem is the
performance improvement with a guaranteed region of
stability for the closed-loop system. These problems will
be addressed in the sequel.

3. PRELIMINARIES

Define the following matrices:

A =

[

A+BDcC BCc

BcC Ac

]

,B =

[

B
0

]

,R =

[

0
I

]

,G =

[

G
0

]

K = [DcC Cc ] and L = [L 0 ] .

Hence, considering an augmented state vector ξ(t) =
[

x(t)′ xc(t)
′
]′

, the closed-loop system composed by the
connection of the system (1) and the controller (5) reads:

ξ̇(t) = Aξ(t) + (BFc + G + RGc)φ(z(t))−
(B + REc)ψ(yc(t))

(6)

where
yc(t) = Kξ(t) + Fcφ(z(t))

ψ(yc(t)) = yc(t) − sat(yc(t))
(7)
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with (ψ(yc))(i)
△
= yc(i) − sat(yc)(i), i = 1, . . . ,m. Note

that, ψ(yc) corresponds to a decentralized deadzone non-
linearity.

Considering a matrix H = [Hξ Hφ ] ∈ ℜm×(2n+q) and
defining the polyhedral set

S2
△
= {

[

ξ
φ

]

∈ ℜ2n+q; | [(K −Hξ) (Fc −Hφ)](i)

[

ξ
φ

]

|

≤ u0(i), i = 1, ...,m}

the following Lemma, concerning the nonlinearity ψ(yc)
can be stated (Gomes da Silva Jr. and Tarbouriech [2005]).

Lemma 1. If

[

ξ
φ

]

∈ S2 then the relation

ψ(yc)
′T (ψ(yc) −Hξξ −Hφφ(z)) ≤ 0 (8)

is verified for any T ∈ ℜm×m diagonal and positive
definite.

4. STABILIZATION

4.1 Regional (Local) Stabilization

In this case we consider the set S1 defined as follows:

S1
△
= {z ∈ ℜq ; |L(i)z| ≤ ρ(i), ρ(i) > 0, i = 1, . . . , q}
= {ξ ∈ ℜ2n ; |L(i)ξ| ≤ ρ(i), ρ(i) > 0, i = 1, . . . , q}.

Theorem 1. If there exist symmetric positive definite ma-
trices X, Y ∈ ℜn×n, positive definite diagonal matrices
S ∈ ℜm×m, S∆ ∈ ℜq×q, matrices Â ∈ ℜn×n, B̂ ∈ ℜn×p,
Ĉ, Ĥξ1, Ĥξ2 ∈ ℜm×n, Ĥφ ∈ ℜm×q, D̂ ∈ ℜm×p, F̂ ∈ ℜm×q,

Ĝ ∈ ℜn×q, and a scalar ν > 0 such that the following linear
matrix inequalities are verified









J1 A+ Â′ +BD̂C J2 −BS + Ĥ ′

ξ1

⋆ He{Y A+ B̂C} J3 Ê + Ĥ ′

ξ2

⋆ ⋆ −2S∆ Ĥ ′

φ

⋆ ⋆ ⋆ −2S









< 0 (9)









X ⋆ ⋆ ⋆
I Y ⋆ ⋆

ΩLX ΩL 2S∆ ⋆

Ĉ(i) − Ĥξ1(i) D̂(i)C − Ĥξ2(i) F̂(i) − Ĥφ(i) ν u
2
0(i)









≥ 0

i = 1, ...,m (10)




X ⋆ ⋆
I Y ⋆

L(i)X L(i) ν ρ
2
(i)



 ≥ 0 i = 1, ..., q (11)

where J1 = He{AX+BĈ}, J2 = GS∆ +BF̂ +XL′Ω and

J3 = Ĝ+ L′Ω, then the dynamic controller (5) with

Ac = V −1[Â− (Y AX + Y BĈ + V BcCX)](U ′)−1

Bc = V −1(B̂ − Y BD̂), Cc = (Ĉ − D̂CX)(U ′)−1

Dc = D̂, Ec = −V −1(ÊS−1 + Y B)

Gc = −V −1(−ĜS−1
∆ + Y G+ Y BFc), Fc = F̂S−1

∆

(12)

where matrices U and V verify V U ′ = I−Y X , guarantees
that the region E(P, ν−1) = {ξ ∈ ℜ2n; ξ′Pξ ≤ ν−1} with

P =

[

Y V
V ′ •

]

is a domain of asymptotic stability for the

closed-loop system (6).

Proof: Define a candidate Lyapunov function

V (t) = ξ′(t)Pξ(t) (13)

with P =

[

Y V
V ′ •

]

and P−1 =

[

X U
U ′ •

]

. It follows that

V̇ (t) = 2ξ′(t)A′Pξ(t) − 2ψ′(yc(t))(B + REc)
′Pξ(t)+

2φ′(z(t))(BFc + G + REc)
′Pξ(t)

(14)

From Lemma 1 and A1, provided that ξ(t) ∈ S1 ∩ S2, it
follows that:

V̇ (t) ≤ V̇ (t) − 2ψ(yc(t))
′T (ψ(yc(t)) −Hξξ(t)−

Hφφ(z(t))) − 2φ(z(t))′∆(φ(z(t)) − ΩLξ(t))
(15)

Re-writing this expression in matrix form, it follows that

V̇ (ξ(t)) ≤ η(t)′Γη(t) with η(t) =
[

ξ(t)′ φ(z(t))′ ψ(yc(t))
′
]′

and

Γ =





He{A
′P} PJ4 + L

′Ω∆ −PJ5 +H ′

ξT
⋆ −2∆ H ′

φT
⋆ ⋆ −2T



 (16)

where J4 = G + RGc + BFc and J5 = B + REc.

Define now a matrix Π =

[

X I
U ′ 0

]

(Scherer et al. [1997]).

Note that, from condition (10), it follows that I − Y X is
nonsingular, which implies that is always possible to com-
pute square and nonsingular matrices V and U verifying
the equation V U ′ = I − Y X . This fact ensures that Π is
nonsingular.

Pre and post-multiplying (16) respectively by
Diag(Π′, S′

∆, S
′) and Diag(Π, S∆, S), with S∆ = ∆−1 and

S = T−1, one gets:
[

He{Π′
A
′PΠ} Π′PJ4S∆ + Π′

L
′Ω −Π′PJ5S + Π′H′

ξ

⋆ −2S∆ S∆H
′

φ

⋆ ⋆ −2S

]

. (17)

Considering the following change of variables:

Â = Y AX + Y BDcCX + V BcCX + Y BCcU
′ + V AcU

′,

B̂ = Y BDc + V Bc, Ĉ = CcU
′ +DcCX, D̂ = Dc,

Ê = −(Y BS + V EcS), F̂ = FcS∆,

Ĝ = Y GS∆ + V GcS∆ + Y BFcS∆, Ĥφ = HφS∆

Ĥξ1 = Hξ1X +Hξ2U
′, Ĥξ2 = Hξ1

it follows that

Π′PΠ =

[

X I
I Y

]

; Π′PJ5S =

[

BS

−Ê

]

;

Π′PJ4S∆ =

[

GS∆ +BF̂

Ĝ

]

; Π′H ′

ξ =

[

Ĥ ′

ξ1

Ĥ ′

ξ2

]

;

Π′PAΠ =

[

AX +BĈ A+BD̂C

Â Y A+ B̂C

]

.

(18)

Hence, since Π, S∆ and S are nonsingular, it follows that
(9) is equivalent to Γ < 0, which, from (15), implies that

V̇ (t) < 0 holds with the matrices Ac, Bc, Cc, Dc, Ec, Fc

and Gc defined as in (12).
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Consider now E(P, ν−1). Pre and post-multiplying inequal-

ities (10) respectively by





(Π−1)′ 0 0
0 ∆ 0
0 0 1



 and its transpose,

and since KΠ = [DcCX + CcU
′ DcC] = [Ĉ D̂C], it

follows that condition (10) ensures that E(P, ν−1) ⊂ S2.
By similar reasoning, (11) implies that E(P, ν−1) ⊂ S1

(Castelan et al. [2005]). Thus, if relations (9),(10),(11) are

verified, one effectively obtains V̇ (t) < 0, ∀ξ ∈ E(P, ν−1),
which concludes the proof 2

Remark 1. The result of the Theorem can be straightfor-
wardly extended to treat the local stabilization when the
nonlinearity φ(z(t)) globally satisfies the sector condition
(2), i.e., when S1 = ℜq. For this, it suffices to consider
Hφ = Fc in condition (9), to eliminate the third row and
third column matrices in (10) and to eliminate (11).

4.2 Global Stabilization

In this case we consider the set S1 = ℜq and that the
open-loop matrix A is Hurwitz.

Corollary 1. If there exist symmetric positive definite ma-
trices X, Y ∈ ℜn×n, positive definite diagonal matri-
ces S ∈ ℜm×m, S∆ ∈ ℜq×q and matrices Â ∈ ℜn×n,
B̂ ∈ ℜn×p, Ĉ, Ĥξ1, Ĥξ2 ∈ ℜm×n, Ĥφ ∈ ℜm×q, D̂ ∈ ℜm×p,

F̂ ∈ ℜm×q and Ĝ ∈ ℜn×q such that the following linear
matrix inequalities are verified






J1 A+ Â′ +BD̂C J2 −BS + Ĉ′

⋆ He{Y A+ B̂C} J3 Ê + C′D̂

⋆ ⋆ −2S∆ F̂ ′

⋆ ⋆ ⋆ −2S






< 0,

[

X I

I Y

]

> 0(19)

then the dynamic controller (5) with the matrices defined
as in (12), where matrices U and V verify V U ′ = I −Y X ,
guarantees the global asymptotic stability of the origin of
the closed-loop system (6).

Proof: Consider Hξ = K and Hφ = Fc. It follows that the
sector condition ψ(yc(t))′T (ψ(yc(t)) − Kξ(t) − Fcφ(z(t))) ≤ 0 is
verified for all ξ(t) ∈ ℜ2n and φ(z(t)) ∈ ℜq . In this case,
it is easy to see that (19) corresponds to (9) and the global
asymptotic stability of the origin follows.

4.3 Optimization Problems

Enlargement of the stability region

An implicit objective in the synthesis of the stabilizing
controller (5) can be the maximization of estimates of the
basin of attraction associated to the closed-loop system. In
other words, we want to compute (5) such that the asso-
ciated region of asymptotic stability is as large as possible
considering some size criterion. This can be addressed if,
for instance, we consider a set Ξ with a given shape and a
scaling factor β. This shape set can be easily defined as a
polyhedral set described by the convex hull of its vertices:

Ξ
△
= Co{v1, v2, . . . , vnr

}, vl ∈ ℜ2n, l = 1, . . . , nr

Hence, recalling Theorem 1, we aim at searching for
matrices X,Y, Â, B̂, Ĉ, D̂, Ê, F̂ , Ĝ, Ĥξ and Ĥφ in order to
obtain β Ξ ⊂ E(P, ν−1) with β as large as possible.

The vectors vl can therefore be viewed as directions in
which we want to maximize the region of attraction.
Considering that βvl ∈ E(P, ν−1) is equivalent to

βv′lPvlβ ≤ ν−1 (20)

and considering η = 1/β2, it follows that the maximization
of the ellipsoid E(P, ν−1) along the directions vl is equiv-
alent to the minimization of η. Hence, for a given value
ν > 0, E(P, ν−1) can be maximized along the directions

given by generic vectors vl =
[

v′l1 v
′

l2

]′
where vl1 ∈ ℜn

and vl2 ∈ ℜn, by solving the following convex optimization
problem:

min
V,η

η

subject to

(i)





ν−1 η v′l1 v
′

l1Y + v′l2V
′

vl1 X I
Y vl1 + V vl2 I Y



 ≥ 0

l = 1, . . . , r
(9), (10) and (11),

(21)

where X and Y are given matrices verifying the conditions
of Theorem 1.

In order to prove this, it suffices to apply Schur’s comple-
ment in (20) and, to pre and post multiply the obtained

matrix inequality respectively by F =

[

1 0 0
0 I 0
0 Y V

]

and F ′.

It is worth noticing that matrix V appears explicitly in
(21). In this case, once V is obtained, it should be verified
a posteriori if it is indeed invertible. Alternatively, a
constraint of type V +V ′ > 0 (or < 0) can be incorporated
in the optimization problem to ensure that V will not be
singular.

On the other hand, in practice, we are mainly interested in
maximizing the region of stability in directions associated
to the states of the plant. In this case the vectors vl assume

the form
[

v′l1 0
]′

and, from (20), it follows that (i) in (21)
can be replaced by the constraint:

v′l1Y vl1 ≤ ν−1 η, l = 1, . . . , r (22)

Performance Improvement

Let Ξ be a given set in the state space, for which we want to
ensure that ∀ξ(0) ∈ Ξ, ξ(t) → 0 as t→ ∞. Among all the
feasible controllers ensuring that, one may be interested in
improving the performance of the closed-loop system.

A natural performance measure is given by the following
quadratic criterion on plant states:

J =

∞
∫

0

x(t)′Qx(t)dt where Q = Q′ ≥ 0, Q ∈ ℜn×n.

If we are now able to satisfy

V̇ +
1

γ
ξ′

[

I
0

]

Q [ I 0 ] ξ < 0, (23)

it follows that J < γV (0) < γ ν−1, ∀ξ (0) ∈ E(P, ν−1).
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Note that (23) is satisfied if, for µ = 1
γ
:













J1 A+ Â′ + BD̂C X(Q1/2) J2 −BS + Ĥ′

ξ1

⋆ He{Y A+ B̂C} (Q1/2) J3 Ê + Ĥ′

ξ2

⋆ ⋆ −
1

µ
I 0 0

⋆ ⋆ ⋆ −2S∆ Ĥ′

φ

⋆ ⋆ ⋆ ⋆ −2S













< 0 (24)

Another interesting performance criterion is the maximiza-
tion of the exponential convergence of the trajectories.
Note that if we ensure that

V̇ + µξ′Pξ < 0 (25)

it follows that V (t) < e−µtV (0), ∀ξ (0) ∈ E(P, ν−1). This
fact guarantees exponential convergence of the trajectories
to the origin with a rate given by µ. The relation (25) is
satisfied if






J1 + µX A+ Â′ +BD̂C + µI J2 −BS + Ĥ′

ξ1

⋆ He{Y A+ B̂C} + µY J3 Ê + Ĥ′

ξ2

⋆ ⋆ −2S∆ Ĥ′

φ

⋆ ⋆ ⋆ −2S







< 0, (26)

Note that (26) ensures that all the eigenvalues of matrix
A have real part smaller than −µ.

The following convex optimization problem can therefore
be formulated to take into account performance issues with
a guaranteed region of stability:

max µ
subject to





ν−1 v′l1 v
′

l1Y + v′l2V
′

vl1 X I
Y vl1 + V vl2 I Y



 > 0

l = 1, . . . , r
(11) and (24) (or (26))

(27)

In the case where the objective is the maximization of the
exponential convergence of the trajectories by using (26),
problem (27) can be efficiently solved as a GEVP (Boyd
et al. [1994]).

Remark 2. Condition (26) can also be used to adapt the
convex optimization problem (21) in order to maximize
the size of E(P, ν−1) or E(Y, ν−1) while guaranteeing a
pre-specified degree of exponential convergence inside it.
For that, it suffices to replace condition (9) by (26), with
a fixed value µ > 0.

5. NUMERICAL EXAMPLES

Consider the following data for the nonlinear system (1):

A =

[

1 −1
1 −3

]

, B =

[

2
1

]

, C = [ 1 0 ] ,

G =

[

0
1

]

, L = [ 1 1 ] ,Ω = 1.4, u0 = 5.

Since A is not Hurwitz, only local (regional) stabilization is
possible. Thus, we first solve the convex problem (21), with

µ = 1 (see Remark 2), and with Ξ = Co

















1
0
0
0






,







0
1
0
0

















1 .

1 An additional constraint on the real parts of the closed-loop poles,
ℜ(λ(A)) > −10, has been considered to guarantee well-conditioned
solutions of the presented numerical examples.

ν φ ∈ S1, with ρ = 1.8 φ ∈ ℜp

β Area β Area

10 1.7278 17.6198 4.9919 88.0903

Table 1. Enlargements for ν = 10

For ν = 10, Table 1 shows the obtained scaling factor of Ξ
and the area of E(Y, ν−1) (given by π

√

det((νY )−1) ), by
considering that the nonlinearity φ(·) is either locally or
globally verified. E(Y, ν−1) corresponds to the intersection
of E(P, ν−1) with the hyperplane defined by the plant
states, i.e.: ξ′ = [x′ 0 ]. As expected, a larger domain of
stability is obtained when φ(·) is globally verified. Figure
1 shows the ellipsoidal sets E(Y, ν−1) obtained for ν = 10.
The corresponding obtained compensator parameters are

Fig. 1. E(Y, 10−1) for φ locally (- -) and globally (-.) verified

Ac =

[

−8297.6 8692.6
−8266 8285.3

]

, Bc =

[

−48.5817
−62.1318

]

,

Cc = [−140.89 141.23 ] , Dc = −3.2068

Ec =

[

−6.9411
0.0286

]

, Fc = −0.3700, Gc =

[

0.0515
0.0415

]

Let us now consider, for ν = 1, the minimization of the
upper-bound γ = γν−1 for the quadratic criterion J , with

Q =

[

1 0
0 0

]

, by solving the convex optimization problem

(27). In this case, we consider Ξ = Co

















κ
0
0
0






,







0
κ
0
0

















,

where κ > 0 may assume different values. Tables 2 and
3 show results obtained when φ(·) is locally and globally
verified, respectively. By comparing the two tables, we ob-
serve again better results when the sector condition on φ(·)
is globally verified, since smaller guaranteed performances
are obtained for greater values of κ in Table 3. Now, in each
table it can also be noticed a trade-off between involving
the size of the guaranteed region of stability and the upper-
bound for J . In fact, the greater is κ and, in consequence,
the area of the obtained E(Y, ν−1), the worse is the upper-
bound obtained for J . The tables show also the value of
√

det(νP )−1, which is proportional to the volume of the
whole stability region E(P, ν−1).

Table 4 shows, for κ = 1 and ν = 1, the controllers
parameters when φ(·) is locally or globally verified.
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κ γ Area
√

det(νP )−1

1 0.1182 3.3155 37.6783

1.5 0.8644 7.6838 875.0125

1.73 182.5002 17.7126 1.4958 × 105

1.74 - - -

Table 2. Guaranteed quadratic performance
with ν = 1 and for φ locally verified

κ γ Area
√

det(νP )−1

1 0.0647 3.6020 8.8591

3 3.6963 32.0707 24.6330

4.99 6.3609 × 103 87.9536 645.9406

5 - - -

Table 3. Guaranteed quadratic performance
with ν = 1 and for φ globally verified

φ ∈ S1, with ρ = 1.8 φ ∈ ℜp

Ac

[

−6.9325 3.4228
−2.3843 −3.8176

] [

−3.168 −2.176
−0.916 −3.465

]

Bc

[

0.0074
−2.8429

] [

0.9106
−0.3858

]

Cc

[

−3.4074 1.3041
] [

−5.081 4.294
]

Dc -4.5284 -4.5284

Ec

[

0.0456
0.3090

] [

−0.4025
0.0981

]

Fc -0.3768 -0.3252

Gc

[

0.3100
0.2235

] [

0.0230
0.0602

]

Table 4. Controllers parameters for κ = 1

6. CONCLUSION

In the present work we have addressed the stabilization
problem of Lur’e type nonlinear systems subject to input
saturation. Constructive LMI results allowing to compute
a nonlinear dynamic controller having as inputs both the
plant output and the output of the dynamic nonlinearity
have been proposed. From these LMI conditions, convex
optimization problems in order to compute the controller
aiming at maximize an ellipsoidal estimate of the closed-
loop domain of attraction or at improving the perfor-
mance of the closed-loop system while guaranteeing a pre-
specified region of stability have been formulated.

Further investigation points to the synthesis of reduced-
order controllers and to the problem of disturbance rejec-
tion.
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