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Abstract: An optimizing control scheme is designed for the minimization of the energy
consumption in the hot blast stoves. By an appropriate selection of the control structure, the
problem of energy minimization at steady-state in the presence of constraints is formulated as
a constrained optimal control problem. A model predictive control (MPC) scheme is designed
based on a simple linear control model, which is obtained from step response experiments on a
detailed dynamical model of the process. The control model is augmented with an integrating
disturbance model to compensate the steady-state offset. The performance of the MPC scheme
is tested on the detailed dynamical model.
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1. INTRODUCTION

The efficient operation of the blast furnace requires the
maintenance of the hot blast at a certain flow rate and
temperature. The hot blast is supplied to the furnace by
hot blast stoves. A hot blast stove is a tall, cylindrical ther-
mal regenerator comprising a large mass of solid material
called checkerwork, as shown in Fig. 1. The checkerwork
is composed of several refractory brick layers and con-
tains many flues, where the gas flows through. A hot blast
stove goes through the alternate cycles of heating and
cooling, named as on-gas phase and on-blast phase respec-
tively. During the on-gas phase the hot gas arising from
the combustion process flows through the checkerwork
and heats the refractory brick. During the on-blast phase
the cold blast with a lower entrance temperature flows
through the hot checkerwork in the reverse direction, it is
heated up and fed into the blast furnace. The staggered
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Fig. 1. Hot blast stove

parallel operation, depicted in Fig. 2, is an arrangement
of four hot blast stoves. In this arrangement, while two

stoves are heated up, the other two stoves supply the
hot blast simultaneously. These two hot blast streams are
mixed together with the cold blast to supply the blast
furnace with hot blast at the desired temperature and
flow rate.

The energy consumption of the operation is determined
by the heat supply during the on-gas phase, which is de-
termined by the amount of fuel used during the combus-
tion process. It is the purpose of this study to minimize
the heat supply to the stoves while supplying the blast
furnace with hot blast at the required temperature and
flow rate. Initial studies concerning the optimal operation
of hot blast stoves in staggered parallel operation started
with the work of Kwakernaak et al. [1970]. In this work
they investigated the optimal operation of a single stove
under stationary periodic operation, i.e. the load, which is
defined as the reference blast temperature and flow rate,
does not change. Zuidema [1970] extended this work by
analyzing the operation under load changes. The single
stove operation of hot blast stoves has also received at-
tention. Matoba et al. [1986] developed an optimal regu-
lator based on a linear model. Muske [2000] developed a
nonlinear model-based predictive control scheme to min-
imize the heat input to the stoves.

In this work we study optimizing the staggered parallel
operation of the hot blast stoves with no load changes.
We consider the on-gas and on-blast phase durations as
fixed, which is commonly done in industry. Since the
economics is primarily determined by the steady-state
performance, we are concerned with optimizing the oper-
ation at steady-state. The appropriate selection of the con-
troller structure with the corresponding controlled vari-
ables and the sampling time and including the constraints
in the problem formulation allows us to formulate the
steady-state optimizing control of hot blast stoves as a
constrained optimal control problem. We use model pre-
dictive control (MPC) for solving the constrained optimal
control problem.
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Fig. 2. Staggered parallel operation of hot blast stoves

2. PROCESS DESCRIPTION

The staggered parallel operation is depicted in Fig. 2. As
may be seen in this figure, the operation of each stove
is switched periodically between the on-gas and on-blast
phases, which have constant durations. Moreover, the
operation of each stove is shifted in time with respect to
the other stoves. Defining cycle as the duration from the
start of an on-gas phase to the end of the following on-
blast phase, the operation of the stoves are repeated at
every cycle. Therefore, the staggered parallel operation
of the four stoves can be characterized as a time-varying
periodic system. On the other hand, in the controller syn-
thesis by sampling the continuous operation of the stoves
only at every cycle we consider the process as a time-
invariant system. In other words, for designing the con-
troller we translate the time-varying periodic dynamics
of the system into time-invariant dynamics. The details of
this sampling are given later while explaining the control
models. It is important to note that while the steady-state
for the staggered parallel operation is a cyclic steady-
state, it is constant for the control system. For the rest
of the paper we will not distinguish between these two
terms and simply use the term steady-state.

During the on-gas phase combustion air enriched with
the coke oven gas burns in the combustion chamber and
produces the high temperature exhaust gas, which flows
through the checkerwork and heats it up. In this work
we assume that the ratio of the combustion air/coke
oven gas is fixed, which results in a constant exhaust gas
temperature entering the stove. Therefore, the amount
of heat entering the stove during the on-gas phase is
determined only by the exhaust gas flow rate. In this
work, the exhaust gas flow rate is assumed to have a
constant pattern throughout the on-gas phase.

In the on-blast phase the two hot blast streams coming
from the on-blast phase stoves and the cold blast, which
is not fed through the stoves, are mixed in order to obtain
the desired blast temperature and flow rate. The mixing
policy used in this work is depicted in Fig. 3. Since the exit
blast temperature decreases with time, the stove that just
starts its on-blast phase has a relatively high blast tem-
perature. The blast with high temperature is employed
only after the blast temperature of the other stove be-
comes lower than the reference blast temperature. During
the period, where only one stove supplies hot blast, the
reference blast temperature is maintained by mixing cold
blast. Due to safety reasons, there is a lower limit on the
minimum amount of the cold blast mixing flow rate. In

the period where both stoves supply hot blast the cold
blast mixing volume is kept at this minimum value.
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Fig. 3. Schematic explanation of the on-blast phase mixing
policy

3. PROBLEM FORMULATION

3.1 Degrees of freedom for control and constraints

During the on-blast phase local controllers adjust the flow
rates of the two hot blast streams and the cold blast
stream to obtain the required temperature of the mixed
stream, the hot blast entering the blast furnace. Hence,
there is no degree of freedom for optimization during the
on-blast phase. As mentioned in the process description,
the amount of heat produced during the combustion
process is only a function of the exhaust gas flow rate.
Therefore, the only degree of freedom for control in the
staggered parallel operation is the exhaust gas flow rate.

Two most critical constraints are considered in this work.
The first constraint is the lower bound on the cold blast
mixing volume as it was explained in the process descrip-
tion. The other critical constraint we consider in this work
is the minimum silica brick temperature constraint. The
brick temperature at the bottom of the silica brick layer,
shown in Fig. 1 must be kept above a lower bound. Since
the stove temperature is minimum at the end of the on-
blast phase, the silica brick temperature is evaluated only
at that time instant.

3.2 Optimal operation and controlled variable selection

The aim of this work is to minimize the heat input to the
stoves and since the economic performance is primarily
determined by steady-state considerations, we are mainly
concerned with optimizing the operation at steady-state.

To design a control scheme we first need to identify the
controlled variables, which are indicative of the exces-
sive heat supply to the plant. The set points for these
controlled variables should define the optimal operation
point. To identify these controlled variables we first study
the behavior of the plant when excessive heat input is
supplied.

Let’s assume the system is initially at the optimal op-
erating point with the minimal heat supply. When the
heat supply increases some of the excess heat input will
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be accumulated in the stove until the next steady-state
operating point is reached. The temperature profile of the
stove increases due to the accumulated heat. When the
temperature along the stove increases, the blast temper-
ature leaving the stove during the on-blast phase also
increases. In order to obtain the reference temperature
more cold blast should be mixed. Therefore, the amount
of cold blast mixing volume used in the on-blast phase
is an indicator of the excessive heat input. By minimiz-
ing the cold blast mixing volume we can minimize the
excessive heat supply. However, since cold blast mixing
flow rate is a time-varying variable, it is hard to assign a
set point for it. Instead we use the end blast temperature
as the controlled variable, which is a direct measure of
the cold blast mixing flow rate as may be seen in Fig.
3. The cold blast mixing peak at the start of the period
is determined by the end blast temperature of the stove
which supplies the blast to the furnace together with the
cold blast mixing. The lower the end blast temperature,
the lower the peak cold blast mixing flow. However, the
peak flow rate at the start of a period cannot be lower than
the lower bound. In order to avoid the cold blast flow
rate dropping below this lower bound in case of external
disturbances, operators would keep a certain peak value
well above the lower bound. The end blast temperature
providing this peak value can be determined from the
operational data and assigned as the constraint of the end
blast temperature.

3.3 Control problem

In summary, the control problem is to develop a con-
strained optimal control scheme that drives down the end
blast temperature to its constraint by manipulating the
exhaust gas flow rate while respecting the brick tempera-
ture constraint.

4. MODELING

4.1 Heat transfer mechanism in a single stove

While modeling the heat transfer mechanism within the
stoves the following commonly accepted assumptions are
made (Kwakernaak et al. [1970],Matoba et al. [1986]): a)
Heat losses to the environment are ignored; b) Axial and
radial heat conductions in the brick are ignored; c) Heat
capacity of the gas or blast is negligibly small relative
to the heat capacity of the checkerwork; d) Heat transfer
occurring at the reversals is neglected.

Based on these assumptions, the heat transfer can be
described by the following partial differential equations
(Kwakernaak et al. [1970]):

∂Tg(t, y)

∂y
=−

ha

cgV(t)l

[
Tg(t, y)− Ts(t, y)

]
(1)

∂Ts(t, y)

∂t
=

ha

mcs

[
Tg(t, y)− Ts(t, y)

]
(2)

Tg gas temperature [◦C]
Ts solid temperature [◦C]
t time [min]
y vertical distance [m]
h overall heat transfer coefficient (convection

and radiation) [J◦C−1min−1m−2]
a chequerwork heating surface area [m2]
V gas flow rate [kgmin−1]
cg specific heat of gas [J◦C−1kg−1]
l height of the chequerwork [m]
m mass of the chequerwork [kg]
cs specific heat of chequerwork [J◦C−1kg−1]

In equations (1) and (2) cs and cg are temperature depen-
dent and h is both temperature and flow rate dependent.
The boundary conditions for the partial differential equa-
tions are given by the entrance gas temperatures. The
temperature of exhaust gas entering the stove during the
on-gas phase and cold blast entering the stove during
the on-blast phase are constant. The initial temperature
profile of the stove at the beginning of a phase is given by
the terminal stove temperature profile of the preceding
phase.

We will not mention the method of solving the partial
differential equations given in (1) and (2) here. Willmott
[1964] presents a detailed solution in his work, where the
basic idea is to discretize the system in both spatial and
time dimensions.

4.2 Modeling the staggered parallel operation

In staggered parallel operation each stove is modeled
with the heat transfer mechanism described by the par-
tial differential equations (1) and (2). All the stoves are
assumed to have same dynamics, i.e., they have the same
parameters. The reversal periods between periods be-
tween the two phases are ignored. The on-blast phase
mixing policy described previously is implemented in the
model. The flow rates of the hot blast streams and the cold
blast mixing are calculated based on the mass and energy
balance equations, details of which will not be given here
due to limited space.

5. CONTROL CONCEPT

In order to solve the constrained optimal control problem
we formulated we used Model Predictive Control (MPC).
MPC has proven to be a powerful control technique in
the process industry due to its ability to handle multivari-
able systems and incorporate constraints in the problem
formulation, (Maciejowski [2002]). In MPC an internal
model is used to predict the future evolution of the plant.
An optimal control problem is formulated where the con-
trol objectives are formulated in a cost function while
the process specifications are expressed as constraints. A
sequence of optimal inputs is obtained by solving the
optimization problem over a finite horizon. Only the first
control move of the sequence is applied on the plant and
the optimization procedure is repeated at the next time
instant according to a receding horizon strategy, which in-
troduces feedback to MPC.
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5.1 Control model

In order to predict the future evolution of the plant we
have developed a linear time-invariant control model,
based on step response experiments on the detailed
model. As mentioned before, for controller synthesis we
translate time-varying periodic dynamics of the stag-
gered parallel operation into time-invariant dynamics by
sampling the system at each cycle. The time elapsed be-
tween two successive switching instances is defined as
period, as shown in Fig. 2. Assuming on-gas and on-blast
phases have equal durations, each cycle lasts for four
periods. During each full cycle the end blast temperature
of each stove is measured at the end of the first period
of the on-blast phase and brick temperature at the end
of the second period of the on-blast phase. Moreover, the
exhaust gas flow rate is applied to each stove at the begin-
ning of the first period of its on-gas phase. In summary,
within each cycle we measure the 8 output variables and
we apply the 4 inputs. Therefore, the staggered parallel
operation of hot blast stoves is considered as a time-
invariant MIMO system with four inputs, the exhaust

gas flow rates Vg ∈ R
4, and eight outputs, the end blast

temperatures Te ∈ R
4 and the brick temperatures Tb ∈ R

4

of each stove.

The dynamics of the model are approximated around an
operating point by doing step response experiments on
the detailed model. While the stoves are in a cyclic steady-

state at the operating point (Vg,0 = 2300Nm3/min, Te,0 =

1280.5◦, Tb,0 = 570◦), a step input of (ΔVg = 5Nm3/min)
is applied to the fourth stove. The deviations of the end
blast temperatures from the operating point per step in-
put, ΔTe/ΔVg are shown in Fig. 4. Since all the stoves
have the same dynamics, similar step responses are ob-
tained when a step input is applied to the other input
channels. As may be seen in Fig. 4 the deviation of each
output variable from the operating point per unit step
input can be approximated by a first order linear system.
A very similar step response with different steady-state
gains applies for the brick temperature and the deviations
of the brick temperatures can also be approximated by
first order linear systems. As a result we obtain the fol-
lowing linear discrete-time model:

x(k + 1) = Ax(k) + Bu(k) (3)

y(k) = Cx(k) (4)

with

x =

[
xe
xb

]
, y =

[
ye
yb

]
, (5)

A =

[
Ae 0
0 Ab

]
, B =

[
Be

Bb

]
, C =

[
Ce 0
0 Cb

]
. (6)

In the above equations the subscript “e” denotes the
variables related to the end blast temperature and the
subscript “b” is for brick temperature. xe, xb ∈ R

4 are the

states, u ∈ R
4 and ye, yb ∈ R

4 are the deviations of input
and output from the operating point.
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5.2 Disturbance model and estimator

In order to compensate the steady-state offset with MPC
algorithms in the presence of unmeasured disturbances
or plant-model mismatches, integrating disturbances are
introduced in the system model (Muske et al. [2001]). In
this work we augment the system state with additional
integrating disturbances by the following state distur-
bance formulation

[
x(k + 1)
d(k + 1)

]
=

[
A Bd
0 I

] [
x(k)
d(k)

]
+

[
B
0

]
u(k) +

[
0

Bw

]
ω(k)

(7)

y(k) = [C 0]

[
x(k)
d(k)

]
+ ν(k) (8)

where d =
[
dT

e , dT
b

]T
is the integrating disturbance with

de, db ∈ R
4. w ∈ R

16 and ν ∈ R
8 are the zero-mean

white noise disturbance and output noises respectively
with unit covariance matrices. Bd determines the effect
of disturbance on the state. There is no general rule for
selecting Bd. Here we consider that the disturbance de

influences the state xe and the disturbance db influences
the state xb through the input channels. Therefore, we
chose Bd as

Bd =

[
Be 0
0 Bb

]
. (9)

According to equation (7) the noise w acts only on the
integrating disturbance d through the matrix Bw ∈ R

8×8

and not on the state x. x and d are estimated from the
plant measurement by using a standard time-invariant
Kalman filter

[
x̂(k|k)
d̂(k|k)

]
=

[
x̂(k|k − 1)
d̂(k|k − 1)

]
+

[
Lx
Ld

]
(y(k) − Cx̂(k|k − 1))

(10)

where Lx ∈ R
8×8 and Ld ∈ R

8×8 are the Kalman filter
gain matrices for the state and the integrating distur-
bances respectively. Since w and ν have unit covariance
matrices and considering Bd is fixed, the Kalman filter
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gains are adjusted by tuning the matrix Bw. The estimated

state
[

x̂(k|k)T, d̂(k|k)T
]

is then used in predicting the fu-

ture augmented state

[
x̂(k + 1|k)
d̂(k + 1|k)

]
=

[
A Bd
0 I

] [
x̂(k|k)
d̂(k|k)

]
+

[
B
0

]
u(k). (11)

5.3 MPC Formulation

The optimal control problem is formulated in MATLAB
using the MPC Toolbox (Bemporad et al. [2004]). The
augmented internal model used for predicting the future
evolution of the plant can be written as

x̃(k + 1) = Ãx̃(k) + B̃u(k) (12)

y(k) = C̃x̃(k) (13)

where x̃ =
[
xT, dT

]T
and the matrices Ã, B̃ and C̃ are

given in equations (7) and (8) considering w and ν are
zero.

The lower bounds on the end blast temperature and the
brick temperature are modeled as soft constraints with
slack variables εe(k) and εb(k) respectively and formu-
lated as

ye,min − εe(k) ≤ ye(k), 0 ≤ εe(k), (14)

yb,min − εb(k) ≤ yb(k), 0 ≤ εb(k). (15)

As mentioned in the problem formulation, the control
objective is to drive down the end blast temperature
to its constraint value while respecting the constraint
on the brick temperature. Therefore, the cost function is
formulated as

JN = min
Δu(t|t)...Δu(t+N−1|t)

ε(t|t)...ε(t+N−1|t)

N−1

∑
k=0

‖ye(t + k|t) − r‖2
Q

+‖Δu(t + k|t)‖2
R + ‖ε(t + k|t)‖2

Qε
(16)

where r = ye,min, ε =
[
εT

e , εT
b

]T
and Δu(k) = u(k) −

u(k − 1). N is the prediction horizon and Q, R and Qε

are the nonnegative diagonal weighting matrices. While
Q penalizes the deviation of the output from the set
point R penalizes the input variations. Qε penalizes the
constraint violations and hence its value is chosen to
be larger compared to the other weights. The optimal
control sequence, Δu(t|t) . . . Δu(t + N − 1|t), is obtained
by minimizing equation (16) subject to the model (12),
(13) and the constraints (14), (15).

6. SIMULATION RESULTS

The MPC scheme based on the linear control model is
tested on the detailed nonlinear model by simulations. In
the detailed model, the on-gas and on-blast phases are
chosen to be 100min and hence one period is equal to
50min.

6.1 Steady-state analysis

We first analyze the cost and the constraints of the sys-
tem at steady-state to investigate the optimal operating
point. In Fig. 5 the steady-state values of the end blast
temperature and the brick temperature as a function of
the exhaust gas flow rate are drawn and the constraints
are marked. These values are obtained from simulations
with the detailed model. Note that we determined the
end blast temperature constraint according to a cold blast
mixing flow rate peak that is well above its lower bound.
In the real operation this constraint needs to be defined
by the operators based on the real operation data and
the experiences of the operators. As may be seen in this
figure, the constraint on the minimum brick tempera-
ture (570◦C) is reached when the exhaust gas flow rate

is 2308Nm3/min. On the other hand, the minimum end
blast temperature constraint (1280.5◦C) is obtained with

2300Nm3/min. Clearly the operation is optimal when the
brick temperature is at its constrained value, in other
words when the brick temperature constraint is active.
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Fig. 5. Steady-state values of the input and outputs ob-
tained with detailed model simulations

6.2 Control performance

The following parameters are used for MPC in sim-
ulations: N = 10cycles, Q = diag ([1 . . . 1]), R =
diag ([15 . . . 15]), Qε = diag

(
[105 . . . 105]

)
and Bw =

diag ([10 . . . 10]). The MPC scheme is tested with the fol-
lowing scenario: The stoves are initially overheated and
they are at the following steady-state operating point:
Vg,i = 2340Nm3/min, Te,i = 1420◦C and Tb,i = 720◦C
for (i = 1, 2, 3, 4). The control performance is given in
Fig. 6. Note that the x− axis of this figure is given in
periods unlike the step response plots given in Fig. 4. The
variables in y− axis of Fig. 6 are the combinations of the
measurements in the four successive periods that form
a cycle. For example, the four end blast temperatures at
cycle 1 are given at the four successive periods, 1, 2, 3,
and 4.

According to Fig. 6 the brick temperature constraint, and
hence the optimal operating point is reached in approxi-
mately 200 periods (50 cycles), which is four times faster
than the open loop response of the system. The brick
temperature constraint is violated by at most 2◦C. The
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reason for this violation is that at the instance of viola-
tion the brick temperature estimation error is nonzero. It
should also be noted that the optimal operating point and
the operating point, where we obtained the linear model
are different. Nevertheless, MPC forces the system to the
optimal operating point with almost zero steady-state er-
ror (0.8◦C), which is mainly achieved by the disturbance
model we introduced. This is an important advantage of
the MPC scheme augmented with the disturbance model,
since it allows us to use one model for any operating
condition, i.e., we do not have to identify a new model
for every new operating condition.

0 50 100 150 200 250 300 350
500

600

700

800

T
b
[°

C
]

0 50 100 150 200 250 300 350
1200

1300

1400

1500

T
e
[°

C
]

0 50 100 150 200 250 300 350
2200

2250

2300

2350

V
g
[m

3
/m

in
]

Time [period]

Fig. 6. Control performance of the MPC scheme. Top
figure: The brick temperature (solid line) and the
brick temperature constraint (dashed line). Middle
figure: The end blast temperature (solid line) and
the end blast temperature constraint (dashed line).
Bottom figure: The control input, exhaust gas gas flow
rate (solid line) and the nominal value of the input
(dashed line), where the step response experiment is
done.

The set of active constraints of a system may change
during the operation due to a change in the operat-
ing conditions or external disturbances. Since the con-
straints are incorporated in MPC explicitly, active con-
straint changes should be handled by MPC. In order to
test the performance of the MPC scheme under active
constraint changes we modified the end blast tempera-
ture constraint for all stoves to (Te,min = 1370◦C), so that
the new active constraint is the end blast temperature
constraint. The same MPC parameters of the previous
scenario are used. The simulation results are given in
Fig. 7. The end blast temperature constraint is reached in
150 periods with negligible offset (0.4◦C) and the brick
temperature constraint is not violated during the control
action. The maximum violation of the end blast tempera-
ture constraint is 2◦C, which mainly results from the end
blast temperature estimation error. From this simulation
result, we can conclude that MPC is able to handle the
active constraint change during the operation.

7. CONCLUSION

In this paper we presented an optimizing control scheme
for the minimization of the energy consumption in the
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Fig. 7. Control performance of the MPC scheme in case
of active constraint change. Top figure: The brick tem-
perature (solid line) and the brick temperature con-
straint (dashed line). Middle figure: The end blast tem-
perature (solid line) and the end blast temperature
constraint (dashed line). Bottom figure: The control
input, exhaust gas flow rate (solid line) and the nom-
inal value of the input (dashed line), where the step
response experiment is done.

hot blast stoves. The problem of energy minimization in
the presence of constraints is formulated as a constrained
optimal control problem by selecting an appropriate con-
trol structure. A model predictive control scheme, based
on a simple linear control model, is designed and im-
plemented on a nonlinear detailed dynamical model.
Through simulations it is shown that the MPC scheme
performs well under different operating conditions.
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