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Abstract: Full-state observers for linear systems use available measurements for the estimation
of the entire state of a system. Reduced-order observers instead deliver an estimate only in the
unmeasured state subspace while the state values in the measured subspace are taken directly
from the measurements. This paper presents a combination of both types of observers which
directly uses only part of the measured subspace and estimates/filters the rest of the state space.
The order of this new observer is freely selectable between that of the full-state observer and of
the reduced-order observer. A practical example demonstrates the validity of the new observer
form. The results show that the performance of a state-feedback controller with the new observer
is similar to that with the full-state observer.

1. INTRODUCTION

Estimators use a model to reconstruct the entire state of
a system using measurements of its inputs and outputs.

Full-state observers estimate the whole state: they filter
the available measurements and remove noise present in
them (see Kalman and Bucy (1961) and Kailath (1980)).
If the measurements contain no practically relevant noise,
such an observer implies redundancy because it estimates
states (or projections on state subspaces) which are al-
ready available from the measurements. Reduced-order
observers introduced by Luenberger (1964) allow estimat-
ing only the state subspace which is not known from
measurements.

In practical applications one would have to choose between
the better filtering of measurements thanks to a full-state
observer and the lower complexity and higher robustness
of controllers using a reduced-order observer. In some
cases, neither solution is really satisfactory, because the
presence of noise may require filtering while the decreased
robustness and added complexity needed to filter all mea-
surements may be unacceptable.

The idea proposed in this paper is to filter only those
measurements which are really too noisy, while exploiting
directly for control the other measurements which are
sufficiently good. Then, the necessary filtering is done with
a limited complexity of the estimator.

The result is a reduced-order observer with order be-
tween that of the full-state observer (i.e. of the linear
system whose states have to be estimated) and that of
the reduced-order observer.

2. PARTIAL-ORDER REDUCTION OF OBSERVERS

Given is a linear time-invariant system
{

ẋ = A · x +B · u
y = C · x +D · u

(1)

of order n with the pair (C,A) being observable. The
output matrix C is assumed to be full rank. This corre-
sponds to the condition that all measurements are linearly
independent.

While restricting at first the analysis to the case D = 0,
suppose that the outputs y can be partitioned into some
“clean” outputs yc followed by other noisy outputs yn.
Then, the system representation with this partition is
given by







ẋ = A · x +B · u
[

yc

yn

]

=

[

Cc

Cn

]

· x
(2)

If the outputs do not correspond to measured states, a
state transformation

P =

[

Cc

Cn

T

]

(3)

can be applied (the matrix T is chosen in order to make
P square and full rank). Then, with the transformation
matrix P a new state-space representation with the state
vector

P · x =

[

Cc

Cn

T

]

· x =

[

Cc · x
Cn · x
T · x

]

=

[

yc

yn

w

]

(4)

is obtained, in which the measurements are states of the
system. The variable w in the state vector indicates the
unmeasured state subspace. With the state transformation
above, the LTI system (2) can be rewritten as



























[

ẏc

ẏn

ẇ

]

= P · A · P−1
·

[

yc

yn

w

]

+P · B · u

y = C · P−1
·

[

yc

yn

w

]
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and the resulting state-space matrices partitioned as fol-
lows



























































[

ẏc

ẏn

ẇ

]

=







Ac,c Ac,n Ac,w

An,c An,n An,w

Aw,c Aw,n Aw,w






·

[

yc

yn

w

]

+

[

Bc

Bn

Bw

]

· u

y =

[

I 0 0
0 I 0

]

·

[

yc

yn

w

]

(5)

The sizes of the submatrices can be inferred from the sizes
of yc, yn and w. With the definition of the matrices

Acn,nw =

[

Ac,n Ac,w

An,n An,w

]

Acn,c =

[

Ac,c

An,c

]

Anw,c =

[

An,c

Aw,c

]

Anw,n =

[

An,n

Aw,n

]

Anw,w =

[

An,w

Aw,w

]

Bcn =

[

Bc

Bn

]

Bnw =

[

Bn

Bw

]

and with the interpretation of yc and yn as known quanti-
ties (i.e. as inputs), the system equations can be rearranged
as



































































[

ẏn

ẇ

]

= [Anw,n − M,Anw,w] ·

[

yn

w

]

+ [ Bnw Anw,c M ] ·

[

u
yc

yn

]

yr =

[

Acn,nw

0
0

]

·

[

yn

w

]

+

[

Bcn Acn,c 0
0 I 0
0 0 I

]

·

[

u
yc

yn

]

(6)

where

yr =







ẏc

ẏn

yc

yn






(7)

The matrix M is a degree of freedom in the representation,
because the contribution of yn to [ẏn; ẇ] can be arbitrarily
interpreted as coming from a state or from an input. In
fact, the first equation of the rearranged form is

[

ẏn

ẇ

]

= (Anw,n − M) · yn + Anw,w · w + Bnw · u

+Anw,c · yc + M · yn

= Anw,n · yn + Anw,w · w + Bnw · u + Anw,c · yc.

The observer for this system is given by the equations:


















































































[

˙̂yn
˙̂w

]

= [Anw,n − M,Anw,w] ·

[

ŷn

ŵ

]

+ [ Bnw Anw,c M ] ·

[

u
yc

yn

]

+L · (yr − ŷr)

ŷr =

[

Acn,nw

0
0

]

·

[

ŷn

ŵ

]

+

[

Bcn Acn,c 0
0 I 0
0 0 I

]

·

[

u
yc

yn

]

(8)

By substracting the first equation of (8) from the first
equation of (6) and by using the following simplification

L · (yr − ŷr) = L ·

[

Acn,nw

0
0

]

·

[

yn − ŷn

w − ŵ

]

= Lcn · Acn,nw ·

[

yn − ŷn

w − ŵ

]

(9)

where L = [Lc, Ln, L̃c, L̃n] and Lcn = [Lc, Ln] according
to the partition of yr and ŷr, the evolution of the error

[

eyn

ew

]

=

[

yn − ŷn

w − ŵ

]

leads to the error system
[

ėyn

ėw

]

= ([ Anw,n − M, Anw,w ] − Lcn · Acn,nw) ·

[

eyn

ew

]

(10)

The dynamics of the error system can be arbitrarily chosen
if the pair

(Acn,nw, [Anw,n − M, Anw,w]) (11)

is observable. This pair is observable if the matrix M
partitioned according to the sizes of yn and w in

M =

[

Mn

Mw

]

is such that Mw = Aw,n, Mn has its spectrum disjoint
from the spectrum of Aw,w and the pair (Acn,n, Mn) is
observable (see proof in the appendix).

Then a matrix Lcn can be found to arbitrarily place the
poles of the above error system using standard methods.

Unfortunately the observer computation (8) and (9) de-
pends on the signal w, which is not known. In order to
circumvent this problem the variable transformation

v =

[

ŷn

ŵ

]

− Lcn ·

[

yc

yn

]

(12)

is introduced. The first equation of the observer (8) then
becomes
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∫

+
Bnw

Lcn · Acn,nw

[Anw,c,M ]
+

+
+

[Anw,n−M,Anw,w] − Lcn ·Acn,nw]

P−1

[

ŷn

ŵ

]

Cc

Cn

∫

+
+

x
B

Aprocess

w

x̂

observer

yn

yc

�

-

�

Fig. 1. Block diagram of the reduced-order observer: the state w is not available!

v̇ + Lcn ·

[

ẏc

ẏn

]

= [ Anw,n − M, Anw,w ] ·

(

v + Lcn ·

[

yc

yn

])

+ [ Bnw Anw,c M ] ·

[

u
yc

yn

]

+Lcn · Acn,nw ·

[[

yn

w

]

−

(

v + Lcn ·

[

yc

yn

] )]

With the replacement of

[

ẏc

ẏn

]

= Acn,nw ·

[

yn

w

]

+ [Bcn Acn,c 0] ·

[

u
yc

yn

]

from (6) into the previous equation and with

y =

[

yc

yn

]

the final expression for the observer becomes














































v̇ = ([ Anw,n − M, Anw,w ] − Lcn · Acn,nw) · v
+(Bnw − Lcn · Bcn) · u

+(−Lcn · [Acn,c, 0] − Lcn · Acn,nw · Lcn

+ [Anw,c, M ]
+[Anw,n − M, Anw,w] · Lcn) · y

x̂ = P−1
·

[

yc

v + Lcn · y

]

= P−1
·

[

ŷc

ŷn

ŵ

]

(13)

3. OBSERVER IN STANDARD STATE-SPACE FORM

When the matrix D in the state-space representation (1)
is non-zero, the observer can be found by simply replacing
y with y − D · u in equation (13).

Finally, the observer can be rearranged to take the form
of the state-space representation



















v̇ = Â · v +B̂ ·

[

u
y

]

x̂ = Ĉ · v +D̂ ·

[

u
y

]

where

Â = [ Anw,n − M, Anw,w ] − Lcn · Acn,nw

B̂ = [B̂u, B̂yc
, B̂yn

] ·

[

I 0
−D I

]

Ĉ = P−1
·

[

0
I

]

D̂ = P−1
·

[

0 [I, 0]

0 Lcn

]

·

[

I 0
−D I

]

and

B̂u = Bnw − Lcn · Bcn

B̂yc
=−Lcn · Acn,c − Lcn · Acn,nw · Lc + Anw,c

+(Anw,n − M, Anw,w) · Lc

B̂yn
=−Lcn · Acn,nw · Ln + M

+(Anw,n − M, Anw,w) · Ln

The discrete-time form of the result is similar to the
continuous-time one with the only difference of the substi-
tutions u(t) → uk, y(t) → yk, v(t) → vk and v̇(t) → vk+1

and the appropriate choice of the observer poles.

4. EXAMPLES

4.1 A synthetic example

Given is the system






















ẋ =

[

0 1 0
−1 −1 1
0 0 −1

]

· x +

[

0
0
1

]

· u

y =

[

1 0 0
0 1 0

]

· x

(14)
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Fig. 2. Inverted pendulum

The poles of this system are at -1 and at e±2·j·π/3. Suppose
the first output is clean and the second output is noisy.
Then, according to the conditions on M = [Mn; Mw],
we choose Mw = Aw,n = 0, and Mn = 1 (no common
eigenvalue between Mn and Aw,w = −1 and the pair
(Acn,n, Mn) = ([1;−1], 1)) is observable).

The resulting error system (10) is given by
[

ėyn

ėw

]

=

([

0 1
0 −1

]

− Lcn ·

[

1 0
−1 1

])

·

[

eyn

ew

]

Then, for a choice of the observer poles at -2, a correspond-
ing matrix Lcn can be found with the help of standard
methods. One such choice is

Lcn =

[

3 0
1 0

]

which gives the observer


















v̇ =

[

−3 1
−1 −1

]

· v +

[

0 −9 −1
1 −4 0

]

·

[

u
y

]

x̂ =

[

0 0
1 0
0 1

]

· v +

[

0 1 0
0 3 0
0 1 0

]

·

[

u
y

]

As expected, the poles of the observer are both at -2. Note
that the observer is a second order linear system, while
a full-state observer is a third order one and a standard
reduced-order observer a first order one.

4.2 The inverted pendulum

The real-life example presented here is the classical in-
verted pendulum used for teaching in the SUPSI mecha-
tronics laboratory (see Figure 2). A commercial DC mo-
tor from Maxon (RE40 model with 1048 pulse encoder)
actuates the cart. A 500 pulse quadratic encoder measures
the value of the pole angle. The current of the motor is
controlled by a driver from Maxon (EPOS P 24/5).

The quantization noise of the input current (1mA) and of
the cart position measurement (1.5mm) is irrelevant from

a practical point of view. However, the coarse pole angle
quantization (3.1mrad) strongly limits the performance of
the plant.

In the following, the behavior of the system controlled with
the same state-feedback controller in combination with
different observer designs is analyzed.

The first design is for a reduced-state observer based on
one single measurement: the cart position x. All other
observer implementations use both measurements of the
pole angle α and of the cart position x.

The second design is for a reduced-state observer, the third
design for the partial-order observer proposed in this paper
and the fourth and last design is for a full-state observer.
The choices for the designs are presented in Table 1: the
observer poles are placed at a distance of 5 times the
spectral radius of the plant, the argument difference to
the closest pole is always 1

8
π.

# observer type measur. order observer poles

1 reduced-order x 3 −r, r · e±i
7

8
·π

2 reduced-order x, α 2 r · e±i
15

16
·π

3 partial-order x, α 3 −r, r · e±i
7

8
·π

4 full-state x, α 4 r · e±i
13

16
·π , r · e±i

15

16
·π

Table 1. Various observer designs. The param-
eter r is 5 times the spectral radius of the plant.

The simulated trajectories of the controlled cart for differ-
ent implementations of the observer are shown in Figure 3.
The RMS of the angle, position and actuation current for
the different implementations are shown in Table 2.

20 30 40 50
−0.02

−0.01

0

0.01

0.02
reduced−state obs. for output x

20 30 40 50
−0.02

−0.01

0

0.01

0.02

reduced−state obs. for outputs x, α

20 30 40 50
−0.02

−0.01

0

0.01

0.02

partial−state obs. for outputs x, α

20 30 40 50
−0.02

−0.01

0

0.01

0.02

full−state obs. for outputs x, α

Fig. 3. Trajectory of the controlled cart for various imple-
mentations of the observer (implementations #1 to#4
from left to right and then from top to bottom)

Implementation #1 relying only on the cart position
measurement is the most critical one with strong high
frequency movements. The implementation is not working
in practice, the reason being the huge variations in the
actuation current which exceeds the 2A current limits of
the motor driver.
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# observer type xRMS [m] αRMS [mrad] IRMS [mA]

1 reduced-order 0.0104 3.99 8790.9

2 reduced-order 0.0103 1.35 479.1

3 partial-order 0.0098 1.35 285.5

4 full-state 0.0098 1.20 225.8

Table 2. Comparison of the RMS variations at
steady-state of pole angle and cart position for

different observers

Implementation #2 using two measurements is well stable
but a limit cycle appears because of the angle quantization.
In real measurements, the controller with the reduced-
order observer is problematic because the bending mode
of the pole is excited and the whole system start vibrating.

The full-state implementation #4 presents the best behav-
ior. With the same structure, a Kalman filter minimizing
the steady-state error covariance shows a smaller RMS
value of the cart movement (0.0088m) at the expense of
a slightly larger current (319mA). For the purpose of the
comparisons in this papers however, the Kalman filter is
not very useful.

The partial-order implementation #3 of the observer takes
a position between that of implementations#2 and #4,
when considering both the order and the RMS of the
position and of the actuation current in simulation.

Measurements on the real pendulum show in all cases a
strong limit cycle due to the angle quantization measure-
ment. With the design above, the partial-order observer
directly exploiting the cart position measurement seems
to work even better than the controller with full-state
observer (see Figure 4).

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

partial−state  obs. for outputs x, α

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

full−state  obs. for outputs x, α

Fig. 4. Measurement of the trajectory of the controlled cart
the partial-order observer (left) and for the full-state
observer (right).

5. CONCLUSIONS

The paper presented a new version of observers for linear
systems with an arbitrarily selectable order between that
of the full-state and of the reduced-order observers intro-
duced by Luenberger. The result is particularly useful in
practical applications when some measurements must be
filtered because they are noisy while the complexity of a
full-state observer is undesirable.

Futher work consists in relaxing the constraints on the
matrix M and in finding criteria for its choice.

A Matlab script for the computation of the reduced-order
observer presented in this article can be downloaded from
the author’s web page.

APPENDIX

Proposition 1. If the pair (C,A) from (1) is observable,
then the pair

(Acn,nw, [Anw,n − M, Anw,w])

from (11) is also observable with

M =

[

Mn

Mw

]

such that

• Mw = Aw,n,
• Mn has its spectrum disjoint from the spectrum of

Aw,w

• the pair (Acn,n, Mn) is observable

Proof: First remind that a pair (C, A) is observable if
and only if

[

s − A
C

]

is full rank for all s. Thus the pair from (11) is observable
if and only if







s − An,n + Mn −An,w

−Aw,n + Mw s − Aw,w

Ac,n Ac,w

An,n An,w







is full rank for all s, or also (with the last row added to
the first row and by using the choice Mw = Aw,n) the pair
from (11) is observable if and only if







s + Mn 0
0 s − Aw,w

Ac,n Ac,w

An,n An,w






(15)

is full rank for all s,

Note that if the original system (1) is observable, then also
the system in the representation (5) is observable and thus











s − Ac,c −Ac,n −Ac,w

−An,c s − An,n −An,w

−Aw,c −Aw,n s − Aw,w

I 0 0
0 I 0











is full rank for all s and
[

−Ac,w

−An,w

s − Aw,w

]

is also full rank for all s. Therefore the second block column
of the matrix (15) is full rank for all s. Because the spectra
of Mn and Aw,w are disjoint by choice, the only way for
the matrix matrix (15) to loose rank is by losing rank in
the first block column for a value of s corresponding to an
eigenvalue of Mn.

Since by choice of Mn the pair (Acn,n, Mn) is observable,
also the first column of the matrix (15) is full rank for
all s. Therefore the matrix (15) is full rank for all s and
the pair (11) is observable.
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