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1. INTRODUCTION

Consider a non-linear system described by the equations

Θ :







Zk+1 = HkAZkA′H ′
k,

Xk+1 = AXkA′, k ≥ 0,

(Z0,X0) = (H0VH ′
0,Σ)

(1)

where (Zk,Xk) is the state, Zk and Xk are symmetric positive
semidefinite matrices and Hk, k ≥ 0, stands for the orthogonal
projection onto the null space of Xk. The square matrix A is
assumed to be known, V = V ′ ≥ 0 and Σ = Σ′ ≥ 0. Note that the
dynamics of the Z-component is coupled to the X-component
via the projections Hk.

In this paper we are concerned with partial semi-stability (PSS)
of system Θ with respect to (w.r.t.) V , that is, semi-stability 1

of the Z-component w.r.t. V , for a fixed Σ. Namely, for each
V =V ′ ≥ 0, it is required the existence of Z̄ such that ξ kZk ≤ Z̄,
k ≥ 0 and 0 ≤ ξ < 1, meaning that the Z-component can not
diverge exponentially (polynomial divergence is allowed). We
shall refer to this problem simply as PSS.

PSS is strongly linked, via [Costa and Astolfi, a, Theorem 1],
to the exponential divergence of Kalman filters for systems
with incorrect noise information. Obtaining a testable condition
for PSS allows to obtain a sharp condition for divergence of
Kalman filters, as discussed in Costa and Astolfi [b]. This is
an important result, in view of the conservativeness of existing
conditions, see Price [1968], Fitzgerald [1971], Sangsuk-Iam
and Bullock [1990] and Willems and Callier [1992], which are
either necessary or sufficient, or rely on additional assumptions,
such as the existence of limiting stationary filters.

⋆ This work was supported in part by FAPESP Grants 06/02004-0 and

06/04210-6 and the EPSRC Research Grant EP/E057438, Nonlinear observa-

tion theory with applications to Markov jump systems.
1 Following the terminology of Abou-Kandil et al. [2003].

Partial stability was studied for linear and non-linear sys-
tems, see Chellaboina and Haddad [2002], Djaferis [2006],
Molchanov et al. [2003], Nersesov and Haddad [2006] and
Vorotnikov [1998]. In principle, results concerning general non-
linear systems, such as Lyapunov V -functions that are positive
definite w.r.t. part of the variables, could be exploited. However,
they are too general to yield the easy to test algebraic condition
that we are seeking. In addition, there is no available result
that takes into account the special features of Θ, mainly the
connections with linear systems: the X-component obeys a lin-
ear difference equation and the coupling with the Z-component
is via an orthogonal projection. Finally, the available results
for partial stability of linear systems do not apply directly to
Θ, and it is worth mentioning that it is inappropriate to deal
with the problem assuming that Hk are general projections, not
connected with X , in order to retrieve linearity; in fact, in such
modified setting, Zk can diverge exponentially whereas A is
stable 2 (A stable implies PSS, see Remark 1).

This paper takes into account the special features of Θ to show
that it is PSS if and only if

ker{JΣJ−1}∩J = {0}, (2)

where J is the similarity transformation such that JAJ−1 is
in Jordan form and J stands for the unstable subspace 3 of

JAJ−1. Recalling from linear systems theory that (A,Σ) semi-
stabilizable can be interpreted as requiring that Σ excites the
strictly unstable modes of A, the interpretation of (2) is that
Σ has to “completely excite” all the unstable modes of A.
Condition (2) is stronger than semi-stabilizability of (A,Σ) and
not comparable to stabilizability of (A,Σ), see Remark 1.

The paper is organised as follows. Section 2 presents definitions
and preliminary results involving a sequence of bases that allow
to derive a simple structure for A and to simplify the evaluation

2 For example, consider the case Hk = V = 1
2

[

1 1

1 1

]

, k ≥ 0, and A = 3
4

[

1 1

0 1

]

.

3 Please see Section II for definitions.
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of the projections Hk. These results allow to obtain the testable
condition for PSS is Section 3. Finally, Section 4 provides some
conclusions.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let R
n denote the n−th dimensional Euclidean space. Let D

(respectively D̄) be the open (closed) unit disk. Let ei, i =
1, . . . ,n be the canonical basis of R

n. [v1, . . . ,vm] stands for the
vector space spanned by v1, . . . ,vm ∈ R

n. For vector subspaces
E and F , E ⊥ F means that E and F are orthogonal,
E ⊥ is such that E ⊥ ⊥ E , E ⊕ F is the direct sum of E
and F , and E ⊖ F = E ∩F⊥. Let Rr,s (respectively, Rr)
represent the normed linear space formed by all r × s real
matrices (respectively, r× r) and Rr∗ (Rr0) the cone {U ∈Rr :
U = U ′} (the closed convex cone {U ∈ Rr : U = U ′ ≥ 0})
where U ′ denotes the transpose of U . For U ∈ Rn, λi(U),
i = 1, . . . ,n, stands for an eigenvalue of U . λi(U) is referred
to as a semi-stable (respectively stable) eigenvalue when it lies
inside D̄ (D); the associated eigenvector v ∈ R

n is semi-stable
(stable), otherwise it is unstable. The space spanned by all
stable eigenvectors is referred to as the stable subspace of U ,
and similarly for semi-stable and unstable semi-spaces.

Definition 1. Consider system Θ. We say that (A,Σ) is partially

semi-stable (PSS) if, for each 0 ≤ ξ < 1 and V ∈ Rn0, there
exists Z̄ ∈ Rn0 for which ξ kZk ≤ Z̄, k ≥ 0.

We employ the notation Zk(V ) to emphasise the dependence on
V , and similarly for Xk(Σ). The next result is obtained using the

fact that, for any U ∈ Rn0, AUA′ ∈ Rn0.

Proposition 1. Consider U0,U1 ∈ Rn0 and α ∈ R. The follow-
ing statements hold.

(i) If U1 ≥ U0 and 0 ≤ α ≤ 1: Xk(αU1) ≥ αXk(U0) and
Zk(αU1) ≥ αZk(U0), ∀k ≥ 0

(ii) Xk(U0)+ Xk(U1) ≥ Xk(U0 +U1), ∀k ≥ 0.

Lemma 2. (A,C) is PSS if and only if, for each 0≤ ξ < 1, there

exists Z̄ ∈ Rn0 for which ξ kZk(I) ≤ Z̄, k ≥ 0.

Proof. Proof. (Necessity) It follows setting V = I in Definition
1.

(Sufficiency) For each V ∈ Rn0 we can pick κ > 0 such that
κV ≤ I and Proposition 1 yields ξ kZk(κV ) ≤ ξ kZk(I) ≤ Z̄,
which leads to ξ kZk(V ) ≤ κ−1Z̄.

Consider now the linear time-varying system related to the
dynamics of the Z-component of Θ, defined by

ΘZ :

{

zk+1 = HkAzk, k ≥ 0

z0 = H0z.
(3)

where zk ∈ R
n is the state. Not surprisingly, PSS is strongly

connected to semi-stability of ΘZ, as stated in the following
lemma, the proof of which is omitted.

Lemma 3. Consider systems Θ and ΘZ . (A,Σ) is PSS if and
only if for each z ∈ R

n and 0 ≤ ζ < 1 there exist α ≥ 0 and
0 ≤ β < 1 such that ‖ζ kzk‖ ≤ αβ k.

Similarly to the sequence zk connected with the Z-component
of Θ, we introduce a vector sequence related to X , as follows.
Consider the solution Xk = AkΣAk′ for the X-component. Intro-
duce the rank-one decomposition

Σ = σ1σ ′
1 + · · ·+ σrΣσrΣ , (4)

where rΣ stands for the rank of Σ, and the linear system defined
by

ΘX : xk(σ) = Akσ .

It is simple to check that

Xk = xk(σ1)xk(σ1)
′ + · · ·+ xk(σrΣ)xk(σrΣ)′

and Hk is the orthogonal projection onto [xk(σ1), . . . ,xk(σrΣ)]⊥.

Proposition 4. For ui,v j ∈ R
n, i = 1, . . . ,q, j = 1, . . . ,m let v̄ j

be the orthogonal projection of v j onto [u1, . . . ,uq]. ker{v1v′1 +
· · · + vmv′m} ∩ [u1, . . . ,uq] = {0} if and only if for each i =
1, . . . ,q, there is at least one j for which v̄′jui 6= 0.

2.1 Convenient bases

The spaces spanned by the trajectory xk = Akσ play an impor-
tant role in this paper, because they drive the projection Hk. We
now present certain characterisations for convergence of these
spaces. Note that, taking into account the original basis, there
may be no convergence for [xk], as in the case of a spinning xk

presented in Example 1. To circumvent this difficulty one can
use an alternative basis, e.g. associated to the Jordan canonical
form of A. In this paper we employ the bases introduced as
follows, in view of the fact that they lead to a simpler charac-
terisation for [xk] (see e.g. Example 1), in spite of the drawback
of an inherent time dependence.

Proposition 5. For each A ∈ Rn there is a sequence of trans-

formations Wk, k ≥ 0, such that A = W−1
k ĀWk−1, k ≥ 1, Ak =

W−1
k ĀkW0, k ≥ 0, and Ā = diag(A1(η1), . . . ,A j(η j)), where

Ai(ηi) is an upper triangular Jordan block and ηi, 0 ≤ i ≤ j,
is a real positive number, corresponding to an eigenvalue vi of
A with |vi| = ηi, ordered in such a manner that and ηi ≥ η j

whenever i ≥ j. Moreover, there exists κ , 0 ≤ κ < 1, such that
(1−κ)≤ ‖Wk‖ ≤ (1 + κ), k ≥ 0.

The bases of Proposition 5 are employed throughout the paper,
hence we introduce the following notation. Unless otherwise
stated, for any V ∈ Rn,r and v ∈ R

n, we define V̄ ∈ Rn,r and
v̄ ∈ R

n as V̄ = W0V and v̄ = W0v. For instance, we denote W0σ
simply by σ̄ . The matrix A associated with the transformation
W0 is usually clear from the context, otherwise we employ the
explicit notation W0(A). For σ ,z ∈ R

n, define z̄k, x̄k ∈R
n, k ≥ 0,

by

z̄k+1 = (H̄kĀ)z̄k, k ≥ 1, z̄0 = H̄0z̄, x̄k(σ) = Ākσ̄ k ≥ 0,
(5)

where

H̄k = WkHkW
−1
k .

Convergence of trajectories is preserved, as stated in the next
result, the proof of which is omitted.

Lemma 6. The following statements hold.

(i) zk = W−1
k−1z̄k, xk(σ) = Wk x̄k(σ), k ≥ 0.

(ii) There exists κ , 0 ≤ κ < 1, such that (1 + κ)−1‖z̄k‖ ≤
‖zk‖ ≤ (1− κ)−1‖z̄k‖ and (1− κ)‖x̄k(σ)‖ ≤ ‖xk(σ)‖ ≤ (1 +
κ)‖x̄k(σ)‖, k ≥ 0.

Regarding the eigenvalues η j, j = 1, . . . ,n, of Ā, let j =
1, . . . ,mu, be the indexes corresponding to eigenvalues strictly
greater than one and let e1, . . . ,equ be the associated eigenvec-
tors; similarly, j = 1, . . . ,me correspond to eigenvalues greater
or equal to one and e1, . . . ,eqe are the associated eigenvectors.
Introduce the subspaces
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U = [e1, . . . ,equ ]; Uc = [equ+1, . . . ,en];

E = [e1, . . . ,eqe ]; Ec = [eqe+1, . . . ,en].
(6)

The block structure of Ā in Proposition 5 allows for the next
invariance results; the proof is omitted.

Lemma 7. The following statements hold.

(i) U ,Uc,E and Ec are Ā-invariant.

(ii) For V ∈ Rn0, if ker{V} ∩Uc = {0}, then ker{ĀkVĀ′k}∩
Uc = {0}, k ≥ 0.

Note that Ā is in Jordan form, leading to several links with
available results for Jordan forms. For example there are in-
variance results similar to the ones of Lemma 7, see e.g. Abou-
Kandil et al. [2003]. Another useful connection is as follows.
Let J be the similarity matrix for which JAJ−1 is the Jordan
form of A and let J stands for the vector subspace spanned by

the unstable eigenvectors of JAJ−1. Then, for each σ ∈ R
n, the

projection of Jσ onto J is zero if and only if the projection of
σ̄ = W0σ onto U is zero, yielding the following result, given
without proof, which is useful for representing the main results
in terms of Jordan forms.

Lemma 8. ker{W0ΣW ′
0}∩U = {0} if and only if ker{JΣJ′}∩

J = {0}.

2.2 Approximation results related to the projections H̄k

The spaces spanned by x̄k(σ) may in a sense align with unstable
modes of Ā, in such a manner that the projections H̄ may
provide a cancelling effect for such modes. In order to make
these notions precise define, for the vector subspaces U and
V , the quantity

θV (U ) = max
v∈V ,v6=0

min
u∈U ,u 6=0

1− (‖u‖‖v‖)−1u′v. (7)

Note that, if σ ∈ R
n is such that η is the largest eigenvalue

for which σ ′ν 6= 0, where ν is an eigenvector associated with
η , and assuming η unique (i.e., no other eigenvalue of A equals
η), then there are α ≥ 0 and 0≤ β < 1 such that θ[e]([xk(σ)])≤

αβ k, where e is a non-generalised eigenvector associated with
η . This implies that xk(σ) and e align with exponential rate.
Moreover, for each eigenvector w of Ā (except w = e) there is
a ϕ > 0 such that θ[w]([xk(σ)]) ≥ ϕ for a sufficiently large k.

One can explore the convenient block structure of Ā to obtain
the more general characterisation given in Lemmas 9 and 10,
the proofs of which are omitted; recall that, according to the
notation of Section 2.1, σ̄ = W0σ .

Lemma 9. Consider σ j ∈ R
n, j = 1, . . . ,m. If ker{σ̄1σ̄ ′

1 + · · ·+
σ̄mσ̄ ′

m}∩E = {0} then there exist α ≥ 0 and 0 ≤ β < 1 such
that

θE ([x̄k(σ1), . . . , x̄k(σm)]) ≤ αβ k.

Conversely to Lemma 9, if σ j does not “completely excite” the
subspace E , then the space spanned by x̄k(σ1) does not “align”
with E . It is convenient for later reference to formalise this in
terms of U rather than E .

Lemma 10. Consider σ j ∈R
n, j = 1, . . . ,m. If ker{σ̄1σ̄ ′

1 + · · ·+
σ̄mσ̄ ′

m}∩U 6= {0} then there exist α ≥ 0, 0≤ β < 1, ϕ > 0 and
ϒ = [υ1, . . . ,υq], ϒ ⊂ U , where υ1, . . . ,υq are eigenvectors of

Ā associated with strictly unstable eigenvalues, such that

θϒ([x̄k(σ1), . . . , x̄k(σm)]) ≥ ϕ , k ≥ 1,

θU ⊖ϒ([x̄k(σ1), . . . , x̄k(σm)]) ≤ αβ k,k ≥ 0.

Example 1. Consider the system ΘX with

A =

[

1 −0.1 0
0.2 1 0
0 0 ρ

]

, σ =

[

1
0
1

]

. (8)

Set Wk = Ã−k, with

Ã ≈

[

0.9901 −0.099 0
0.1980 0.9901 0

0 0 1

]

and Ā =

[

1.01 0 0
0 1.01 0
0 0 ρ

]

.

Let ρ = 1.01. Figure 1 illustrates how simple is the behaviour
of x̄k when compared to xk. One can check the conditions of
Lemma 10 and, indeed, υ1 = [1 0 − 1]′, υ2 = [0 1 0]′ and
ϒ = [υ1,υ2] are such that θϒ(x̄(k)) = 1 and θU ⊖ϒ(x̄(k)) = 0. As
one can infer from the figure, there is no similar characterisation
for xk, as xk presents an oscillatory behaviour that prevents
convergence of θV (xk) for any V .

xk

x̄k

Fig. 1. Trajectories of Example 1.

The projections H̄ are not orthogonal (because of the “distor-
tion” introduced by the new bases), but they are similar to H
in the sense that H̄v̄ = 0, whenever Hv = 0. We shall need the
following related result.

Lemma 11. Consider the rank-one decomposition (4) for Σ.
The projections H̄k, k ≥ 0, are such that H̄kv = 0, for v ∈
[x̄k(σ1), . . . , x̄k(σrΣ)].

Proof. Note that H̄kv = H̄k(α1x̄k(σ1) + · · ·+ αrΣ x̄k(σrΣ)) for
certain scalars α j, j = 0, . . . ,rΣ, and, for each term of this

sum, one can employ Lemma 6 (i) to evaluate H̄kx̄k(σ j) =

WkHkW
−1
k Wkxk(σ j) = WkHkxk(σ j) = 0, j = 0, . . . ,rΣ, since

Hkxk(σ j) = 0 by definition of Hk.

As x̄k(σ j) aligns with E (U ⊖ ϒ, respectively) as stated in
Lemma 9 (Lemma 10, respectively), we have that the projec-
tions H̄k “tend to align” with the orthogonal projection onto
Ec (Uc ⊕ϒ, respectively), which allows to obtain the approx-
imation results that will be useful for Section 3. We present
these results in the next lemma, in which S, T and U denote the
orthogonal projections onto Ec, Uc ⊕ϒ and ϒ, respectively.

Lemma 12. If ker{W0ΣW ′
0}∩E = {0} then there exist α ≥ 0,

0 ≤ β < 1, such that, for k ≥ 0:

(i) ‖S(I− H̄k)v‖ ≤ αβ k‖v‖ and ‖H̄k(I −S)v‖ ≤ αβ k‖v‖.

On the other hand, if ker{W0ΣW ′
0}∩U 6= {0} then there exist

α ≥ 0, 0 ≤ β < 1, δ ,ϕ ,λ > 0 such that, for k ≥ 0:

(ii) ‖T (I − H̄k)v‖ ≤ αβ k‖v‖ and ‖H̄k(I −T)v‖ ≤ αβ k‖v‖;

(iii) ‖(UĀ)k+1Uv‖ ≥ (1 + δ )‖Uv‖;

(iv) T ĀUv = UĀUv;

(v) ‖H̄kUv‖ ≤ λ‖Uv‖.
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Proof. Lemmas 9–11 lead to (i) and (ii). (iii) follows from
the fact that U is the projection onto ϒ, a subspace spanned
by strictly unstable eigenvectors of Ā, as stated in Lemma 9;
moreover, (1 + δ ) equals the minimal of such eigenvalues. As
regards to (iv), ϒ is not necessarily Ā-invariant in general, but
one can easily check from the structure of Ā that, for w ∈ ϒ,
Āw ∈ U , in such a manner that the component of Āw in Uc

is zero and T Āw = UĀw. (v) follows from the facts that H̄k =
WkHkW

−1
k and (1−κ) ≤ ‖Wk‖ ≤ (1 + κ) for some 0 ≤ κ < 1,

as in Lemma 5.

An important feature of the case with ker{Σ̄}∩U 6= {0} is that
Im(H̄)∩U 6= {0}, which follows from the fact that H̄ can not
“cover” U as stated in Lemma 10. This fact together with the
structure of invariant spaces presented in Lemma 7 allows to
pick an initial condition z̄ for which the associated z̄k has a non-
trivial projection in ϒ, as in the next result, the proof of which
is omitted.

Proposition 13. There exists z̄ ∈ E such that Uz̄k 6= 0, k ≥ 0,
provided ker{Σ̄}∩U 6= {0}.

3. TESTABLE CONDITION FOR PSS OF Θ

This section presents, separately, a sufficient condition for
PSS and a necessary one. The results are gathered together in
Theorem 17. We start showing that z̄k defined in (5) converges
exponentially if Σ completely excites E .

Lemma 14. Consider W0 as in Proposition 5, E as in (6) and z̄
as in (5). If ker{W0ΣW ′

0}∩E = {0}, then for each z̄ there exist

χ ≥ 0 and 0 ≤ β < 1 such that ‖z̄k‖ ≤ χβ k.

Proof. For ease of notation, in this proof we write Ā and H̄ as A
and H, respectively; for ℓ ≥ 0, w1,ℓ,w2,ℓ,w3,ℓ stand for vectors
with ‖w j,ℓ‖ ≤ 1. Recall the orthogonal projections S,T and U
used in Lemma 12. From Lemma 7 we have that both Ec and
E are A-invariant, in such a manner that ASzk+ℓ ∈ Ec and A(I−
S)zk+ℓ ∈ E , k, ℓ ≥ 0. Moreover, ker{W0ΣW ′

0}∩E = {0}, hence
the conditions of Lemma 12 (i) hold, allowing to evaluate, for
k, ℓ ≥ 0,

SHk+ℓ+1(ASzk+ℓ) = S(ASzk+ℓ)+ αβ k+ℓ+1‖ASzk+ℓ‖w1,ℓ

= ASzk+ℓ + αβ k+ℓ+1‖ASzk+ℓ‖w1,ℓ

Hk+ℓ+1A(I−S)zk+ℓ = Hk+ℓ+1(I −S)(A(I−S)zk+ℓ)

= αβ k+ℓ+1‖A(I−S)zk+ℓ‖w2,ℓ

(9)

where α,β are as in Lemma 12. Now we shall show inductively
that

zk+ℓ+1 = Aℓ+1Szk +(I−S)Hk+ℓ+1Aℓ+1Szk+

+ 2α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)w3,ℓ, ℓ ≥ 0.

(10)
For ℓ = 0, from (3) and (9) we have that

zk+1 = Hk+1Azk = Hk+1ASzk + Hk+1A(I−S)zk

= SHk+1ASzk +(I−S)Hk+1ASzk + Hk+1A(I −S)zk

= ASzk +(I−S)Hk+1ASzk

+ αβ k+ℓ+1(‖ASzk‖w1,0 +‖A(I−S)zk‖w2,0)

= ASzk +(I−S)Hk+1ASzk + αβ k+ℓ+1(2‖A‖‖zk‖w3,0)

and assuming (10) holds for ℓ − 1, similarly as above we
evaluate from (3)

zk+ℓ+1 = Hk+ℓ+1Azk+ℓ

= Hk+ℓ+1Aℓ+1Szk

+ Hk+ℓ+1A(I −S)Hk+ℓA
ℓSzk

+ Hk+ℓ+1A(2α‖A‖ℓ‖zk‖(β
k+1 + · · ·+ β k+ℓ)w3,ℓ−1)

= SHk+ℓ+1Aℓ+1Szk +(I−S)Hk+ℓ+1Aℓ+1Szk

+ Hk+ℓ+1A(I −S)Hk+ℓA
ℓSzk

+ Hk+ℓ+1A(2α‖A‖ℓ‖zk‖(β
k+1 + · · ·+ β k+ℓ)w3,ℓ−1)

and, from (9),

zk+ℓ+1 = Aℓ+1Szk + αβ k+ℓ+1‖Aℓ+1Szk‖w1,k+ℓ+1

+(I−S)Hk+ℓ+1Aℓ+1Szk

+ αβ k+ℓ+1‖A(I−S)Hk+ℓA
ℓSzk‖w2,k+ℓ+1

+ Hk+ℓ+1A(2α‖A‖ℓ‖zk‖(β
k+1 + · · ·+ β k+ℓ)w3,ℓ−1)

= Aℓ+1Szk +(I−S)Hk+ℓ+1Aℓ+1Szk

+ 2α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ + αβ k+ℓ+1)w3,ℓ,

completing the inductive proof of (10). Then we can write, for
k, ℓ ≥ 0,

‖zk+ℓ+1‖ ≤ ‖Aℓ+1Szk‖+‖(I−S)Hk+ℓ+1Aℓ+1Szk‖

+ 2α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)

≤ 2‖Aℓ+1Szk‖+ 2α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1).

(11)
Now consider the term AℓSzk, ℓ≥ 1. Since Ec is A-invariant and
corresponds to the subspace spanned by eigenvectors associ-
ated to eigenvalues (strictly) inside the unit disk, one has that
‖AℓSzk‖ ≤ ηγℓ‖Szk‖ ≤ ηγℓ‖zk‖ for some scalars η ≥ 0 and
0 ≤ γ < 1. Then, we set

ℓ0 : ηγℓ0 ≤ 1/4

and from (11) with ℓ = ℓ0 −1 we obtain:

‖zk+ℓ0
‖ ≤ (2ηγℓ0 + 2α‖A‖ℓ0(β k+1 + · · ·+ β k+ℓ0))‖zk‖

≤ (1/2 + 2α‖A‖ℓ0(β k+1 + · · ·+ β k+ℓ0))‖zk‖, k ≥ 0.
(12)

Now we set k0 such that 2α‖A‖ℓ0(β k0+1 + · · ·+β k0+ℓ0) < 1/2.
From (12) with k = k0, we obtain ‖zk0+ℓ0

‖ ≤ π‖zk0
‖, where

π = (1/2+2α‖A‖ℓ0(β k0+1 + · · ·+β k0+ℓ0))< 1; similarly, from
(12) with k = k0 + mℓ0, m ≥ 0, we obtain

‖zk0+mℓ0+ℓ0
‖ ≤ π‖zk0+mℓ0

‖

≤ π2‖zk0+(m−1)ℓ0
‖ ≤ ·· · ≤ πm+1‖zk0

‖.

Finally, we have that each k ≥ k0 can be written in the form
k = k0 +mℓ0 + r for some 0 ≤ r < ℓ0 and m with (k− k0)/ℓ0 ≤
m ≤ (k− k0)/ℓ0 + 1, leading to

‖zk‖ ≤ ‖A‖r‖zk0+mℓ0
‖

≤ ‖A‖ℓ0πm‖zk0
‖ ≤ ‖A‖ℓ0‖zk0

‖π−1(π1/ℓ0)k, k ≥ k0,

and since ‖zk‖ ≤ ‖A‖k‖z0‖, k < k0, it is a simple matter to

check that we can set β = π1/t0 < 1 and find χ ≥ 0 for which

‖zk‖ ≤ χβ k, k ≥ 0.

Lemma 14 can be easily extended to show semi-stability of
the system ΘZ , by employing ζ < 1 as a “scaling factor” that
converts E associated with the matrix Ā into U associated with
ζ Ā. Convergence for z̄ is also related to the convergence of z by
Lemma 6.

Corollary 15. Consider the system ΘZ , W0 as in Proposition
5 and U as in (6). If ker{W0ΣW ′

0} ∩U = {0} then for each
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z and 0 ≤ ζ < 1 there exist α ≥ 0 and 0 ≤ β < 1 such that
‖ζ kzk‖ ≤ αβ k.

Conversely to Corollary 15, if Σ does not completely excite U ,
then exponential divergence takes place.

Lemma 16. Consider the system ΘZ , W0 as in Proposition 5
and U as in (6). If ker{W0ΣW ′

0} ∩U 6= {0} then there exist
z ∈ ℜn and 0 ≤ ζ < 1 such that for all χ ≥ 0 and 0 ≤ ψ < 1,

‖ζ kzk‖ > χψk.

Proof. In this proof we shall need an evaluation that is in anal-
ogy with (10) of Lemma 14. In fact, (10) involves projections
onto Ec and E via S and I−S respectively, and now we consider
projections onto Uc, U ⊖ϒ and ϒ via (I−U)T , (I −T ) and U
respectively. Using Lemma 12 (ii) and (iii) yields

zk+ℓ+1 = (TA)ℓ+1Uzk + Aℓ+1(I −U)Tzk

+(I−T )Hk+ℓ+1(TA)ℓ+1Uzk

+(I−T )Hk+ℓ+1Aℓ+1(I −U)Tzk

+ 4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)w3,ℓ, ℓ ≥ 0,

and, since Lemma 12 (v) provides (TA)ℓ+1U = (UA)ℓ+1U , this
can be written as

zk+ℓ+1 = (UA)ℓ+1Uzk + Aℓ+1(I −U)Tzk

+(I−T )Hk+ℓ+1(UA)ℓ+1Uzk

+(I−T )Hk+ℓ+1Aℓ+1(I−U)Tzk

+ 4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)w3,ℓ, ℓ ≥ 0.

(13)
Similarly to (9), we have from Lemma 12 (ii)

T Hk+ℓ+1(UA)ℓ+1Uzk+ℓ =T (UA)ℓ+1zk+ℓ

+ αβ k+ℓ+1‖(UA)ℓ+1Uzk+ℓ‖w1,ℓ

,

allowing to collect the first and third term on the right hand side
of (13) and to write

zk+ℓ+1 = Hk+ℓ+1(UA)ℓ+1Uzk −αβ k+ℓ+1‖(UA)ℓ+1Uzk+ℓ‖w1,ℓ

+ Aℓ+1(I −U)Tzk +(I−T )Hk+ℓ+1Aℓ+1(I −U)Tzk

+ 4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)w3,ℓ

= Hk+ℓ+1(UA)ℓ+1Uzk

+ Aℓ+1(I −U)Tzk +(I−T )Hk+ℓ+1Aℓ+1(I −U)Tzk

+ 5α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)w4,ℓ, ℓ ≥ 0.

(14)
Regarding the second and third terms on the right hand side of
(14), note that (I −U)Tzz ∈ Uc, yielding

‖Aℓ+1(I −U)Tzk +(I−T )Hk+ℓ+1Aℓ+1(I −U)Tzk‖

≤ 2‖Aℓ+1(I −U)Tzk‖ ≤ 2ηγℓ+1‖zk‖.
(15)

Note that (14), (15) and Lemma 12 (vi) lead to

‖zk+ℓ+1‖ ≤ ‖Hk+ℓ+1(UA)ℓ+1Uzk‖+ 2ηγℓ+1‖zk‖+

+ 5α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)

≤ λ‖(UA)ℓ+1Uzk‖+ 2ηγℓ+1‖zk‖+

+ 5α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1).

(16)

Moreover, for v ∈ R
n, (I −T )v ∈ (U)⊖ϒ, i.e., (I −T )v ⊥ ϒ in

such a manner that U(I−T ) = 0, as above, employing (13) and
Lemma 12, we obtain:

‖Uzk+ℓ+1‖ = ‖(UA)ℓ+1Uzk +UAℓ+1(I −U)Tzk

+ 4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)Uw3,ℓ‖

≥ ‖(UA)ℓ+1Uzk‖−ηγℓ+1‖zk‖

−4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1).

(17)
By substituting (17) in (16) we get that

‖zk+ℓ+1‖ ≤ λ
(

‖Uzk+ℓ+1‖+ ηγℓ+1‖zk‖

+ 4α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)

)

+ 2ηγℓ+1‖zk‖+ 5α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1)

= λ‖Uzk+ℓ+1‖+(2 + λ )ηγℓ+1‖zk‖

+(5 + 4λ )α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1), ℓ ≥ 0,

or equivalently, for ℓ ≥ 0,

‖Uzk+ℓ+1‖ ≥ λ−1‖zk+ℓ+1‖−λ−1(2 + λ )ηγℓ+1‖zk‖

−λ−1(5 + 4λ )α‖A‖ℓ+1‖zk‖(β
k+1 + · · ·+ β k+ℓ+1).

(18)
Now we employ the fact that ϒ is associated with unstable
eigenvalues of A. We proceed similarly as above, employing
(13) with k replaced by k + ℓ+ 1 and ℓ replaced by m− 1, and
Lemma 12 (ii)–(v), to evaluate:

‖zk+ℓ+m+1‖ ≥ ‖(UA)mUzk+ℓ+1

+(I−T )Hk+ℓ+m+1(UA)mUzk+ℓ+1

+(I−T )Hk+ℓ+m+1Am(I −U)Tzk+ℓ+1‖

−‖Am(I −U)Tzk+ℓ+1‖

−4α‖A‖m‖zk‖(β
k+ℓ+2 + · · ·+ β k+ℓ+m+1).

Recalling that (I − T ) and U are orthogonal projections onto
U ⊖ϒ and ϒ, respectively, and employing Lemma 12 (iii), the
above inequality leads to

‖zk+ℓ+m+1‖ ≥ (1 + δ )m‖Uzk+ℓ+1‖−ηγm‖zk+ℓ+1‖

−4α‖A‖m‖zk+ℓ+1‖(β
k+ℓ+2 + · · ·+ β k+ℓ+m+1)

and, from (18),

‖zk+ℓ+m+1‖ ≥ (1 + δ )mλ−1
(

‖zk+ℓ+1‖− (2 + λ )ηγℓ+1‖zk‖

− (5 + 4λ )α‖A‖ℓ+1(β k+1 + · · ·+ β k+ℓ+1)‖zk‖
)

−ηγm‖zk+ℓ+1‖

−4α‖A‖m‖zk+ℓ+1‖(β
k+ℓ+2 + · · ·+ β k+ℓ+m+1)

≥ (1 + δ )mλ−1‖zk+ℓ+1‖−β k(1 + δ )mᾱκ̄ℓ+1‖zk‖

−β k+ℓα̃ κ̃m‖zk+ℓ+1‖

where we set ᾱ, α̃, κ̄ , κ̃ ≥ 0 conveniently. For an arbitrary m̄ >
0, let m be such that (1 + δ )mλ−1 > 6m̄ and ℓ be such that

β ℓα̃ κ̃m < 3m̄, yielding

‖zk+ℓ+m+1‖ ≥ 6m̄‖zk+ℓ+1‖−3m̄‖zk+ℓ+1‖

−β k(1 + δ )mᾱκ̄ℓ+1‖zk‖

≥ 3m̄‖zk+ℓ+1‖−β k(1 + δ )mᾱ κ̄ℓ+1‖zk‖

hence, setting k such that β k(1 + δ )mᾱκ̄ℓ+1 < m̄,

‖zk+ℓ+m+1‖ ≥ 3m̄‖zk+ℓ+1‖− m̄‖zk‖

≥ m̄‖zk+ℓ+1‖+ 2m̄‖zk+ℓ+1‖− m̄‖zk‖.

Using this inequality in a recursive fashion, substituting k with
k + qm, q ≥ 0, we obtain

‖zk+ℓ+1+(q+1)m‖ ≥ m̄q‖zk+ℓ+1+m‖

+
q

∑
j=0

(2m̄) j‖zk+ℓ+1+ jm‖−
q

∑
j=0

m̄ j‖zk+qm‖.
(19)
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The second term on the right hand side of (19) dominates the
third one, leading to exponential divergence. It is important
to mention that we can pick an initial condition z for which
zk+ℓ+1+m 6= 0, see Proposition 13.

Theorem 17. Consider the system Θ. Let J represent the simi-
larity transformation for which JAJ−1 is in Jordan form and let
J stand for the unstable space of JAJ−1. (A,Σ) is PSS if and
only if

ker{JΣJ′}∩J = {0}. (20)

Proof. Consider W0 as in Proposition 5 and U as in (6). It
follows from Corollary 15 and Lemma 16 that

ker{W0ΣW ′
0}∩U = {0} (21)

is a necessary and sufficient condition for the existence, for
each z ∈ R

n and 0 ≤ ζ < 1, of α ≥ 0 and 0 ≤ β < 1 such that
‖ζ kzk‖≤αβ k. Lemma 3 extends the result to PSS of Θ. Finally,
(21) holds if and only if (20) holds, see Lemma 8.

Remark 1. Either Σ > 0 or semi-stable A imply (A,Σ) is PSS,
which implies that (A,Σ) is semi-stabilizable. Indeed, Σ > 0
provides ker{JΣJ′} = {0} and stable A yields J = {0}, and
in both cases (20) holds. Regarding the second implication,
(A,Σ) not semi-stabilizable means that Σ does not excite an
“entire” unstable mode of A, and (20) does not hold. PSS is not
comparable to stabilizability of (A,Σ); indeed, in Example 2 (i)
we have that (A,Σ) is stabilizable but Θ is not PSS, whereas
with A = 1 and Σ = 0 illustrate the opposite situation.

Example 2. Consider the system Θ with A and σ as in (8) and
Σ = σσ ′. We consider the following setups. (i) ρ = 1.01. It
is simple to check that (20) is not satisfyied and, according to
Theorem 17, Θ is not PSS. See Fig. 2 (i) for the behaviour of
the Z-component of the trajectory of Θ. (ii) Replace A with
1.01−1A. Now the hypothesis of Theorem 17 holds and the
system is PSS, see Fig. 2 (ii).
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Fig. 2. Norm of the Z-component of the trajectory of Θ for the
setups of Example 2.

Example 3. Consider the system Θ with

A =

[

−1.001 1
0 −1.001

]

, Σ =

[

0 0
0 1

]

.

The Z-component of the state presents a transient with fast
decaying norm, in spite of the eigenvalues of A being close to
the unit disk, see Fig. 3 (i). However, ker{JΣJ′}∩J = [v] with
v = [1 0]′ and, according to Theorem 17, Θ is not PSS. In fact,
after the initial transient, the trajectory diverges exponentially,
see Fig. 3 (ii).

4. CONCLUDING REMARKS

In this paper we have explored the structure of the system Θ
in (1), with special attention to the relations among the initial
condition Σ of the X-component, its dynamics (governed by
A) and the coupling with the Z-component via the orthogonal
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Fig. 3. Norm of the Z-component of the trajectory of system Θ
of Example 3.

projection H. We obtain the testable condition in (20) for
PSS, with the interpretation that Σ has to completely excite
the unstable modes of A. This interpretation is particularly
meaningfull in the scenario of Kalman filtering for linear time-
invariant systems with initial covariance matrix Σ, meaning that
the noise in the initial condition excites the unstable dynamics
of the plant; indeed, (20) is essential to obtain, as discussed
in Costa and Astolfi [b], a necessary and sufficient condition
for avoiding actual exponential divergence of estimates under
incorrect noise measurements, which is a significant result,
taking into account the conservativeness of existing results.
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