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Abstract: The dynamics of a railway vehicle are driven by the geometry and conditions at
the wheel-rail contact. Typically the condition and shape of the wheel and rail are monitored
separately and off-line. The work presented here is part of ongoing research into on-line model-
based estimation of parameters in the wheel-rail contact dynamics. This paper outlines a
practical approach to estimating a nonlinear function within a dynamic system by using a
piecewise cubic functions. The parameters for the cubic functions are estimated with a least
squared approach applied to the dynamic measurements taken from the system. A simplified
plan-view wheelset and suspended mass model is introduced to use as an application of this
technique. A contact geometry term, conicity, which is a nonlinear function of the relative
lateral wheel-rail position, is included in the rail vehicle model. The conicity is successfully
estimated using the least-squares method outlined in the paper.
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1. INTRODUCTION

The work presented in this paper is the product of feasibil-
ity studies into model based condition monitoring applied
to the wheel-rail interface dynamics in railway vehicles.
The most important element in the dynamics of a railway
vehicle is the interaction between the wheel and the rail.
Any changes to the shape and condition of either the wheel
or rail will have subsequent changes on the response of
the vehicle. Typical monitoring approaches will inspect
the shape and surface condition of the wheel and rail
separately, however it is the interaction of the two in situ
that really influences the system dynamics. Assumptions
about how the two independently measured components
combine can cause problems in identifying faults arising
in operation. Since the process of monitoring and main-
tenance aims to address the quality and safety of the
dynamic response of the vehicle, it makes sense that the
condition monitoring should be based upon the dynamic
response of the vehicle.

Model-based condition monitoring uses knowledge of the
system in the form of a mathematical model and the mea-
sured vehicle response to track irregularities to perform
real-time estimations of the system parameters of interest.
The first model based condition monitoring approach com-
monly taken is to apply a Kalman Filter (Kalman (1960)).
The use of a Kalman Filter for parameter estimation
creates a nonlinear problem, even if the system of interest
is linear itself. In applying the Kalman Filter to the partic-
ular application outlined in this paper, it was found that
the nature of the Kalman Filter is not well suited to this
problem. It does not directly consider the full time series of
collected data, which is very important in this case as the
contact point between the wheel and rail is always moving
in response to the rail irregularities. Hence it is important
to treat a whole frame of data at once to get a full picture
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of the condition of the wheel and rail shapes. Tuning the
Kalman Filter’s process and measurement noise covariance
matrices will effectively force the process to place more
weight on the past data, but this can have adverse effects
on the estimation quality and the ability to cope with
nonlinearities.

A least squares approach was seen to be more applicable
to this problem, where the estimation method could be
based on a complete frame of collected data. This allows
the estimation process to consider the whole data set when
forming a best-fit solution for the nonlinear parameter
curve. Furthermore, with a slight change to the basic
least squares method, the well known terms in the system
equations can be included, making the technique estimate
the unknown nonlinear function alone. Here we present a
number of implementations of least squares estimation of
the nonlinear contact profile, including a piecewise cubic
function Ichida et al. (1976).

The concept of estimating wheel-rail geometry terms was
inspired by previous work which looked into condition
monitoring of suspension components of a rail vehicle, such
as dampers Li et al. (2006). This work is part of research
aimed at estimating the profile shape of the wheel-rail
combination as the vehicle travels down the track. It is
proposed that ‘fast’ changes would be due to the rail profile
and ‘slow’ changes due to the wheel profile. To the authors’
knowledge this work is the first to investigate model-based
condition monitoring at the wheel-rail interface.

Phase one of the work is simulation based, hence the
results shown here are all based on a well understood
wheelset and half vehicle models implemented in Simulink.
The emphasis is on evaluating the viability of this ap-
proach and establishing what useful information can be
taken from condition monitoring in this application.
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Fig. 1. Block diagrams for generic condition monitoring
schemes.

2. CONDITION MONITORING AND PARAMETER
ESTIMATION

Condition monitoring aims to establish the current (ideally
real-time) condition of a system, using some level of
knowledge of the system of interest. This may be in
the form of a model, expert system, experience, learnt
behaviour, etc. Figure 1 shows the block diagram for
a generic condition monitoring system. The controlled
input and measured output for the system are given to
the condition monitoring strategy. These direct results
can then be taken into further processing algorithms to
establish a condition or provide fault detection. This work
is focused on the first step of condition monitoring and
looks at the feasibility and scope of results that can
be obtained from the estimation of wheel-rail contact
parameters.

In the previous condition monitoring work mentioned
in the introduction, Kalman Filter and Particle Filter
approaches were used to estimate components in the
secondary suspension. Data was taken from track tests
on the Tyne and Wear metro and a Coradia 175 vehicle
on the Chester to Holyhead line. A set of sensors housed
in a single unit were attached to the bogie frame (figure
2(a)). A Particle Filter approach was used to estimate the
parameters of interest, which are shown to converge to the
design values in figure 2(b).

3. LEAST-SQUARES PARAMETER ESTIMATION

A complete background on the least squares estimation
and regression methods can be found in Astrém (1989) or
Ljung (1999). The basis of the Least Squares method is
to optimise the set of system parameters in such a way as
to minimise the error between the measured output of the
system and the regression model of the system given by:

9(i) = ¢1(1)01 + ¢2(1)02 + ... + dn(i)0y, (1)

=o' (1)0 (2)

where 7 is the estimated observed variable, ¢ is the vector

of regressors, 6 is the vector of unknown parameters, and

i is the discrete sample number (1 < ¢ < t). Nonlinear

systems may be formed into this linear regression structure
by using nonlinear regressors in the model.

The problem is to optimise the parameter vector, 6, in such
a way that the output from the regression model given
in 1 will agree as closely as possible over the sample set
of observations and regressors, {y(i),¢(i)}. The error at
sample ¢ is given by

e(i) = y(i) — (i) = y(i) — " (i)0 3)

(a) Sensor box attached to vehicle bogie
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Fig. 2. Previous railway vehicle condition monitoring re-
search carried out at Loughborough University.

Introducing the notation for the complete sample set

Y(t)=[y(1) y(2) .. y(t)]"
E(t)=[e(1) €(2) ... e(t)]"
(¢
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>~
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)
)

—
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o(t) =[o" (1) ¢"(2) ... o7 (1)]" (6)
allows the error to be written as:
E=Y-Y=Y &0 (7)

The least-squares error can then be written as

Z 0)0)*  (8)

1E]? (9)

V(0,t)=

The least-squares error is minimal for parameters 6 such
that

oTo0 = o7y (10)

If the matrix ®7® is non-singular, the minimum is unique
and given by:
0= (7o) oy (11)

Proof: The error function can be rewritten as
2V(0,t) = (Y — ®0)" (Y — ©6)
=YTYy — Y70 — 070"y + 07070 (12)

The error function is quadratic in 6. By completing the
square the following result can be found:

2V (0,t) =Y T (I — o(d7®)"1oT)Yy
+(0—(2T0)'oTY)ToT e (0 (27T @)1 dTY) (13)
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The first term on the right hand side is independent of
0, and the second term is always positive. Therefore the
minimum is obtained for V' when

0=0=("d) o7y (14)
Alternative solutions to minimising the least squared er-
ror can be constructed to account for singular matrices
in equation 3 Ljung (1999). No problems with singular
matrices were experienced in this work.

3.1 Known Terms in the Regression Model

The regression model in 1 is shown to be made up of
a linear combination of unknown parameters and known
regressors. In many cases some of these parameters will
be known, and it would be more convenient if only the
unknown parameters are estimated. In the railway vehicle
application presented in this paper this is the case. Better
results are obtained if the least squares method estimates
the nonlinear function alone, rather than all the parame-
ters in the regression model.

A new regression model is defined as:
(i) = o(i)0 + w(i)

where w are the combined known parameter and regressor
terms. The complete set of these known terms can be now
be defined as

Q= wl)w(2)..

(15)

w(t)]” (16)

Now the same least squares error, V(0,t), is minimal with
the parameters 6 such that

3T (®0+Q) =0Ty (17)
If the matrix ®7® is non-singular, the minimum is unique
and given by:

0= (0Td) (7Y — 0TQ) (18)
The proof can be shown using a similar approach as given
in the previous section.

3.2 Estimating Complex Nonlinear Functions

Typically any nonlinear function that is to be estimated by
this method needs to be made up of an analytical function,
for example, a cubic function of one of the regressors. This
is shown to give large errors in the application presented
in this paper. The nonlinear function is too complex to be
estimated with a simple function. One approach is to use
higher order equations to match the nonlinear function,
but this adds complexity and can give false results. An
alternative approach is to use a piecewise cubic function
which fits the data in a least squares sense over each
piece of the function whilst preserving the continuity of
function and gradient between each piece of the function.
The process is briefly described here, however full details
can be found in Ichida et al. (1976).

The piecewise cubic function is given by:

Si(z) =msa;(x) + miy1bi(z) + yici() + yir1di(x)(19)
ai(z) = (zip1 — 2)*(z — 2)/h} (20)

bi(x) = —(wiy1 — z)(x — 3;)° /b7 (21)
ci(@) = (wip1 — 2)? {2(x — z3) + hi} /1] (22)
di(x) = (x — ;) {2(zip1 — ) + hi} b} (23)

hi =11 — xi (24)

where S;(x) is the cubic function for piece i, (x;,y;) is
the coordinates of knot point ¢, m; is the gradient at knot
point 1.

Let the least and largest = data in the interval [z;, x;41)
be zp; and x4;, the the problem becomes one of minimising
the sum square of the errors for the n sections in the
piecewise function:

E=Y | {Siz) - fi}’ (25)
i=1 | k=pi

where fi is the data for the function to be estimated.
Differentiating E w.r.t. the cubic function parameters and
setting to zero reduces the minimisation problem to the
solution of the following relationship:

Az =g (26)
where z is a vector of the cubic function parameters, A is
a matrix containing sum terms of z;, x; and g is a vector
containing sum terms of x;, xx, fi. Details on the specific
structure of these matrices can be found in Ichida et al.
(1976).

More complex approaches can use smoothing spline meth-
ods (Schimek (2000); Seber and Wild (2003)) which also
maintain second derivative continuity, but the proposed
method above provides a relatively simple solution that
gives good results.

4. RAILWAY VEHICLE APPLICATION

The stability and guidance dynamics of a railway vehicle
are driven by the constrained contact between the a solid
axle wheelset and rail. The steering and stability effects
are partly provided by the changes in wheelset-rail contact
geometry as the wheelset moves laterally on the railhead
and the corresponding changes in normal contact force and
rolling radius at each wheel. The remainder of the contact
forces are caused by creepages (or slip) in the contact
patch. The wheel-rail contact patch is typically an ellipse
of the order of 10mm in diameter, but its rolling friction
is non-trivial to analyse and calculate. Commercial rail-
way simulation packages use well known computationally
fast approximations to this problem (Kalker (1980) and
O.Polach (2005)). These calculate a lateral and longitu-
dinal creep force at the contact patch, plus a spin creep
moment about the normal axis of the contact patch.

At low creepages, the creep force behaviour can be treated
as linear (see figure 3). This is an acceptable assumption
for dry conditions where the contact forces are sufficient
to prevent easy saturation. For a given contact patch size
and shape, the gradient of the creep-force curve (known as
the creep coefficient) is constant.

A linearised quarter vehicle model, consisting of a single
wheelset and a suspended mass is used to simulate the
vehicle (see figure 4). The plan view dynamics (yaw and
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Fig. 3. Creep curves for dry, wet, low and very low adhesion
conditions (wheel load of 4000kg, 20m/s)

Datum

Fig. 4. Diagram of the wheelset and suspended mass
simplified railway vehicle model.

lateral displacement) are sufficient to describe the stability
and guidance response to lateral track irregularities. This
model includes nonlinear wheel and rail geometries in the
form of a nonlinear conicity term and is given by:

1 2 A
:j/':{_f” (y+my_vw>
m v l

Sy B4 E (27)
1 I\ 2.\ 2fas
=7 {an (m(y —d)+ U¢> -

-y B (4 02 )

FWAL + My} (28)
. 1

ymzm{—Fsy} (29)

where y is the lateral position of the wheelset, y,, is the
lateral position of the suspended mass, v is the yaw angle,
W is the wheel load and d is the lateral track irregularity

fi1 longitudinal creep coefficient 7.44e6 | N

fa2 lateral creep coefficient 6.79¢6 | N

fas3 spin creep coefficient 13.7¢3 | N

f33 spin creep coefficient 0| N

fy lateral damper coefficient 50e3 | Ns/m
fy yaw damper coefficient 0 | Ns/rad
I wheelset yaw inertia 700 | kgm?
l half wheelset width 0.7452 | m

m wheelset mass 1250 | kg
mym | suspended mass 8000 | kg

ky lateral suspension stiffness 0.23¢6 | N/m
Ky yaw suspension stiffness 2.5e6 | N/rad
0 rolling radius at zero lateral position 045 | m

v velocity 20 | m/s

Table 1. Parameter values used in the wheel-
rail profile estimation model.
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(b) Equivalent conicity function

Fig. 5. Nonlinear geometry of the wheel and rail used in
this vehicle model.

input. A is the nonlinear conicity function, the estimation
of which is the focus of this study. Fs, and M, are
the suspension lateral force and yaw moment respectively,
given by:

My = —kyt) — fyt) (31)

All other terms and their values used in this work are given
in table 1.

The wheel-rail dynamic interaction is particularly nonlin-
ear with complexities arising from the geometry, contact
and creep. Typically these dynamics are analysed with a
linearised conicity term (\). However, here some degree of
the nonlinearities must be included, which in this initial
case was achieved by making conicity a nonlinear function
of relative lateral position.
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Fig. 6. Single wheelset and lateral mass step response.

Conicity is a linearised term to describe the nonlinear
wheel-rail contact shape. It is effectively a secant gradient
of the rolling radius difference:
"L —TR
W) = 57—+ (32)
2(y —d)
where r;, and rg respectively are the left and right rolling
radii at the contact point, which depend upon the combi-
nation of the wheel and rail profile shapes.

A generic wheel-rail geometry has been used in this work.
Figure 5(a) shows the wheel and rail profiles used and
figure 5(b) shows the corresponding nonlinear effective
conicity. Figure 6 shows the response of this single wheelset
to a lateral step in track, which demonstrates the guidance
effect that the solid axle wheelset provides to the railway
vehicle dynamics.

A full background and description of the dynamics of
railway vehicles can be found in Garg and Dukkipati
(1984) or Wickens (2003).

4.1 Least Squared Conicity Estimation

The first step in applying the least squares estimation
method is to determine the regression model and regres-
sors. The observed variable taken here is v, and the as-
sumption that all the state and system parameters other
than that being estimated are available to construct the
regressors. Track irregularities are also assumed to be
known at this point in the work. As in all model based
condition monitoring approaches, it is necessary to select
an estimation model that is sufficiently complex to account
for all the dynamics of interest. Here, a reduced model is
sufficient to capture these dynamics, given by:

. § i j
b= 1 {_2f111)\(y —d) - %Tfllw — kytp — fwl/J} (33)

1 To

This can be converted into a regression sense by consid-
ering the conicity function to be estimated using a cubic
function of the relative wheel-rail position:

U=A1\y — d) + Ax + Azt
=Ai(a1(y — d)* + az(y — d) + a3)(y — d)

(34)

— Simulation
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(a) Estimated conicity function
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(b) Regression model response

Fig. 7. Cubic least squares estimation.

+Agth + Azt (35)
=Bi(y — d)* + Ba(y — d)* + Bs(y — d)
+ Aot + Agt) (36)

where Ai,As and A3 are known constants, ai,as and
a3 are the cubic function coefficients, By,Bs are Bj are
the regression parameters. Hence the vector of regressors,
vector of unknown parameters and known terms are given

by:

p=[y—d)° (y—d)? (y—d]" (37)
0=[B, B, Bs|" (38)
w= Ay + Agt)p (39)

Figure 7(a) shows the results from applying this cubic best
fit to the railway vehicle simulation. The correlation is rea-
sonable, and gives a rough approximation for monitoring
the condition of the wheel-rail geometry. However, this
is not accurate enough to gain a complete insight into
the wheel-rail contact conditions. Notice that, although
the simulation conicity is symmetric about zero relative
wheel-rail position, the estimated curve is biased slightly
to one side. This is a result of the sampled data being
not evenly distributed. The simulation model is driven
by track irregularities, which result in the contact patch
varying in position across the wheel and rail. Figure 7(b)
shows that the regression model output given the same
track irregularities is very different from the rail vehicle
simulation. This is a result of the large effect that the
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Fig. 8. Piecewise cubic least squares estimation.

wheel-rail contact shape and condition have upon the
vehicle dynamics. Even slight differences in the estimated
conicity function from the ‘real’ simulation conicity causes
large errors in the model response.

The complexity in the conicity function shape means that
a single cubic fit is not good enough. The application of
the piecewise cubic function aims to allow more flexibility
to making the least squares fit of the data. Effectively
a cubic function is fitted to each section of the conicity
data, between designated knot points. Figure 8(a) shows
the result of this approach and it can be seen that the
correlation is very good to the simulation conicity function.
Furthermore, figure 8(b) shows that the dynamic response
of the regression model matches well with the simulation
response, in spite of the simplified model used in the
estimation process.

5. CONCLUSION

Feasibility studies into model based condition monitoring
applied to the wheel-rail interface in railway vehicle dy-
namics has led to the use of a least squares parameter
estimation approach. This general approach is particularly
applicable to estimating a nonlinear system parameter
as it takes into account a block of sampled data and
hence the full extent of the nonlinear system parameter.
An approach to estimating a complex nonlinear function
within a system has been presented, using a least squared
error piecewise cubic function.

The piecewise cubic least squares estimation was success-
fully applied to a quarter railway vehicle model in order to

estimate a nonlinear wheel-rail geometry function (conic-
ity).

This work is part of ongoing research into condition moni-
toring of wheel-rail contact dynamics, looking more specif-
ically at estimating the wheel-rail profile shape and the
contact adhesion conditions. Future developments include
developing these methods to account for the track input
as a coloured noise source and applying these methods
to estimating nonlinear parameter functions within more
complex models (e.g. rolling radius and contact angle).
The use of real measurement data from track testing is
also intended for the future of this project.
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