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Abstract: Semiautogenous milling is difficult to control both because of its non-linear
behavior and the effects of overloading due to increases in the ore charge or variations in ore
characteristics. Advanced control strategies and operational change detection methods are thus
in need of strengthening using techniques such as state estimation. Non-linear state estimation
is a complex task for which various solutions have been proposed, such as the extended Kalman
filter, the particle filter and the moving horizon estimator. In this study we present firstly a
quantitative comparison of these solutions using a dynamic model validated with mill data. The
results indicate that in addition to its lower computational requirements, the extended Kalman
filter delivers the best performance in robustness and estimation error. Next, we propose a
method for estimation of changes in the hardness of the ore feed that we test by simulation.
Finally, we show that this method also works with real data.
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1. INTRODUCTION

Semiautogenous milling, one of the most widely used
methods of ore concentration, involves the feeding of large
rock particles and water into a grinding mill containing
steel balls that rotates at approximately 75% of its critical
speed. The slurry and ball charge adheres to the walls
of the mill before cascading off at a given angle, causing
impact and fragmenting the ore. This process exhibits
significant non-linearities and can be adversely affected
by mill overload, whether caused by an excess of ore or
variations in its hardness or granulometry. In response,
various advanced control algorithms have been developed
to achieve a more robust operation of the process in the
face of such variations or changes in the ore feed (Sbarbaro
et al., 2005).

Advanced control and operational change detection sys-
tems generally employ process models. The most de-
veloped versions use relatively simple structures whose
parameters are identified on the basis of input-output
data. Others attempt to model the phenomenology of
the process, but these are more complex designs based
on fracture kinetics whose parameters include grinding
and discharge rates (Austin, 1997). Although such models
can reproduce the interactions between the variables more
accurately, they require a non-linear state estimator for use
in control or fault detection and diagnosis. Various solution
alternatives are available for state estimation in non-linear
systems, and their suitability must be evaluated case by
case. In (Herbst et al., 1980), for example, a derivation
of the Kalman filter known as the extended Kalman filter
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(EKF) is utilized in ball mill applications. More recent
proposals include the use of particle filters (Arulampalam
et al., 2002) and moving horizon estimation (Rao et al.,
2003) for general application.

In this work we compare the three above-mentioned esti-
mation methods using a dynamic semiautogenous grinding
model developed in (Amestica et al., 1996) and (Gonzalez
et al., 2006). The model was validated with operating
data from a pilot plant. Our first objective is to compare
state estimators on the grinding plant model. Our second
objective is to identify hardness variations in the ore feed
in real time. For these purposes we assume the presence of
sensors that measure power consumption and total charge
weight, from which we can deduce the discharge flow of
water and ore. Input measurements are total ore feed flow,
feed water flow and the ore’s granulometric distribution.

2. DYNAMIC MODEL

The basic elements of a semiautogenous (SAG) mill are
a grinding chamber, a discharge module and slurry trans-
port, as depicted by the block diagram in figure 1. The ore
feed is represented by vector f, whose components express
the ore flow by size. F, indicates the feed water flow.

The grinding chamber is a rotating cylinder where the ac-
tual grinding takes place both through collisions between
the ore particles and the impact of the steel balls. Block
C in figure 1 is a classifier consisting of a grate and a
pulp lifter that distributes the slurry into flows either for
immediate discharge or recirculation to the chamber and
further grinding. The dynamic model of the mill we will
employ here is the one given in (Amestica et al., 1996). It
consists of the following variables and parameters:
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Fig. 1. Block diagram of SAG system.

e Variables

fi,Fa:  Ore feed flow by size class, feed water flow.
Fyr: Total mass flow.

w;,Wa:  Ore mass by size interval, water mass.
Whr:  Total ore mass inside mill chamber.
pi,Pa:  Discharge mass flow by size class, water flow.
Pyr: Total ore mass flow.
f}+  Ore mass flow by size class entering mill chamber.
p;: Discharge mass flow by size class exiting mill chamber.
ri:  Ore mass flow by size class for internal recirculation.

J:  Load fraction of mill chamber.
Mp:  Mill power consumption.

e Parameters

K: Ore grinding rate by size class.

C: Classification efficiency at discharge grate.
P*:  Internal mass flow.
va:  Water discharge rate.

All flows are measured in 7'/h and masses in T' . Mill power
is measured in kW .

The equations defining the model are categorized into
grinding (1), transport (2) and classification equations (3):

dW;
dtH = Kjwit1 (1)
P*
Pi = Wi (2)
T = Wmcwi ;i = W (I, — C)w; (3)

Parameters v4 and P* vary with time and are obtained
from measurements while matrices K and C are derived
from a probability distribution of the reduction and clas-
sification phenomena (Austin, 1997). Parameters y4 and
P* satisfy the following relationships:

e P =W (4)

YA =T+ ;
Wi’
where r, s and ¢ are calibration parameters.

The dynamic model synthesizing mill operation takes into
account the steel balls that increase the effectiveness of
the grinding process. In simplified models, the grinding
phenomena that reduce particle size can be represented
by a single parameter known as the effective ore grinding
rate K. If we denote the ore mass greater than size d; in
the chamber as W11, and if K, is the effective grinding
rate for ore of size d;, we have the grinding relationship

given by (1).

Power consumption and load fraction variables are closely
related. For the mill we are modeling, load fraction (from 0
to 1) has been found experimentally to satisfy the following
relationship:

J=aW,, +b (5)
where W, is derived from the density and porosity of the

ore. The additive constant W} represents the volume of
the steel balls.

As for power consumption, it is given by the mill parame-
ters and the total mass inside the chamber:

M, =(mJ+c)(W—m+ Wy + W) (6)

Coefficients a, b, m and c¢ are also calibration parameters.
All parameters values are displayed in Table 1.

Table 1: Calibration parameters of models.

Wy T
0.52

a b m ¢ r S q
0.407 | 0.0723 | -24.3 | 18.6 | 16.86 | 0.102 | 29

The equations given above are combined in the state
equations as:

dwi 1 * — e

= i [P0 = O) e MRT R R wit fi (1)
dW
th:—’yAL[/A—f—FA (8)

where 7 is the ore size class index, C’ is defined to include
the recirculation flow and K€ is the specified grinding rate
related to power consumption M,. R is a ones and zeros
matrix wich relates w; with W;. The outputs defined in the
model can be measured or inferred from operation data
and are given by:

P*

pi:W(In —C’)wi
i=1 W
Pa=vaWa

This base model incorporates n = 26 size classes and was
calibrated with data obtained from a pilot plant run by
Codelco (Amestica et al., 1996).

3. SIMULATION

The simulation was carried out in Simulink. Since the
model is continuous, it was discretized using At = 10 s as
a step in its integration, with (7),(8) as the state functions
and (9) as the output function in their discretized forms.
The initial operating conditions were 8.4 T'/h for total ore
feed flow (4.2 T'/h hard and 4.2 T'/h soft ore) and 1.2 T'/h
water feed flow.

Figure 2 shows the trend over time of hold-up mass and
mill power consumption over a period of 5 h. Total feed
flow was increased by 25% at t = 2 h, the ore fines propor-
tion was varied from 80% to 95% at t = 3 h, and finally,
soft ore was varied from 60% to 20% at t = 4 h. Note
that an increase in total feed flow leads to a rise in total
hold-up mass and therefore also in power consumption.
If the total charge exceeds a certain threshold, the mill
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Fig. 2. Variation over time of hold-up mass and power
due to changes in tonnage (a), granulometry (b) and
hardness (c) of mill feed.

chamber becomes overloaded and breakage declines due
to the excess ore, thus lowering the mill’s power draw. If,
on the other hand, the proportion of fines increases, both
the load and the draw diminish due to the greater ease of
ore evacuation. Finally, a lower soft ore proportion implies
less breakage and therefore lower ore evacuation, thus
increasing both load and power draw. For these reasons,
a linear filter could not show satisfactory results as non
linear estimations shown in the next section.

4. STATE ESTIMATION

We now turn to the quantitative comparisons of the
three state estimation solutions, they being the extended
Kalman filter (Welch and Bishop, 2004), the particle
filter (Arulampalam et al., 2002) and the moving horizon
estimator (Rao et al., 2003).

For the extended Kalman filter (EKF), we used matrices
@ and R , both dimension 5 x 5, which are equal to the
identity matrix multiplied by a scalar for all states, which
represents typical sensor noise or process noise. In the case
of the particle filter (PF) we utilized N, = 20, because
better results didnt appear with larger number of particles.
Finally, for the moving horizon estimator (MHE) a horizon
of 5 and a time estimation step At = 50 were employed.
Genetic algorithms were applied to solve the optimization
problem, with 10 generations of 30 individuals initially
distributed uniformly. The results of the search were then
used as the starting solution in a classic optimization
algorithm. A simplified version of the model was employed
using the same structure but only five states: coarse-hard
wy, coarse-soft wsq, fine-hard ws, fine-soft w4, and water
Wa.

=S 4 (1) (L= ) By + b
%:—%WQ+Q(1—/B)Fm+6w2

% — P4 G{;}jpwl +(1— ) BF,, + dws (10)
% =—Pny+ G;/Ajp wa + afBFy, + dwy

dS;A =—yaWa + Fa+ Wy

Where dwq, dws, dws, dwyg, 6W 4 are process noises of
their respective state variables. G is hard ore’s hardness
and G2 is soft ore’s hardness. Values of G; = 0.1 T'/kJ
and Gy = 0.2 T/kJ are used, which represent averages
for K matrix values for soft mineral and hard mineral,
respectively.

Parameter 3 is defined as the ore fines mass flow propor-
tion with respect to the total feed mass flow. Parameter «
is defined as soft ore mass flow proportion with respect to
the same total. Thus, & = 0 indicates that the feed includes
only hard ore, @« = 1 means it contains only soft ore and
a = 0.5 designates equal proportions of both. Therefore,
« represents the overall hardness of the system in a single
parameter.

The performance of the three estimators is summarized in
Tables 2, 3 and 4 for the various operating scenarios. Root
Mean Square Errors from the estimations are shown for the
following ore variables: coarse (w + ws), fine (w3 + wy),
hard (w; + ws), and soft (wy + wy). Table 2 gives the
results for normal operating conditions, with total ore feed
of 7 T/h, feed water flow of 1.2 T/h, fines proportion
B = 0.8 and soft ore proportion o = 0.5. In Table 3, we
again have a = 0.5, total ore feed of 7 T/h and feed water
flow of 1.2 T'/h, but § = 0.9. At t = 2 h total ore feed was
increased 10%, and at t = 4 h, ore fines 3 were increased
from 90% to 95% of feed flow. The operating conditions
for Table 4 are normal with the exception that 10% more
feed water flow was added at ¢t = 2 h.

Table 2: RMSE in T for estimates under normal
operating conditions.

Coarse Fine Hard Soft
w1 + w2 | w3 +wq | w1+ ws w2 + wq
EKF 0.0060 0.0081 0.0107 0.0028
PF 0.0082 0.0069 0.0072 0.0034
MHE 0.0162 0.0111 0.0370 0.0212

Table 3: RMSE in T for estimates with changes in
tonnage and granulometry.

Coarse Fine Hard Soft
w1 +ws | w3z +wq | wy+ws w2 + wyq
EKF 0.0053 0.0064 0.0162 0.0124
PF 0.0081 0.0069 0.0071 0.0032
MHE 0.0026 0.0131 0.0075 0.0094

Table 4: RMSE in T for estimates with changes in feed

water flow.
Coarse Fine Hard Soft
wi] + w2 | w3+ wq | wi+ w3 w2 + w4
EKF 0.0059 0.0082 0.0108 0.0028
PF 0.0114 0.0080 0.0108 0.0050
MHE 0.0159 0.0113 0.0367 0.0211

Figures 3, 4 and 5 graph the variation over time of the state
and state estimates. The operation conditions are the same
as in Table 3. The estimations are implemented using (10)
as a simplified model of the 26 states model from which the
measures are obtained. Initial estimations are 0.05 T for
coarse, 0.15 T for fine, hard and soft, picked as a normal
operation. The tests reveal that the estimators generally
behave well in the face of various types of disturbances
relative to normal operation, with EKF and PF giving
similar results and MHE slightly worse. They do not seem
to be strongly affected by operating changes, and thus
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Fig. 3. State and state estimates with EKF.

would be attractive for use with processes such as the one
studied here.

5. HARDNESS ESTIMATION
5.1 Joint state-parameter estimation

In our model (10) a change in ore hardness is represented
by a single parameter «. The online estimation of the
hardness of the ore in the system will therefore also require
the estimation of the state.

The joint state-parameter estimation can be set out as
follows: given known measurements (P,,, Pa, J and M,),
and inputs (Fas, Fa, (), estimate the unknown parameter
a and the state given by wq, we, ws, wg, Wa.

To solve this problem we resort to an EKF given that for
joint estimation it exhibits not only the best performance,
but also more robustness with respect to PF in distinct
scenarios. The parameter « is added as a new state to
(10), which models its variation over time:

g1 = O + Mk (11)
where 7;, is the noise term whose variance is o, . Appropri-
ate tuning of the will yield good results for the estimates
of a.

5.2 Results of the joint estimation

To evaluate the method just proposed we performed a
joint state-parameter estimation in a simulation with the
following characteristics: At ¢ = 2 h the soft ore in the
defined feed [f;, Fa] was varied from 20% to 40%, and at
t = 4 h the fines in the total feed flow was increased from
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Fig. 4. State and state estimates with PF.
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Fig. 5. State and state estimates with MHE.
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Fig. 6. State and joint state-parameter estimates with
EKF.

90% to 95%. The state estimates results are displayed in
figure 6 and the estimate of « is given in figure 7. Table 5
contains the estimation errors for different variations in o
assuming the other parameters are constant. The case of
figure 7, where initial « is 0.2 and final « is 0.4, generates
an RMSE of 0.04.

Table 5: Error of parameter a.

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.17 0.16 0.06 0.05 0.12 0.08 0.10 0.11 0.14
0.2 0.16 0.10 0.03 0.04 0.07 0.07 0.10 0.11 0.13
0.3 0.16 0.05 0.02 0.03 0.06 0.06 0.11 0.11 0.15
0.4 0.15 0.05 0.04 0.03 0.04 0.07 0.13 0.15 0.42
0.5 0.54 0.41 0.42 0.24 0.03 0.06 0.13 0.12 0.13
0.6 0.58 0.41 0.41 0.23 0.05 0.08 0.14 0.13 0.14
0.7 0.48 0.45 0.43 0.27 0.07 0.07 0.07 0.06 0.07
0.8 0.60 0.46 0.43 0.26 0.05 0.07 0.05 0.04 0.04
0.9 0.66 0.48 0.42 0.26 0.13 0.06 0.04 0.03 0.02

The estimate of hardness using the state equations yields
satisfactory results. The change in the proportion o was
estimated correctly in many cases. Table 5 shows that
approximately 65% of all combinations performed satis-
factorily.

6. EVALUATION USING REAL DATA
6.1 Estimation of parameter «

The solution given in Section 5, though it performs suc-
cessfully, assumes we have at our disposal an appropriately
calibrated phenomenological model of the process. In an
actual industrial plant, however, a model of these charac-
teristics is not necessarily available. As we will now show,
even in such situations it is possible to apply the same

Parameter o
0.45 T TR — o -
et e iy

o

H
i

0.151
0.1
0.05 —EKF]-
—Real
00 1 4 5

2 3
t [hrs]

Fig. 7. Parameter o and « estimate.

concept of representing a change of hardness with a single
parameter.

We begin by assuming we have identified two models M,
and M of extreme hardness. Let us also suppose that My
and My present an ARMA model structure given by:

Ma : Ai(q)y(k) = Bi(q)u(k — d)
Ma o As(q)y(k) = B2(q)u(k — d)

(12)
(13)

where Aq, As, By, By are polynomials of orders n, and ny
respectively, and ¢ is an operator which represents a step
forward in time, and d the delay of the model. We can
express the two models in regresion form as:

M y(k) = of (k)0 ; My : y(k) = ¢5 (k)8 (14)
where ¢T', ¢I and él,ég are the regresion and estimated
parameters vectors respectively. Let us now consider the
case where the mill operates at an intermediate hardness.
The integrated model then becomes:

Mo : y(k) = ayi(k) + (1 — a)y2(k)

Where y;(k) and y2(k) are outputs of models M; and
M respectively. In order to determine parameter «, the
following cost function is minimized:
- T(1\j YA
J(0) =Y (ylh) = adl (1) - (1 - a)of (k)z) (16)

k=1

(15)

The optimal value & that minimizes (16) is given by:

a= (Z w(kw(k)T)
k=1

where (k) and z(k) are given by:
W(k) = 1 (k)01 — 03 (k)02 5 z(k) = y(k) — 65 (k) (18)

One of the problems that arise in practice is to determine
whether the operating situation corresponds to an extreme
case of hard or soft ore. For this we propose the use of the
average power-tonnage ratio, which intuitively represents
how difficult it is for the mill to fracture the ore.

> W(k)z(k) (17)
k=1

6.2 Test with industrial plant data

For testing the estimation algorithm, three series of nor-
malized data obtained from measurements of a given in-
dustrial plant are used. Each series corresponds to plant
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operation on three different days. For the sake of simplicity,
to identify the ARMA model, orders n, = 1, n, = 1 and
d = 0 are employed.

The first base model is defined as the series with the
lowest power-tonnage ratio (o = 1), and the second base
model as the series with the highest such ratio (o = 0).
From the third series, corresponding to the intermediate
ratio, we use the first half to estimate parameter «, and
the second half for evaluating the prediction with the
integrated model. The error is evaluated by a one-step
prediction with a sample period of At = 2. The signals are
filtered by averaging the last ten samples. Figures 8 and
9 show the variation over time of the input and output
variables, that is, tonnage set-point and mill speed, and
electric power, respectively. Upon estimation of parameter
« we obtain « = 0.67, which indeed corresponds to an
intermediate value between o« = 0 and a = 1. For this
parameter, the integrated model of power gives an RMSE
of 0.007, far below 0.95 which is the average value of the
normalized signal. The prediction obtained is shown in
figure 9.

7. CONCLUSIONS AND FUTURE RESEARCH

The extended Kalman filter delivered similar state estima-
tion results to the particle filter, although in some cases the
latter was less robust. As regards robustness with respect
to disturbances and estimation error, the EKF was heavily
dependent on the matrices Q and R. The performance
of the moving horizon estimator was acceptable, but was
less precise than EKF and PF and exhibited higher com-
putational costs, with execution up to ten times more

time-consuming. This can be adjusted while maintaining
reasonable results by changing certain parameters of the
algorithm thanks to the flexibility provided by the genetic
algorithms as an optimization tool.

The hardness estimation tests show that with a phenom-
enological model of the system, an extended Kalman filter
delivers good results in a significant proportion of cases.
Even in some of the cases with a relatively high error,
the estimation still manages to detect the correct trend
of the change in «. The approach based on summarizing
the effects of an operational change in a single parameter
is also useful if a model is not available. In this case, a

very low error prediction error was obtained, by using an
ARMA model.

As regards future research, the method presented here
could be extended to models higher order and to appli-
cations other than semiautogenous grinding. The method
could also be used in adaptive predictive control and in
fault diagnosis.

REFERENCES

R. Amestica, G. Gonzalez, J. Menacho and J. Barria. A
mechanistic state equation model for a semiautogenous
grinding mill. International Journal of Mineral Process-
ing, volume 44(45), pages 349-360, 1996.

S. Arulampalam, S. Maskell, N. Gordon and T. Clapp.
A tutorial on particle filters for online non-linear/non-
gaussian bayesian tracking. IEEE Tansactions on Signal
Processing, volume 50(2), pages 174-188, 2002.

L.G. Austin. Concepts in process design of mills, com-
minution practices. Society for Mining, Metallurgy, and
Exploration, Inc., Littleton, Colorado, 1997.

G.D. Gongzalez, R. Paut, A. Cipriano, D. Miranda and
G. Ceballos. Fault detection and isolation using con-
catenated Wavelet Transform variances and discrimi-
nant analysis. IEFE Tansactions on Signal Processing,
volume 54(5), pages 1727-1736, 2006.

J.A. Herbst, K. Rajamani and W.T. Pate. Identification
of ore hardness disturbances in a grinding circuit using a
Kalman filter. Proceedings of the 3" IFAC Symposium
on Automation in Mining, Mineral, and Metal Process-
ing, Montreal, pages 333-348, 1980.

C. Rao, J. Rawlings and D. Mayne. Constrained state esti-
mation for nonlinear discrete-time systems: stability and
moving horizon approximations. IFEFE Transactions on
Automatic Control, volume 48(29), pages 246-258, 2003.

D. Sbarbaro, J. Barriga, H. Valenzuela and G. Cortes.
A multi-input-single-output smith predictor for feeders
control in SAG grinding plants. IEEE Transactions on
Control Systems Technology, volume 13(6), pages 1069—
1075, 2005.

G. Welch and G. Bishop. An introduction to the Kalman
filter. University of North Carolina, Chapel Hill, NC,
Tech. Rep. TR-95-041, 2004.

3315



