
NETWORK TOPOLOGY DESIGN ?

T. Fencl, P. Burget, J. Bilek ∗

∗ Czech Technical University in Prague,
Faculty of Electrical Engineering, Department of Control engineering,

Technicka 2, Prague 6, 16627, Czech Republic
(e-mail: fenclt, burgetpa, bilekj@control.felk.cvut.cz).

Abstract: The application of the Industrial Ethernet brings up issues of both the reliability and
behaviour of the networks under a demanded load, while preserving the permitted time delay
in the whole network. We propose an algorithm that designs the network topology, which meets
the required fault tolerance and allows reliable communication between the parts of the control
system. For this purpose, we employ an iterative genetic algorithm that designs the physical
topology and verifies the behaviour under the expected load and time delay in the whole network.
We propose the chromosome representation and genetic operators required. The network results
compare physical topologies, which were acquired by a common algorithm and by our algorithm.
Copyright c©IFAC 2008

Keywords: Networks; Network reliability; Network topologies; Ethernet; Genetic algorithm.

1. INTRODUCTION

The demand for reliable communication grows together
with the growing possibilities of distributed control sys-
tems. Unfortunately, the issue of network topology design
is often omitted, and therefore, we propose an algorithm
for the design of a communication network in control
engineering. The resulting network not only ensures the
delay in the whole network with minimal acquisition costs
but also offers different degrees of reliability in different
parts of the network.

Many common algorithms for network topology design are
aimed towards the design of computer networks. Computer
networks are used in different areas of human life, but
the basic requirements are the same: a certain degree
of reliability, a constrained average delay of data delivery
and of course minimal acquisition costs.

Communication networks for control engineering (control
networks) are applied in industry and, therefore, must
satisfy much stricter constraints, e.g.: different degrees of
tolerance to the links interruption in different parts of the
network (due to the different probability of an interruption
in the different network parts). An average delay of data
delivery can hardly be used as a measure of the network’s
ability for real-time control systems because it does not
ensure maximal delay for all data-flows in the worst case.
Late delivery of data can cause serious issues (malfunction
of the control system and, as a consequence, malfunction
of the controlled system). Hence, the design of a control
network must employ different approaches than the design
of a computer network.

? This paper has been co-financed by the Grant Agency of the
Czech Republic, project number 102/08/1429 ”Safety and Security of
Networked Embedded System Applications” and further supported
by the Czech Ministry of Education, Youth, and Sports as EuSophos
project No.2C06010

Algorithms that ensure the average delay and the same
minimum degree of reliability in the whole network were
proposed (Szlachcic 2006, Ko et al. 1997) for computer
networks. These algorithms were developed to be quite fast
and efficient and employ genetic algorithms. We can use
them if we require the same minimum degree of reliability
in the whole network and the average delay of data delivery
is important. Another possibility is to use algorithms that
do not focus on reliability but on other attributes of
network (Kumar et al. 1998, Han et al. 2002, Thompson
and Bilbro 1998, Elbaum and Sidi 1995, Dutta and Mitra
1993). This possibility is not an option for us because we
expect to have network applications in control engineering.

The reliability of the network is connected to the tol-
erance of the link interruption. The fault tolerance can
be described by the network connectivity. The connectiv-
ity describes how many independent paths exist between
a pair of nodes. The network (graph) is k-connected if
every node in the network has k or more communication
links (edges); if k-1 links are interrupted, the network
is still connected and the network is k-1 fault tolerant
(Cheng 1998). This attribute allows the development of
a very fast algorithm because we can verify k-connectivity
by finding the minimum node degree in the network. It
is possible to use it in control engineering as well, if we
demand the same minimum number of independent paths
for each node pair in the network. However, the resulting
network is unnecessarily expensive. We can imagine that
the control system needs 2-connectivity in a bigger part of
the system, but in the ”core” of the system, we want to
reach 4-connectivity. We must set 4-connectivity for the
whole network in the algorithm (Szlachcic 2006, Ko, et al
1997) and, therefore, the acquisition costs of the resulting
network would be higher than is necessary.

It is very difficult to satisfy the demands for the different
number of independent paths between the nodes, the max-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13581 10.3182/20080706-5-KR-1001.3550

imal delay in each communication path and the minimal
acquisition costs at the same time. This task belongs to the
NP-complete problems and, therefore, we use a topologi-
cal iterative genetic algorithm, which ensures the lowest
possible acquisition prices while preserving the reliabil-
ity (e.g. the redundant communication path between the
nodes).

2. PROBLEM FORMULATION

Let G = (V,L) be the network, with V being the set of
nodes and L being the set of communication links, which
we want to gain. We need to know the other network
parameters; M is the matrix of redundancy (it describes
how many independent paths are demanded between each
pair of nodes); C is the matrix of acquisition costs.
We assume that:

ci,j = cj,i;∀i, j ∈ {1, .., N} , (1)

where N is the number of nodes. The parameters that
must be known for verification of the delay are as follows:
F - the matrix of data-flows (it describes the amount of
data-flow between the nodes; we gain this matrix from
an estimation of the network traffic during the design
of the control algorithm. We know the variables, which
every node needs to gain from the other nodes; we also
know the frequency of the variables update as well as
the attributes and the behaviour of the communication
protocol. Then we can estimate the traffic among nodes),
D - the matrix of the maximum permitted delays (we know
the sensitivity of the control algorithm in every node to
the late data-delivery, thanks to that we can estimate the
maximum permissible delay of the data delivery); if we do
not have demands on the delay, the corresponding element
is infinity. We assume the capacity of the network links is
given at the start of the design and it is the same for each
communication link in the network. Such an assumption
is realistic and puts no constraints on the applicability of
the results.

We apply these variables to the design of the physical
network topology (it describes how to connect the nodes
with the communication links), which allows one to design
logical topology (it describes how to send data between the
nodes) and, therefore, makes verification of the data delay
possible.

3. DESIGN OF THE PHYSICAL TOPOLOGY

Design of a network topology with respect to the aspects
of connectivity and minimal network cost belongs to the
NP-complete problems and we, therefore, employ a genetic
algorithm for this purpose. The genetic algorithm does not
ensure identification of the optimal solution, but it has
a great advantage of searching very fast in a huge number
of solutions and the easy application of several constraints.
The speed of the genetic algorithm is given by the genetic
operators: mutation and crossover. The genetic algorithm
works like evolution in nature. Mutation and crossover
change the actual population and selection determines
which offspring or individuals of the actual generation will
be in the next generation. Selection utilises chromosome
evaluation that describes the quality of the chromosomes.
The evaluation of the chromosomes is obtained, thanks
to a fitness function.

3.1 Chromosome representation

The chromosome that describes network topology is a vec-
tor i with l elements.

i = {ij : ij ∈ {0, 1} , j = 1, .., l, (2)

l is given by

l =
N (N − 1)

2
, (3)

where N is the number of nodes in the network. Vector
i characterises the upper triangular part of the adjacency
matrix P because the adjacency matrix is symmetrical.
The fact that P is symmetrical, arises from the assumption
of a full-duplex communication where one communication
link permits communication in both directions.

Fig. 1. Adjacency matrix

3.2 Genetic functions

The fitness function for the design of the physical topology
is the price of the whole network. The price includes all
acquisition costs and possible penalties. The price of the
network is the sum of all elements of matrix CP :

CP = CP. (4)

The final price of the physical topology is given by:

c =
N∑

i,j=1

cPi,j + Pen, (5)

where N is the number of nodes and cPi,j
are elements of

the CP . Then the penalty is:
Pen = 1 +N2cMAX , (6)

where cMAX is the maximum element of the matrix of
the acquisition costs. Equation (6) ensures that the chro-
mosome, which is penalised, has a bigger price than the
permissible chromosomes. The chromosomes are penalised
if they do not correspond to the demanded number of
redundant communication links or if they are the same as
one of former unsuitable solutions. Former unsuitable solu-
tions are stored in an accumulator of inappropriate topolo-
gies. The inappropriate topologies are such topologies in
which the delay is higher than the permitted value. We
obtained those solutions in the previous iterations of our
algorithm (the whole algorithm is described at the end of
this paper). We need to verify the network interconnection
and the number of independent paths between the nodes

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13582

before applying the penalty. We apply the Ford-Fulkerson
algorithm (Cormen, et al 2001) to verify the number of
independent paths and the degree of nodes to make sure
they are interconnected.

The network is connected if:

deg (ν) ≥ 1;∀ν ∈ V ∧
∑
∀ν∈V

deg (ν) ≥ N − 1. (7)

We apply a one-bit mutation (a mutated chromosome is
chosen at random according to the mutation probability
and a bit is also chosen at random) and one point crossover
(two chromosomes are crossed at the same place, the
offspring consist of part of both parents as depicted in
Fig. 2). The new offspring replace the parents only if they
have better quality.

Fig. 2. Crossover

We use tournament selection (two chromosomes selected at
random are compared and the better one is chosen for the
next generation). The genetic algorithm is stopped after
100 generations.

4. AVERAGE BIT DELAY

The attributes of a network in control engineering are the
same as the attributes of a computer or communication
network. The network has Poisson distribution at the
inter-arrival time and the service time as well. Then the
average delay of the next sent bit is

Dp =
Lp

Cap − Lp
, (8)

where Cap is the link capacity and Lp is the load of the
link. Then the maximal load for the permitted delay is:

Lp =
DpCap
Dp + 1

(9)

We can transform the matrix D (the matrix of the max-
imum permitted delay) into the matrix of the maximum
incoming data-flows F •. Then, we can transform matrix
F • into a vector of the maximum incoming data-flows into
the node easily:

f̄ = (f•1 ... f•n) , (10)

where

f•i = min
(
F •x,i

)
for ∀i, x ∈ 〈1, N〉 . (11)

We apply (10) to decide whether the resultant logical
topology meets the demands for the average delay.

5. DESIGN OF THE LOGICAL TOPOLOGY

Fig. 3. Network

Fig. 3 shows a possible physical topology that meets the
demand for two independent paths between pairs of nodes
P1, P2 and P1, P3. The network consists of two different
parts: branches of the network (P1,P6,P7; P3,P4,P5) and
the ”core” of the network (P1,P2,P3). The logical topology
in the branches is strictly given by the physical topology
and, therefore, we do not have any possibility to change
the logical topology without modification of the physical
topology. We can find the branches of the network thanks
to the degree of nodes. We find the start node of the
branch (it has deg (ν) = 1), and then every node, which
is connected to the start node and has a degree of less
than 3, is a component of the branch. The end node of the
branch has the degree deg (ν) ≥ 3. We find all branches
and exclude them from the logical topology design. (We
do not have any influence on the logical topology in the
branches). Before continuing the design, it is appropriate
to verify the delay in the branches (the sum of all the
incoming data-flows into each node must be smaller than
the corresponding element in the vector (10)), because it
is possible that the physical topology does not allow one
to keep the permitted delay in the branches and, therefore,
it is necessary to start the design of the physical topology
again. Excluding the branches decreases the number of
possible logical topologies and, therefore, increases the
algorithm speed. We can see it in the following example:
The original data-flows for our network looked like this:

F =

0 f1,2 f1,3 f1,4 0 0 f1,7
f2,1 0 f2,3 0 f2,5 f2,6 0
f3,1 f3,2 0 f3,4 0 0 0
f4,1 0 0 0 f4,5 0 f4,7
0 f5,2 0 f5,4 0 f5,6 0
0 f6,2 0 0 f6,5 0 f6,7
f7,1 0 0 f7,4 0 f7,6 0

 . (12)

The matrix (12) is changed to the (13) after removing
branches

FM =

(0 fM,1,2 fM,1,3

fM,2,1 0 fM,2,3

fM,3,1 fM,3,2 0

)
, (13)

where the elements of the matrix FM comprise the fol-
lowing data-flows: In a new matrix (13) are not only
data-flows with input and output node in the ”core” but
also data-flows with input or output outside of the ”core”.
(Data-flow which is going through the ”core” has new

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13583

input and output nodes. They are the first and last node
in the ”core” for that data-flow).

fM,1,2 = f1,2 + f6,2
fM,1,3 = f1,3 + f6,5 + f7,4
fM,3,1 = f3,1 + f4,1 + f4,7 + f5,6
fM,3,2 = f3,2 + f5,2

. (14)

We must presume a smaller capacity of communication
links because if some communication link is interrupted, its
load will be sent through the other links. If the substitute
links are fully utilised, the data will be delivered too late;
therefore, we can only count on a smaller link capacity
that is given by:

k = 1− 1
n
, (15)

where n is the number of independent paths; then the new
capacity in the ”core” of the network is:

CPN = kCap. (16)

Then we use CPN instead of Cap in (8) to calculate the
delay in the network core.

5.1 Logical topology representation

The chromosome for the logical topology description codes
every possible path for every data-flow in the ”core” of the
network. The length of the chromosome is given by:

l = jm, (17)

where j is the number of the data-flows and m is the
number of communication links in the ”core” of the
network. In our case, j = 11 and m = 3 (see (14), Fig. 3)
and, therefore, the length of chromosome is l = 33.

5.2 Genetic operators

We have to modify the genetic operators for our chromo-
some configuration. The crossover function can be mod-
ified very easily; we know that a chromosome comprises
groups of bits that represent the logical path for ev-
ery data-flow. Therefore, our one-point crossover function
crosses the chromosomes exactly at the borders of these
groups. If the chromosomes are crossed somewhere else,
the resultant logical topology can be impermissible. We
can see the possible crossing point in Fig. 4.

Fig. 4. Crossover function

In our case the logical paths Px, which describe every data-
flow, are comprised of 3 bits. The LSB (Least Significant
Bit) corresponds to the link between nodes P1 and P2.
The MSB (Most Significant Bit) corresponds to the link
between nodes P3 and P1.

We have to use our own mutation operator for the descrip-
tion of the logical topology. If we used the common one-
bit mutation for our problem, the results obtained by this

operator would be completely wrong because they would
represent an impermissible logical topology.

We show a mutation application for the data-flow f1,2.
First, we have to create a list of all possible logical paths for
each data-flow. The possible paths are represented by only
two binary chains, these being 001 and 110 (the coding of
the path is the same as for the crossover). If the chain 001
is mutated, its value will be transformed into chain 110 and
vice versa. We have to expect that there are more than two
possible binary chains. In this case, the mutation result is
chosen at random from the set of the remaining paths.
The lists of the possible paths are also created during the
chromosomes initialisation. Initialisation is completed by
setting a randomly chosen logical path for each data-flow.

5.3 Fitness function

An important part of the genetic algorithm is the fitness
function and we have to define it for our problem. We can
calculate the delay in the network very easily because each
chromosome exactly defines the whole logical topology for
the ”core” and the rest of the logical topology (the logical
topology in branches) is known from the past. We can use
the average delay or the sum of delays in every link as the
fitness function. If the average delay decreases, then the
quality of the logical topology will increase.

It is possible that the average delay is satisfactory but the
delay in one path is bigger than the permitted delay and,
therefore, the whole logical topology is wrong. We have to
be able to recognise some level of inappropriate designs
and, therefore, we add a penalty to the fitness function.
A different penalty is needed for each rank of inappropriate
chromosome according to the number of delays that are
larger than permitted delays.

Penalty = kmax (D) , (18)

Fit =
j∑

i=1

di + Penalty. (19)

Equation (19) is our fitness function that describes the
quality of chromosome; dI is the delay for the ith data-
flow and it is obtained from (8) for every data-flow in the
”core”. Equation (18) describes the penalty function; k is
the number of delays that are bigger than the permitted
delay.

5.4 Selection and end condition

We use a tournament selection because of its efficiency.
We know the best chromosome has the smallest delay (the
best quality).

Our end condition is the speed of improvement in last ten
iterations of the genetic algorithm. The algorithm will be
stopped if the improvement in the last ten iterations is
smaller than 0.5%.

6. ALGORITHM DESCRIPTION

As mentioned above, the whole algorithm is an iterative
task based on the genetic algorithm. We can see the
structure of the whole algorithm in Fig. 5.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13584

Fig. 5. Whole algorithm

Set input parameters The matrices of the data-flows,
permitted delays, acquisition costs and redundancy are set
in this step. The accumulator of inappropriate solutions is
cleared.

Physical topology The physical topology design is ob-
tained by the application of the genetic algorithm in this
step. This genetic algorithm is a common genetic algo-
rithm that uses representation, genetic operators and the
fitness function described in Section 3. The designed topol-
ogy is compared with the topologies stored in the accumu-
lator of inappropriate topologies. The resuling topology is
used as the input for the design of the logical topology.

Logical topology In this step, it is verified whether the
physical topology allows the maximum permitted delays
to be preserved for each data-flow. For this purpose,
a logical topology is designed. If the physical topology
does not meet the demands for the permitted delay,
the physical topology is stored in the accumulator of
inappropriate topologies and the algorithm starts to design
the physical topology again. If the network allows the
maximum permitted delay to be preserved, the algorithm
ends and the results are written to the output.

We can see that it is possible that our algorithm could iter-
ate to infinity because of unrealistic demands. Therefore,
it is necessary to set the number of iterations of the whole
algorithm. If the limit number of iterations is exceeded,
the algorithm is stopped and the best result from the
accumulator of the inappropriate solutions is written to
the output.

7. NUMERICAL RESULTS

The tests of the physical topology design were made
for medium sized networks with different numbers of
nodes (N = 10, 12, 14, 16, 18, 20). The experiments were
done with the following parameters: population size 200,
crossover probability pc = 0.25, mutation probabil-
ity pm = 0.05, the number of iterations 100. The PC was
a Pentium 4 - 3GHz, 512MB RAM, Windows XP-SP2.
The algorithm was implemented in C#.

k = 3 k = 4 k = 5
N T [ms] T [ms] T [ms]

10 118 120 121
12 170 172 172
14 224 223 224
16 288 288 287
18 356 357 356
20 439 440 440

Table 1. Time consumption for k-connectivity

We can see that the algorithm is not sensitive to the
requested number of k-connectivity, but is sensitive to
the number of nodes. This attribute of the algorithm is
expected because when the node number increases the
length of the chromosome rises as well. Moreover, when the
length of the chromosome is bigger then the chromosome
creation needs more time and, therefore, the algorithm is
sensitive to the number of nodes.

N j T [s]

10 4 2.86
12 5 4.41
14 6 6.49
16 7 9.39
18 8 13.42
20 9 18.62

Table 2. Time consumption for the different
number of redundant paths

In Tables 2 and 4 j represents the number of node
pairs, for which 3 independent interconnecting paths are
requested. For the remaining pairs of nodes only two
independent paths are requested. We can see that the
algorithm needs a longer solution time but this behaviour
is natural, because the algorithm has to verify the number
of independent paths.

N µ σ min

10 15.56 0.05 15
12 18.96 0.06 18
14 22.07 0.06 21
16 25.55 0.09 24
18 28.85 0.09 27
20 32.66 0.1 31

Table 3. k-connectivity, statistical results

N j µ σ min

10 4 13.41 0.05 13
12 5 16.42 0.08 15
14 6 19.38 0.08 18
16 7 22.11 0.09 20
18 8 25.27 0.09 23
20 9 28.63 0.11 26

Table 4. Physical Topology design, statistical
results

In tables 3 and 4 min is the minimal value of the found
acquisition costs, µ is the average acquisition cost and σ is
the variance. These results were obtained from 100 runs
of the network topology design algorithm. Tables 3 and 4
contain the results for a network in which all the pairs
excluding the ”core” should have at least two independent

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13585

paths between the nodes. There should be three or more in-
dependent paths between the node pairs in the ”core”. The
”core” contains the minimal number of nodes according to
jth column in Table 4. Table 3. describes the results, which
were gained by the common algorithm for 3-connectivity
in the whole network. (This setting ensures that there
are three independent paths for each pair in the ”core”).
Table 4 describes the results, which were gained by our
algorithm for the requested number of independent paths.
The results in Table 3. and 4. were obtained from runs for
the same set of input parameters. The acquisition costs for
each link were set to 1. Thanks to that, we can compare
the acquisition costs of the resultant network. We can see
that the average costs and the minimum costs in Table 4.
are in all cases smaller than in Table 3. According to
these results, we can conclude that our algorithm designs
a better physical topology with the requested number of
independent paths in a reasonable time.

8. TIME CONSUMPTION

8.1 Design of the physical topology

ΘP = NPCh

(
N (N − 1)

2
+ Ln

)
+

+ (LnNPCh (pPc + pPm) + 3NPCh)NP . (20)

Where the first part belongs to the initialization of the gen.
algorithm, L is the number of com. links, N is the number
of nodes, n is the number of independent com. path, NPCh
is the number of the chromosome. The second part belongs
to the iterations of the gen. algorithm pPc and pPm are
the probability of the crossover and the mutation for the
design of the physical topology, 3 belongs to the number
of operations which are necessary for the tournament
selection and NP is the number of the iteration of the
algorithm for the physical topology design.

8.2 Design of the logical topology

ΘL = N3 + LnNF + (NLChNF) 4LNF +

+(NLCh (pLC + pLM) 4LNF + 3NLCh)NL (21)

Where NF is the number of data-flow, NLCh is the number
of chromosomes,pLc and pLm are the probabilities of the
crossover and the mutation, respectively, and NLis the
number of iterations.

8.3 Computing time of the whole algorithm

Then the time complexity of the whole algorithm is
Θ = NA (ΘL + ΘP) , (22)

where NA is the number of iterations of the whole algo-
rithm after which the algorithm is stopped without finding
an appropriate solution (demands are unrealistic). Equa-
tion (22) describes the worst case that could happen. This
situation arises from the unrealistic demands for permitted
delays which are not possible to reach because of the other
demands on the network.

9. CONCLUSION

The numerical results that were described in Section 7,
show that the topology gained by our algorithm has
a smaller acquisition cost than the topology gained by
existing algorithms (the algorithm that uses only k-
connectivity as the test of fault-tolerance); the variance
of the results for both algorithms is quite similar. Net-
works designed by the existing algorithm always have
bigger acquisition costs because of the principle applied.
It is obvious that the existing algorithm, which uses k-
connectivity, design a more expensive network than our
iterative algorithm, when we need network topology with
different degrees of reliability. The cost savings is more
than 10% and these results prove that our algorithm
designs networks with smaller acquisition costs. The ob-
tained physical topology is used as the input to the second
part of our algorithm, which was described in Section
5. The whole algorithm provides a design of a reliable
inexpensive network that can be used in control engineer-
ing because the network is fault tolerant and allows data
delivery to the destination in the time demanded.

REFERENCES

Szlachcic E. Fault tolerant topological design for computer
network. Proceedings of the International Conference
on Dependability of Computer Systemes, 2006.

Han J., Malan G. Robert , Jahanian F.. Fault-Tolerant
Virtual Private Networks within An Autonomous Sys-
tem. Proceedings of the 21 st IEEE Symposium on
Reliable Distributed Systemes, 2002.

Cormen T.H., Leiserson Ch.E., Rivest R.L., Stein C..
Introduction to Algorithms. In A.F. Round, editor,
McGraw-Hill, New York, 2nd edition, 2001.

Kumar G., N. Narang, C.P. Ravikumar. Efficient Algo-
rithms for Delay-bounded Minimum Cost Path Problem
in Communication Network. Proceedings of the Fifth
International Conference on High Performance Comput-
ing. ISBN:0-8186-9194-8, 1998.

Thompson D. R., Bilbro G. L. Comparison of Two Swap
Heuristics with a Genetic Algorithm for the Design of an
ATM Network. Proceedings of the International Con-
ference on Computer Communications and Networks,
1998.

Cheng S. T. Topological Optimization of a reliable Com-
munication network IEEE Trans. Reliability, vol. 47,
No. 3 pages 225–233, 1998.

Ko King-Tim, Tang Kit-Sang, Chan Cheung-Yau, Man
Kim-Fung , Kong Sam. Using Genetic Algorithms to
Design Mesh Network. IComputer, vol. 30, No. 8 pages
56–61, 1997.

Elbaum R., M. Sidi Topological design of local area network
using genetic algorithms. Proceedings of the Fourteenth
Annual Joint Conference of the IEEE Computer and
Communication Societies, 1995.

Dutta A., S. Mitra Integrating Heuristic Knowledge and
Optimization Models for Communication Network De-
sign. IEEE Transactions of knowledge and data engi-
neering.,vol 5,pages 999-1017 Proceedings of the Four-
teenth Annual Joint Conference of the IEEE Computer
and Communication Societies, 1993.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13586

