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Abstract: In this paper the position control of robot manipulators considering joint flexibilities
and friction compensation is presented. For the control purposes a cascade control strategy
is presented and the friction compensation is described using the Generalized Maxwell-Slip
(GMS) model. The GMS parameters are identified and a friction observer based on this model
is proposed and incorporated to the cascade strategy so that the stability and performance
can be improved. An experimental setup was constructed to validate the proposed control and
friction compensation strategy: a planar two degrees of freedom robot with joint flexibilities
prototype. The behavior of the cascade control with GMS model was tested in simulation and
it was validated in the experimental setup.

1. INTRODUCTION

In the last years new applications in various fields have mo-
tivated many developments in research and specifications
of the areas of robotics. To attend the existent demand the
robot’s structures have been proposed to meet high rela-
tionships between the load and robot weights. With these
requirements, undesirable effects are introduced, among
them the inherent flexibility [Albu-Schäffer and Hirzinger,
2000]. One usual example of these effects is the flexibilities
due to the transmission of the harmonic drives. Besides
the flexibility, the search for precision in the movements
demands a good knowledge of the physical phenomena
involved in the system dynamics. Such an important phe-
nomenon in robotic systems is the friction, which has
significant influence in manipulator’s performance.

Related to the friction compensation, several models have
been used to describe the phenomenon dynamics. In
Gandhi et al. [2002] an extension to the LuGre model for
friction compensation in a harmonic drive is presented.
Also, in flexible robots, Jeon and Tomizuka [2005] analyze
the consequences of the limit cycles. Recently, the General-
ized Maxwell-Slip (GMS) [Lampaert et al., 2003] has been
proposed to describe the friction dynamics appropriate for
control purposes.

This work proposes a control law to solve the tracking
problem, considering the joints flexibilities and the GMS
model to describe the friction dynamics. For this end,
the Cascade control strategy is adapted to receive the
information of the friction model. To apply this approach
on the 2 DOF prototype, the parameters are identified.
The stability analysis is proved based on the Lyapunov
theory. To consolidate the theoretical with practical as-
pects two experimental cases are performed: steady-state
and inversions of velocities.

Fig. 1. Prototype robot with flexible joints

The paper is organized as follows. In the Section 2,the
experimental setup is presented. The GMS friction model
is described in Section 3. The identification methods used
to obtain the friction parameters are presented in Section
4. The Cascade controller, the friction observer and the
stability proof are stated in Section 5. In Section 6 the
results are presented. Finally the main conclusions and
perspectives to further works are outlined in Section 7.

2. EXPERIMENTAL SETUP

In order to validate the theoretical results involved in
this paper, we used a planar robot prototype with two
degrees of freedom (Fig. 1). Between each motor inertia
and link inertia are placed transmission gears with ratios
and torsional springs. The gravity terms are disregarded
in the equations, because the motion is restricted to the
horizontal plan. The model used in this work is that
proposed by Spong [1987], given by:

M(q1)q̈1 + C(q1, q̇1)q̇1 + Ff + K(q1 − q2) = 0
Jq̈2 − K(q1 − q2) = u

(1)

where q is the n-dimensional vector of generalized coordi-
nates, M(q) is a definite positive n × n matrix and rep-
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resents the inertia of the n rigid links, C(q, q̇)q̇ represents
Coriolis and centrifugal generalized forces, J is a diagonal
matrix of constant inertia of the actuators, K denotes the
diagonal matrix of joint stiffness coeffcients, F represents
the friction torque and u represents the input generalized
force from the actuators. The robot model description and
its parameters can be consulted in Ramirez et al. [2002].

3. FRICTION MODELS

In this paper the Generalized Maxwell-Slip model will be
used [Lampaert et al., 2003] to describe the friction force
Ff . This friction model is chosen because it implements a
set of complex friction behaviors, such as stick-slip motion,
presliding displacement, stribeck effects, frictional lag,
transitions between sliding and presliding regimes, while
maintaining a simplicity appropriate to control purposes.

3.1 Maxwell-Slip Generalized Model

The GMS model is a qualitatively new formulation of the
rate-state approach of the LuGre [Canudas-De-Wit et al.,
1995] and the Leuven models [Swevers et al., 2000]. It is
based on three properties of friction [Al-Bender et al.,
2005]: i) a Stribeck curve for constant velocities, ii) a
hysteresis function with nonlocal memory in the presliding
regime, and iii) a frictional lag in the sliding regime.

The GMS consists of a parallel connection of different
elementary massless block-spring models, having all the
same input, velocity q̇1 (see Fig. 2). The model output is
the summation of all individual friction forces Fbi

acting
on the blocks.

Elementary
Friction Block - 1

Elementary
Friction Block - N

ki

+

..

.

..

.

Fb1

Fbi

FbN

Ffq̇1
Wi

−Wi

Fig. 2. Parallel connection of N elementary blocks in the
GMS model

The adopted rules for friction dynamic behavior are:

• If the elementary block is sticking, the state equation
is given by:

dFbi

dt
= kiq̇1 (2)

and the elementary block remains sticking until
|Fbi

| > αis(q̇1) = Wi.
• If the elementary block is slipping, the differential

equation is given by:

dFbi

dt
= sign(q̇1)C

(

αi −
Fbi

s(q̇1)

)

(3)

and the elementary block remains slipping until the
velocity goes through zero.

In the above rules, ki is the stiffness of asperities, C
is a constant term introduced to directly account for
frictional lag dynamics (determines how fast Fbi

converges
to αis(q̇1)) and with the condition of

∑

αi = 1 the total

friction force for constant velocities will be equals the
Stribeck curve, and s(q̇1) is defined by

s(q̇1) = Fc + (Fs − Fc)e
−(|q̇1|/vs)2 (4)

where Fc, Fs and vs are, respectively, the Coulomb friction,
the static friction and the Stribeck velocity.

The friction force is given as the summation of the out-
puts of the N elementary state models plus a term that
accounts for the viscous friction:

Ff =

N
∑

i=1

Fbi
+ σ2q̇1(t) (5)

where σ2 is the viscous coefficient.

In the following, we show the approach to obtain the
constant dynamic parameters ki, αi and C, and the
constant static parameters Fs, Fc and vs included in this
model.

4. FRICTION IDENTIFICATION

The identification process consists of three dedicated ex-
periments that emphasize the different behaviors of fric-
tion, consequently facilitating the capture of the param-
eters involved in each behavior. In the first experiment,
different signals of constant velocity are imposed on each
link. By measuring corresponding friction force, a map
friction force versus velocities is constructed. The steady
state curve (6), can be identified using LSQCURVEFIT
curve fitting technique from MATLAB.

Ffss
= (Fc + (Fs − Fc)e

−(|q̇1|/vs)2)sign(q̇1) + σ2q̇1 (6)

For this experiment it was used a PD controller to guar-
antee constant velocity at steady-state. The obtained map
for link 1 is presented at Fig. 3. This map consists of three
tests of 10 different velocities at both directions. Data
were also collected in open loop at zero velocity, improving
identification of the coefficients Fs and Fc. The result of
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Fig. 3. Stribeck curve - link 1

estimation for both links of static parameters of Stribeck
function is presented in table 1.

Table 1. Stribeck curve parameters

dir. Fs [Nm] Fc [Nm] vs [rad/s] σ2

Link1
q̇11 > 0 0.10787 0.09393 0.00846 0.06589
q̇11 < 0 0.10433 0.08997 0.00489 0.07410

Link2
q̇12 > 0 0.10697 0.09087 0.07819 0.00374
q̇12 < 0 0.09470 0.08363 0.05795 0.00530

The second experiment consist of emphasizing the effects
of dynamic parameters ki and αi. For this reason, the ap-
plied force is slowly ramped up and down with amplitude
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that keeps the system in presliding regime F << Fs. By
plotting the friction force as a function of the displacement,
the parameters ki can be estimated using the FMIN-
SEARCH function of MATLAB software, and αi is chose
to be the same for all elementary blocks (αi = 1/N). Fig.
4 illustrates the results obtained for link 1. The number of
elementary blocks is defined by a trade-off between pro-
cessing complexity and accuracy. For this case, it is used
N = 6 to describe the hysteresis function. The parameters
ki obtained from the estimation are presented in table 2.
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Fig. 4. Identification of parameters k1i

Table 2. Model parameters ki

i 1 2 3 4 5 6

Link1 k1i 2.26 5.93 6.95 64.24 11.45 111.41

Link2 k2i 0.12 16.08 19.81 75.86 138.10 150.58

As the third and last experiment the sliding regime is
considered. It consist in imposing to the link a non-steady-
state without inversions of velocities. In this case, the
friction dynamics can be written as in (7).

dFf

dt
= sign(q̇1)C(1 −

Ff

s(q̇1)
) (7)

By measuring the velocity, the friction force and the esti-
mated steady-state curve s(q̇1), the attraction parameter
C can be estimated using least square techniques. The
result of the identification is presented in table 3.

Table 3. Model parameter C

Parameter Link1 Link2

C 1.5 1.0

5. CASCADE CONTROL STRATEGY

The Cascade control strategy is an order reduction
methodology based on the interpretation of the robotic
system as a connection of two subsystems (Fig. 5): Mo-
tor Subsystem and Link Subsystem. Thus, based on this
interconnection of subsystem, two controllers are explicity
derived. These two subsystems are linked by the elastic
torque defined by:

ue = K(q2 − q1) (8)

The objective here is to design an elastic torque such
that the link positions q1 follows q1d. This torque is called
desired elastic torque ued, and allows the definition of rotor
desired position q2d using (8) as

q2d = K−1ued + q1 (9)

being the position error of the motors defined as the
following expression: q̃2 = q2 − q2d.

Flexible-joint Manipulator

Elastic
Coupling

Motor
Subsystem

Link
Subsystem

u

q1

q̇1

q̇1

Fig. 5. Interconnection block diagram

This allows us to rewrite expression (1) as

M(q1)q̈1 + C(q1, q̇1)q̇1 + G(q1) + Ff = ued + Kq̃2

Jq̈2 − K(q1 − q2) = u
(10)

By this way, we have now two cascade subsystems which
the input of them are u and q2. The motor dynamics define
the unforced subsystem, which drives the link dynamics
via q2. So, the problem is to make q2 converge to q2d that,
applied as input to the link dynamics will drive q1 towards
q1d.

5.1 Tracking Control of Link Subsystem

Based on the solution with passivity concepts proposed
by Slotine and Li [1991] for rigid robots and including the
friction compensation, a control law for link dynamics is
defined as

ued = M(q1)q̈1r + C(q1, q̇1)q̇1r + F̂f − KD1s1 (11)

where F̂f is the friction force estimation and the position
error q̃1, the ”velocity error” s1, the ”reference velocity”
q̇1r are respectively defined as

q̃1 = q1 − q1d q̇1r = q̇1d − Λ1q̃1 s1 = q̇1 − q̇1r (12)

where KD1 and Λ1 are definite positive diagonal matrix.

Friction Observer: In this paper the GMS model is used
for friction compensation. To express the two regimes of
the GMS model in a unified framework, we used the form
proposed by Nilkhamhang and Sano [2006]. This form is
based on the definition of a indicator function χ[X] of
event X as:

χ[X] =

{

1 if X is true
0 if X is false

(13)

Then the friction force can be written as:

Ff =

N
∑

i=1

[χi,stickFbi,stick + χi,slipFbi,slip] + σ2q̇1(t) (14)

where

χi,stick = χ[Fbi
is sticking] and χi,slip = χ[Fbi

is slipping]

Here χi,stick and χi,slip are mutually exclusive events.
That is, each elementary block must either be sticking
or slipping, but cannot be both, at any given time. To
construct the observer, (14) is rewritten as a function of
estimated parameters χ̂i,stick and χ̂i,slip.

Ff =
N

∑

i=1

[χ̂i,stickFi,stick + χ̂i,slipFi,slip +di]+σ2q̇1(t) (15)

where

di = (χi,stick − χ̂i,stick)Fi,stick + (χi,slip − χ̂i,slip)Fi,slip

In this case di is a disturbance term that arises from
switching error between the true GMS and the friction
observer. The boundedness of di can be showed as in
Nilkhamhang and Sano [2006] through the lemma 1.
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Lemma 1. The unparameterized disturbance di is boun-
ded for any t ≥ 0 if the true and the estimated parameters
are bounded.

Proof. There are two main cases to consider:

• If χi,stick = 1 and χi,slip = 0, then

di =

{

0 Se χ̂i,stick = 1, χ̂i,slip = 0
di,stick Se χ̂i,stick = 0, χ̂i,slip = 1

(16)

di,stick = Fi,stick − Fi,slip

• If χi,stick = 0 and χi,slip = 1, then

di =

{

di,slip Se χ̂i,stick = 1, χ̂i,slip = 0
0 Se χ̂i,stick = 0, χ̂i,slip = 1

(17)

di,slip = −Fi,stick + Fi,slip

So, if the true and estimated parameters of the system are
bounded, then the disturbance di is also bounded. �

By this way, we propose the observer expressed by

F̂f =
N

∑

i=1

[χ̂i,stickF̂bi,stick + χ̂i,slipF̂bi,slip] + σ2q̇1(t) (18)

with the following rules, which are based on previous
model rules with addicional terms to guarantee the closed-
loop stability:

• If the elementary block is sticking, the state equation
is given by:

dF̂bi

dt
= kiq̇1 (19)

and the elementary block remains sticking until
|Fbi

| > s(q̇1)(αi − (ke/C)s1).
• If the elementary block is slipping, the differential

equation is given by:

dF̂bi

dt
= C

(

αir(q̇1) −
Fbi

s(q̇1)

)

− kes1 (20)

and the elementary block remains slipping until the
velocity goes through zero.

Eq. (20) introduces the function r(q̇1) to allow the com-
putation of the first and second derivatives of Ff . In this
way, the function sign(q̇1) is smoothed by a function r(q̇1)
(like r(q̇1) = tanh(kv q̇1), where kv is a positive constant,
for example). Introducing the function r(q̇1), the residual
difference ∆(q̇1) is defined as

∆(q̇1) = sign(q̇1) − r(q̇1) (21)

With the friction observer defined, the closed-loop dynam-
ics of the link subsystem, first equation of (10), with the
control law expressed by (11) result in

M(q1)ṡ1 + C(q1, q̇1)s1 + F̃f + KD1s1 = Kq̃2 (22)

where the friction estimation error F̃f (q̇1) = Ff (q̇1) − F̂f (q̇1)

is given by

F̃f (q̇1) =
N

∑

i=1

[χ̂i,stickF̃i,stick + χ̂i,slipF̃i,slip + di] (23)

Remark 2. Considering the parameters as know the deri-
vative estimation friction in stick is zero ˙̃Fi,stick = 0. That
can be showed by integrating the state equations (2) and
(19) and evaluating the estimation error as in (24).

Fbi,stick =
t
∫

0

kiq̇1 dt+Fbi,slip ; F̂bi,stick =
t
∫

0

kiq̇1 dt+F̂bi,slip

F̃bi,stick = Fbi,slip(tts) − F̂bi,slip(tts) (24)

where tts is the transition between regimes at the instant
time. Then, we consider that the estimation error in the
stick regime will be equal to estimation error in the slip
regime at transition moment. This is treated as another
perturbation to the controller.

To incorporate the friction force of each link in the same
equation, the friction variables are written in a matrix
equation form. By this way, the following vector are
defined based on (18):

Xj,stick =





χ̂1,stick

.

.

.

χ̂Nj,stick



 Xj,slip =





χ̂1,slip

.

.

.

χ̂Nj,slip





Fj,stick =





Fb1,stick

.

.

.

FbNj
,stick



 Fj,slip =





Fb1,slip

.

.

.

FbNj
,slip





for i = 1, ..., Nj , where Mj is the total elemantary blocks
and j = 1, ..., n, where n is the joints numbers. Therefore,
the estimation friction force error in the stick and slip
regimes can be defined as

F̃stick =





X1,stick
T

F̃1,stick

.

.

.

Xn,stick
T

F̃n,stick



 ; F̃slip =





X1,slip
T

F̃1,slip

.

.

.

Xn,slip
T

F̃n,slip





For stability analysis the following non-negative function
is considered

V1 =
1

2
s1

T M(q1)s1 +
1

2
F̃T

slipke
−1F̃slip +

1

2
q̃T
1 P1q̃1 (25)

Using (22), (23) and the rules (19) and (20), V̇1 is given
by

V̇1 = −s1
T KD1s1 − F̃T

slipke
−1CsF̃slip + q̃T

1 P1
˙̃q1

+s1
T Kq̃2 − s1

T [F̃stick + FD] + F̃T
slipke

−1C∆(q̇1)
(26)

where C and Cs are, respectivelly, a diagonal matrix of
coefficient Ci and Ci/si(q̇1i) for i = 1, .., n, ∆(q̇1) is
residual difference vector defined in (21) and FD is the
vector of disturbance di summation given by

FD
T

=

[

N1
∑

i=1

di1

N2
∑

i=1

di2 . . .

Nn
∑

i=1

din

]

5.2 Tracking Control of Motor Subsystem

The problem here is to obtain a control law that makes q2

to converge to the q2d. To solve this problem, the following
control signal is used:

u = Ju0 + K(q2 − q1) − KD2s2 (27)

where u0 is considered as an auxiliary input control, that
guarantees the stability of the link’s dynamics and con-
tains rigid parameters. KD2 is a definite positive diagonal
matrix. The variable s2 has the same meaning of s1 in
(12). So, s2 is given by

s2 = ˙̃q2 + Λ2q̇2 (28)

where Λ2 is a definite positive diagonal matrix.

Substituting the input u (27) in (10), a possible choice for
u0 is given by

u0 = q̈2d − Λ2
˙̃q2 (29)

thus the closed-loop motor’s dynamics can be written as

Jṡ2 + KD2s2 = 0 (30)
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For stability analysis, the following Lyapunov function is
chosen

V2 = (1/2)s2
T Js2 + (1/2)q̃T

2 P2q̃2 (31)
where P2 is a definite positive matrix. The time derivative
of (31) along the trajectories of the motor’s dynamics is
obtained using the closed-loop dynamics (30).

V̇2 = −s2
T KD2s2 + q̃T

2 P2
˙̃q2 (32)

5.3 Stability Analysis

Theorem 3. (Stability). When all the system parameters
are known, given an initial condition, the controller gains
(KD1, Λ1, KD2, Λ2, ke e kv) can be chosen in order to

obtain the convergence of the tracking errors, q̃1 e ˙̃q1, to a
residual set R as t → ∞. The set R depends on the friction
characteristics and the controller gains.

Proof. Consider a Lyapunov function V = V1 + V2, com-
posed by (25) e (31).

V = (1/2)s1
T M(q1)s1 + (1/2)F̃T

slipke
−1F̃slip

+(1/2)q̃T
1 P1q̃1 + (1/2)s2

T Js2 + (1/2)q̃T
2 P2q̃2

(33)

This expression can be written in the following matrix
equation form

V = (1/2)ρT
1 N1ρ1 (34)

where the state error vector is defined as

ρT
1 =

[

q̃T
1

˙̃q1
T

q̃T
2

˙̃q2
T

F̃
T
slip

]

and the definite positive matrix N1 is defined as

N1 =







Λ1MΛ1 + P1 2Λ1M 0 0 0

2Λ1M M 0 0 0

0 0 Λ2JΛ2 + P2 2Λ2J 0

0 0 2Λ2J J 0

0 0 0 0 k
−1

e







taking the derivative of V along the trajectories of (22)
and (30), we get

V̇ = −s1
T KD1s1 − F̃T

slipke
−1[CsF̃slip − C∆(q̇1)]

−s2
T KD2s2 + q̃T

2 P2
˙̃q2 − s1

T [F̃stick + FD − Kq̃2]
(35)

with P1 = 2Λ1KD1 and P2 = 2Λ2KD2. Using (12) and
(28) we obtain the matricial form given by

V̇ = −ρT
1 N2ρ1 + ρ1D(ρ1) (36)

where N2 and D(ρ1) are defined as:

N2=











Λ1KD1Λ1 0 −Λ1K/2 0 0

0 KD1 −K/2 0 0

−Λ1K/2 −K/2 Λ2KD2Λ2 0 0

0 0 0 KD2 0

0 0 0 0 k−1

e Cs











(37)

D(ρ1)=[ Λ1(F̃stick+FD) F̃stick+FD 0 0 ke
−1

C∆(q̇1) ]
T (38)

From (38), D(ρ1) is defined as a perturbation due to

the switching error FD, stick regime error F̃stick and
smoothness error of signal function ∆(q̇1). The last term
will be zero when the velocity q̇1 = 0 and |∆(q̇1)| < 1 when
q̇1 6= 0.

From Gershgorin’s theorem [Lewis et al., 1993] some
condition must be satisfied to guarantee N2 as a definite
positive matrix. These conditions given some restriction to
the adjust of controller gains and are defined as:

Λ2KD2Λ2 > (1/2)K(Λ1 + In) KD1 > (1/2)K (39)

With the satisfied conditions N2 results uniformly definite
positive, i.e.:

N2 ≥ αIn (40)

where α is a positive constant given by:

α = inf
t∈[0,T ]

λmin(N2) ∀T ≥ 0 (41)

With the assumption (40) and the Rayleigh-Ritz theorem
[Lewis et al., 1993], (36) can be written as:

V̇ ≤ −α‖ρ1‖
2

+ ‖ρ1‖ ‖D(ρ1)‖ (42)

From the definition of D(ρ1) in (38), can be establish
a superior limit for ‖D(ρ1)‖ ≤ D̄. Based on (42) the

condition to V̇ negative is given by:

‖ρ1‖ > D̄(ρ1)/α (43)

With the objective to verify that there is a region where
V̇ is negative and limited by a constant, we consider
the condition (43) and (34). Through (34) and (42) and
Rayleigh-Ritz theorem is possible to show that the errors
norm ‖ρ1‖ tends to a residual set as t → ∞. Therefore, the

tracking errors q̃1 and ˙̃q1 tend to a residual set as t → ∞.
According to (43), the residual set will depend on D̄(ρ1)
and α defined in (41).

6. EXPERIMENTAL RESULTS

In order to validate the proposed control approach, experi-
ments were performed with the robot presented in Section
2. The experimental tests are formulated using a sinusoidal
and a polynomial desired trajectory. The objective is to
verify the robot performance to velocity inversions and
steady-state regime. For both cases the control gains are
adjusted as follows:

KD1 = diag {0.8, 0.8} KD2 = diag {0.2, 0.22}
Λ1 = diag {3.0, 3.0} Λ2 = diag {30, 40}

For the experiments (Fig. 6 and 8) the Cascade controller
is designed without friction compensation, to show the
friction influence on the robot dynamics and the tracking
error that appears with the reference trajectories.
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Fig. 6. Sinusoidal trajectory - without compensation

To verify the convergence of the tracking errors and the
performance improvement in the Fig. 7 and 9 are presented
the trajectories with Cascade control considering the GMS
friction observer. In the case of friction compensation the
parameter ke and kv are respectively 0.01 and 50 for both
links.

The tracking errors for both trajectories are presented in
Fig. 10. In this results, it is confirmed the importance of
the friction compensation for the reduction of the tracking
errors.
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Fig. 7. Sinusoidal trajectory - with compensation
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Fig. 8. Polynomial trajectory - without compensation
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Fig. 9. Polynomial trajectory - with compensation
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Fig. 10. Position errors

With the values obtained in table 4, it is possible to
verify the system with Cascade control considering the
GMS friction observer presents better performance than
a system without friction consideration.

7. CONCLUSIONS

A Cascade control strategy using the GMS friction model
and flexibility considerations was proposed in this work.

Table 4. Mean Square Quadratic Error - MSE

MSE
Sinusoidal Trajectory Polynomial Trajectory

with without with without

Link1 0.0007866 0.0048029 0.0000352 0.0010912

Link2 0.0009879 0.0083391 0.0002063 0.0019605

Through three kinds of experiments the off-line estima-
tion was carried out for each independent joint. The
convergence of the tracking errors was theoretically and
experimentally demonstrated through two different types
of trajectories. In the Cascade control project the system
parameters are considered as known. Future research will
take account with the comparision to others friction mod-
els and the consideration of parametric uncertainties.
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