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Abstract: The application of optimization-based control methods such as nonlinear model
predictive control (NMPC) to real-world process models is still a major computational challenge.
In this paper, we present a new numerical optimization scheme suited for NMPC. The SQP-type
approach uses an inexact constraint Jacobian in its iterations and is based on adjoint derivatives,
that can be computed very efficiently. In comparison to a similar real-time algorithm based
on directional sensitivities and an exact constraint Jacobian, the computational complexity
is significantly reduced. Both algorithms are applied to the model of a thermally coupled
distillation column for disturbance rejection. The results provide a proof-of- principle for the
proposed adjoint-based optimization approach.

1. INTRODUCTION

Nonlinear model predictive control (NMPC) is an opti-
mization-based control technique for multivariable pro-
cesses that directly takes into account nonlinearities,
bounds on inputs and states as well as state-dependant
constraints. A mathematical process model is used to
formulate an optimal control problem on a finite hori-
zon with the current process state as the initial value.
The optimal control problem describes the control task
(setpoint control, trajectory tracking, economic objective)
and incorporates all constraints. To establish closed-loop
feedback, only a first part of the solution to the optimal
control problem is applied to the process. Then, the prob-
lem is reformulated with a new initial value and solved
again. The successive solution of a nonlinear constrained
optimal control problem implicitly delivers a feedback law.
A more detailed introduction can be found in [Allgöwer
and Zheng, 2000], an overview of recent research topics is
given in [Findeisen et al., 2006].
While linear model predictive control (based on linear pro-
cess models) has become a standard in the petrochemical
industry and is widely used in other process industries [Qin
and Badgwell, 2003], too, there are still not many practical
applications of NMPC. A few exceptions are described in,
e.g., [Qin and Badgwell, 2003, Bartusiak, 2005].

This discrepancy seems due to two main reasons:
First, NMPC requires a mathematical process model based
on first principles, typically formulated as differential-
algebraic equations (DAEs) or partial differential equa-
tions (PDEs). Exact modeling, however, is often difficult,
time-consuming and expensive. Modern modeling environ-
ments and tools bring relief to this bottleneck, see for
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example [Elmqvist et al., 1998, Braunschweig et al., 2000].
The alternative to use data-driven input-output models,
e.g. based on artificial neural networks, is not considered
here.
Second, NMPC requires the successive numerical solution
of nonlinear constrained optimal control problems in real-
time. For realistic processes, these optimization problems
easily become large while the control action to suppress
disturbances or follow setpoint changes must be available
fast enough. Therefore, NMPC requires fast numerical
methods specifically tailored for real-time control. An
overview of optimization methods for NMPC can be found
in [Biegler, 2000, Cannon, 2004].

An important conceptional step towards real-time feasible
NMPC has been to leave the idea of “optimization until
convergence” behind. In classic implementations, the op-
timal control problem is iteratively solved by a numerical
algorithm until a specified convergence criterion is met. In
this case one has to hope that convergence is achieved “fast
enough”. Instead, a new paradigm suggests to compute
only as many iterations as the process time constants per-
mit before proceeding to the next problem. This approach
eventually led to the concept of real-time iterations as
suggested by Diehl [2002]. Here, only one iteration per
sampling instant is computed, but the successive optimal
control problems are connected via a specific shift of the
previous results. Furthermore, the current process state is
embedded into the subsequent problems as an initially vio-
lated linear constraint. This results in a coupling of process
dynamics and numerical optimization as demonstrated for
a pilot-plant distillation column in [Diehl et al., 2002].
The real-time iterations have been formulated within the
framework of direct multiple shooting [Bock and Plitt,
1984, Leineweber et al., 2003]. An even more efficient
extension for processes with many states but only few
controls was proposed by Schäfer et al. [2007].
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In this article, the ideas presented in [Diehl, 2002, Bock
et al., 2005] are further developed. We propose an opti-
mization algorithm for NMPC problems based on adjoints
and inexact constraint Jacobians that follows the prin-
ciples of real-time iterations. The adjoint-based problem
formulation allows to reduce the number of sensitivities
that need to be computed to a single gradient evaluation.
We also briefly describe how this gradient can efficiently
be computed within the DAE solver. The computational
effort of the algorithm is compared to existing real-time
iteration algorithms and the applicability is demonstrated
using the model of a thermally coupled distillation column
as a process example.

2. PROBLEM FORMULATION

We first state the model class under consideration and then
give a detailed formulation of the NMPC problem to be
solved at each sampling instant.

2.1 Model class

We consider systems modeled by a set of differential-
algebraic equations (DAE)

ẋ(t) = f(x(t), z(t), u(t)), x(t0) = x0, (1a)

0 = g(x(t), z(t), u(t)) (1b)

with differential states x ∈ R
nx , algebraic states z ∈

R
nz , and controls u ∈ R

nu . It is assumed that the
matrix ∂g

∂z
is nonsingular, i.e. the DAE is of index 1. We

note that a DAE system of higher index can often be
transformed to this form by index reduction techniques.
Furthermore, full state information is assumed while in
practical applications only some of the states are usually
measured and state estimation techniques may become an
important issue.

2.2 Nonlinear model predictive control problem

In a standard NMPC formulation, the following optimal
control problem has to be solved at each sampling instant
tk:

min
u(·)

x(·), z(·)

∫ tk+T

tk

L(x(t), z(t), u(t)) dt (2a)

subject to

ẋ(t) = f(x(t), z(t), u(t)), (2b)

0 = g(x(t), z(t), u(t)), (2c)

0 = x(tk) − x̂k, (2d)

0 ≤ c(x(t), z(t), u(t)), (2e)

The initial value x̂k represents the current process state
at time tk that we assume to be known in this article.
The inequality constraints (2e) summarize simple bounds
on controls and states as well as more complicated path
constraints. The Lagrange term L(·) is often formulated
as a least-squares objective penalizing the deviation from
a given setpoint or reference trajectory. Optimizing for-
mulations, where the cost functional rather reflects the
true economic aim of the controller, are an interesting
alternative currently under investigation [Engell, 2007].

One may also add an additional Mayer term M(x(tk +
T ), z(tk + T )) to the cost functional (2a). This has been
identified as one possible measure to guarantee nominal
stability of the NMPC scheme. For the stability theory of
NMPC we refer to the excellent articles by Mayne et al.
[2000] and more recently, by Magni and Scattolini [2004].

2.3 Transformation to a finite-dimensional NLP

We employ the direct multiple shooting approach [Bock
and Plitt, 1984] – a simultaneous direct optimization
method – to solve the optimal control problem (2): First,
the controls are parameterized on a time grid tk =τ0 <τ1 <
. . .<τN = tk+T (the grid points typically coincide with the
sampling instants). Although any formulation with local
support may be chosen, we restrict ourselves to piecewise
constant controls, i.e. u(t) = qi, t ∈ [τi, τi+1]. Second, the
states are discretized at the grid points by introducing
additional degrees of freedom si = (sx

i , sz
i ) as initial values

of initial value problems (1) on time intervals [τi, τi+1],
i = 0, 1, . . . , N − 1. For the discretized problem to remain
consistent with (2), so-called continuity and consistency
conditions are introduced as part of the nonlinear program
(NLP). The finite dimensional NLP to be solved at each
sampling instant then reads as

min
q0,...,qN−1,

s0,...,sN

N−1
∑

i=0

Li(s
x
i , sz

i , qi) (3a)

subject to

sx
i+1 = xi(τi+1; s

x
i , sz

i , qi), i = 0, 1, . . . , N−1, (3b)

0 = g(sx
i , sz

i , qi), i = 0, 1, . . . , N, (3c)

0 = sx
0 − x̂0, (3d)

0 ≤ c(sx
i , sz

i , qi), i = 0, 1, . . . , N. (3e)

We can rewrite (3) in the general form

min
w

F (w) (4a)

s. t. G(w) = 0 (4b)

H(w) ≥ 0. (4c)

with w = (s0, . . . , sN , q0, . . . , qN−1). The Lagrangian func-
tion of this problem is defined as

L(w, λ, µ) = F (w) − λT G(w) − µT H(w). (5)

3. AN ADJOINT-BASED SOLUTION APPROACH

In this section we first review an existing scheme, called
PRSQP algorithm, and then explain the adjoint-based
approach. In both cases, we treat NLP (4) by a sequential
quadratic programming (SQP) approach: Starting with
an initial guess w0 one computes the next iteration as
wk+1 = wk + ∆wk, where ∆wk solves the quadratic
subproblem

min
∆wk

1

2
∆wT

k Ak∆wk + mT
k ∆wk, (6a)

s. t. Bk ∆wk + G(wk) = 0, (6b)

Ck ∆wk + H(wk) ≥ 0. (6c)

Ak denotes the Hessian of the Lagrangian function (5) or
an approximation thereof, while the choices of Bk, Ck,
and mT

k make the difference between the PRSQP and the
adjoint-based algorithms.
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3.1 Classic PRSQP algorithm

For this approach, Bk and Ck are chosen as the constraint
Jacobians dG

dw
(wk) and dH

dw
(wk), and mT

k = ∇F (wk)T is
the gradient of the cost function in NLP (4).
Linearization of the continuity conditions (3b) and consis-
tency conditions (3c) yields

0 =
∂xi

∂sx
i

∆sx
i +

∂xi

∂sz
i

∆sz
i +

∂xi

∂qi

∆qi − ∆sx
i+1 + ci, (7a)

0 =
∂gi

∂sx
i

∆sx
i +

∂gi

∂sz
i

∆sz
i +

∂gi

∂qi

∆qi + gi, (7b)

where we use the shorthands ci = xi(τi+1; s
x
i , sz

i , qi)−sx
i+1

and gi = g(sx
i , sz

i , qi). Following the lines of a partial re-
duced SQP method (PRSQP) as proposed by Leineweber
[1999] and described for NMPC in Diehl [2002], we elim-
inate the step (∆sz

0, . . . ,∆sz
N ) in the algebraic variables

from the QP subproblem by using the invertibility of ∂g
∂z

due to the index 1 assumption for the DAE model. We
obtain

∆sz
i = −

(

∂gi

∂sz
i

)

−1 (

∂gi

∂sx
i

∆sx
i +

∂gi

∂qi

∆qi + gi

)

=: Dx
i ∆sx

i + D
q
i ∆qi + d

g
i . (8)

Because the Jacobian ∂gi

∂sz

i

is usually sparse, we can effi-

ciently compute Dx
i , D

q
i , d

g
i by applying a sparse direct

solver, in our case the Harwell subroutine MA48 [Reid and
Duff, 1993]. Inserting this step elimination explicitely in
the continuity conditions, one obtains

0 =

(

∂xi

∂sx
i

+
∂xi

∂sz
i

Dx
i

)

∆sx
i +

(

∂xi

∂qi

+
∂xi

∂sz
i

D
q
i

)

∆qi

− ∆sx
i+1 +

∂xi

∂sz
i

d
g
i + ci,

=: Vx
i ∆sx

i + V
q
i ∆qi − ∆sx

i+1 + V
g
i + ci, (9)

where Vx
i ,V

q
i ,V

g
i can be interpreted as (forward) direc-

tional derivatives of xi(τi+1; s
x
i , sz

i , qi). This is exploited in
the PRSQP approach by using specially tailored integra-
tor schemes, which efficiently compute these directional
derivatives. Following the concept of real-time iterations,
only one SQP step to NLP (3) is performed with the
controls and states of the preceding step as an initial guess
and deliberately allowing a violation of the initial value
constraint (3d).

3.2 Adjoint-based algorithm

As recently has been investigated in [Wirsching et al.,
2006], one can save a considerable amount of computa-
tional effort by solving the quadratic subproblem (6) with
approximated constraint Jacobians Bk and, possibly, Ck

and a modified gradient

m(wk, λk, µk)T :=∇F (wk)T + λT
k

(

Bk −
dG

dw
(wk)

)

+ µT
k

(

Ck −
dH

dw
(wk)

)

. (10)

In this case, only the constraint residuals and the adjoint
derivatives λT

k
dG
dw

(wk) and µT
k

dH
dw

(wk) have to be computed

exactly. The sensitivities involved can be computed very
efficiently as described in Section 4. However, conditions
on the ”closeness” of the approximated Jacobians to the
exact ones have to be posed to ensure local convergence of
the method, cf. [Wirsching, 2006].
For the adjoint-based NMPC algorithm presented in the
article, we suggest to approximate only a subset of Bk,
namely the sensitivities ∂xi

∂sx

i

, ∂xi

∂sz

i

, ∂xi

∂qi

in the linearized

continuity conditions (7a). This is motivated by the fact
that these particular constraints constitute by far the most
expensive part in constraint linearization. Let us denote
the approximations by Xx

i , Xz
i and X

q
i , respectively. With

this at hand, we only have to compute approximations
Xx

i + Xz
i Dx

i , X
q
i + Xz

i D
q
i and Xz

i d
g
i of the directional

derivatives in (9) to eliminate the algebraic step variables
from the QP (6). For the modified gradient, we first

compute the adjoint sensitivities λ̃T
i

∂xi

∂sx

i

, λ̃T
i

∂xi

∂sz

i

and λ̃T
i

∂xi

∂qi

(λ̃ being the multipliers of the continuity conditions) and

then assemble the terms λ̃T
i V

x
i , λ̃T

i V
q
i and λ̃T

i V
g
i by using

Dx
i , D

q
i , d

g
i explicitely. We will comment on the specific

choice of the approximations Xx
i , Xz

i and X
q
i in Subsection

5.2.

Note that in both algorithms the size of the QP actually
solved is further reduced by employing a condensing step
[Bock and Plitt, 1984]. In this step one exploits the spe-
cial structure due to the multiple shooting discretization
as well as the initial conditions to eliminate the step
(∆sx

0 , . . . ,∆sx
N ) in the differential variables, leaving the

step (∆qx
0 , . . . ,∆qx

N−1) in the control variables as remain-
ing degrees of freedom in the QP.

3.3 Computational complexity

Comparing the discussed approaches, we obtain a compu-
tational effort of nx + nu + 1 (forward) directional deriva-
tives per multiple shooting interval needed in the PRSQP
approach versus only one gradient evaluation per multi-
ple shooting interval in the new adjoint based approach.
Since both a gradient and a directional derivative can be
obtained by a small multiply of the cost for the correspond-
ing function evaluation, this shows a significant reduction
of computational complexity of our new approach when
compared to the PRSQP approach.

4. EFFICIENT COMPUTATION OF ADJOINT
DERIVATIVES

A key to an efficient implementation of the proposed al-
gorithm lies in the fast computation of the adjoint deriva-
tives needed in (10). To achieve this goal we employ the
idea of internal numerical differentiation (IND), originally
invented by Bock [1981], to obtain the sensitivities of
the solution of the stiff initial values problems (IVPs)
occurring in our algorithm with respect to initial values,
parameters, and controls. More specifically we use a re-
cently developed reverse mode of IND, which is imple-
mented in the integrator DAESOL-II, a C++ code based
on variable-order variable-stepsize BDF-Formulae that is
part of the SOLVIND integrator suite [Albersmeyer and
Kirches, 2007].
The main theoretical idea of IND is to freeze all adap-
tive components of the integrator, such as stepsize and
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order control, which could introduce indifferentiabilities to
the integration process, after computation of the solution
of the initial value problem. The resulting discretization
scheme can be understood as a sequence of differentiable
mappings leading from the start values to the IVP so-
lutions. This sequence of mappings can be differentiated
using the chain rule and the knowledge about the deriva-
tives of each of the mappings, which are essentially the
individual integration steps.
Doing this in an adjoint way, e.g using the principles of
the reverse mode of automatic differentiation, we obtain
a numerical scheme for computing reverse sensitivity in-
formation of the solution of the IVP. This approach leads
to useful sensitivity approximations even for relatively low
integration tolerances and is stable in the sense of reverse
analysis. A thorough introduction to automatic differenti-
ation can be found in [Griewank, 2000]. For details on the
reverse mode of IND see [Albersmeyer and Bock, 2006].
An unavoidable drawback, as in the reverse approach of
automatic differentiation, is the need to store the com-
puted solution trajectory, or if employing checkpointing
strategies, to recompute parts of the trajectory. Further-
more the storage of intermediate adjoint quantities is
needed. In the case of BDF-methods it can be shown that
the intermediate storage can be limited to approximately
7 times the trajectory size. Additionally, in our numerical
scenarios all the trajectory information needed can be kept
in the main memory, so these limitations of the reverse
approach do not play a practical role in our case.
Overall, by applying the reverse mode of IND we are able
to generate efficiently a directional gradient of the solu-
tions of the IVP. Theoretically, the effort can be bounded
by 5 times the cost of a system simulation, independent of
the number of variables, parameter and controls. However,
a factor well below 5 can be expected in our case, as
the main computational cost of the integration of large-
scale system lies in the factorization of matrices for the
solution of linear systems. Using the IND approach, the
factorizations already performed in the computation of
the IVP solution can be also be used for the solution
of the linear systems occurring during adjoint sensitivity
generation. So this work has only to be done once for the
solution of the nominal trajectories.

5. APPLICATION TO THERMALLY COUPLED
DISTILLATION COLUMNS

The adjoint-based NMPC scheme is applied to the nonlin-
ear DAE model of thermally coupled distillation columns.
The system consists of a main column with a side with-
drawal to a rectifying column (Fig. 1). The coupled col-
umn is used to separate a ternary mixture of Methanol
(light boiler, A), Ethanol (intermediate boiler, B) and 1-
Propanol (heavy boiler, C). The energy saving potential
of thermally coupled distillation columns has attracted
interest of the process industries (see [Finn, 1996, Segovia-
Hernandez et al., 2004, Demicoli and Stichlmair, 2004] and
references therein).

5.1 The process model

The process model that we use for simulation purposes
is taken from Itigin et al. [2003]. The same model also

served as an example for the real-time NMPC algorithms
described in Schäfer et al. [2007].

The main column consists of 42 stages (including boiler
and condenser stage). The side withdrawal is located at
stage 11, the feed enters the column at stage 21. The
rectifying column consists of 10 stages and an additional
condenser stage. The model is derived under a number of
typical assumptions:

• chemical and thermal equilibrium on each stage,
• constant liquid holdup on all stages,
• negligible vapor holdup,
• perfect mixing with ideal gas phase,
• constant pressure throughout the columns,
• total condenser behavior,
• saturated feed and reflux liquid flows.

A total mass balance and component mass balances for A
and B yield differential equations for the composition on
each tray. The phase equilibrium of the ternary mixture on
each tray is described by constant volatilities relative to 1-
Propanol in form of algebraic equations. The concentration
of component C in both liquid and vapor phase is com-
puted with the summation equation, leading to another set
of algebraic equations. The interplay of temperatures and
concentrations on each tray are described by the Antoine
equation.

The overall nonlinear DAE model comprises 106 differ-
ential states describing molar concentrations of two com-
ponents on all 53 trays, and 159 algebraic states for the
concentrations of A and B in the gas phase and for con-
centration of C in the liquid phase.
The column system is controlled in a D-V configuration
with the two distillate flow rates D1 and D2 and the boil-
up rate V serving as manipulating variables (MVs), thus
u = (D1, D2, V )T . The controlled variables (CVs) are the
molar concentrations in the liquid phase of Methanol in
the main column distillate (xA), Ethanol in the rectifying
column distillate (xB), and 1-Propanol in the main column
bottoms (xC), and we write y = (xA, xB , xC)T .

Fig. 1. Coupled distillation column with side withdrawal
for the separation of a ternary mixture of A, B,
and C (the schematic drawing is taken from Segovia-
Hernandez et al. [2004]). The controls are the boil-up
V and the distillate flows D1 and D2.
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5.2 NMPC formulation

To illustrate the adjoint-based real-time algorithm, the
following scenario is simulated: The distillation column is
started in steady-state. Then, at time t = 600 a measured
disturbance in the feed flow composition occurs: The feed
concentration of Methanol drops from 0.3 to 0.2, while the
Ethanol concentration in the feed is increased from 0.1 to
0.15. The task for the NMPC algorithm is to steer the
CVs back to their steady state values. A crucial question
is the choice of the approximations Xx

i , Xz
i and X

q
i . In the

example presented here, the adjoint-based algorithm uses
the exact sensitivities ∂xi

∂sx

i

, ∂xi

∂sz

i

, ∂xi

∂qi

, evaluated at t = 1000,

for all steps later than t = 1000. For any steps before, the
exact PRSQP algorithm is used. This choice is motivated
by the observation, that the system dynamics and sensi-
tivities change quite significantly in the steps immediately
after the disturbance. Thus, fixing the approximations too
early after the disturbance would lead to bad behaviour or
even failure of the approach, because the approximations
then differ too much from the exact sensitivities in the later
steps. A possible remedy, also for the case of frequently
occurring disturbances, is to recalculate the sensitivities
each M steps, where M is a small positive integer.
Further, a number of choices have to be made with respect
to the NMPC formulation (2). The cost function is cho-
sen to be of quadratic type as L(x, z, t) = y(t)T Qy(t) +
u(t)T Ru(t) with diagonal weighting matrices Q, R. The
diagonal elements are Qii = 100 and R11 = 0.1, R22 = 0.1,
and R33 = 10, respectively. The sampling time is given
as ∆t = 100 s and the prediction and control horizon
is chosen as T = 3600 s. This horizon is divided into
six equidistant multiple shooting intervals with piecewise
constant controls. Most of these NMPC parameters are
chosen according to the time constants of the process to
be controlled.
The process itself is open-loop stable and it proved un-
necessary to use especially designed stabilizing NMPC
schemes. In the example we consider state feedback, i.e.
we assume that all needed states are measured.

5.3 Numerical results

The simulations have been run on an Intel Pentium 4
machine with 2.8 GHz, 1024 kB L2 cache, 1 GB main
memory, under Linux operating system Suse 10.1. The
integration accuracy was set to 10−4. A comparison of
the results for the test scenario can be seen in Fig. 2 for
the CVs and in Fig. 3 for the MVs. Both the PRSQP
and the adjoint-based algorithm qualitatively result in the
same control moves. The CVs, particularly xA, show some
differences which are due to the high sensitivity of the
dynamics to changes in the MVs.

6. CONCLUSIONS AND OUTLOOK

We presented a real-time iteration scheme for NMPC
based on adjoint sensitivity generation and inexact con-
straint linearization. Both the new iteration scheme and
an existing iteration scheme were applied to a test problem
from the field of chemical process engineering. Producing
almost identical profiles in the manipulating variables and
quite similar profiles in the controlled variables, the new
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Fig. 2. A comparison of the NMPC closed loop responses
for CVs xA, xB , and xC to a step disturbance in the
feed composition: PRSQP algorithm (light solid) vs.
adjoint-based algorithm (dark dashed).
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Fig. 3. Corresponding manipulating variables (MVs)
for the disturbed feed composition: PRSQP algo-
rithm (light solid) vs. adjoint-based algorithm (dark
dashed).

approach has a significantly lower computational complex-
ity than the existing approach. The performance of the
new approach, however, strongly depends on the quality
of the constraint Jacobian approximation and hence on
the state the linearization is based on. It remains an
open problem to decide online whether the approximated
constraint Jacobian is sufficiently close to the exact one.
Instead of keeping the linearizations fixed for all times, an
appealing idea is to update the constraint linearization at
times. The detailed nature of such an updating scheme is
subject to ongoing research.
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