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Abstract: In this article the modeling aspects of an electrostatic microactuator (µ-A) with
squeezed thin film damping effects are presented. The µ-A is composed of a microcapacitor
whose one plate is clamped on the ground while the other plate is floating on the air. Its highly
nonlinear dynamic model is linearized at various operating points. A robust PID-controller is
designed with its parameters-tuning relying on LMIs. This control effort of the PID-controller
in collaboration with a feedforward term and a notch filter is applied to the system. Simulation
results are used to investigate the efficacy of the suggested control architecture.

1. INTRODUCTION

Planar microstructures fabricated out of metal or heavily
doped semiconductors, in relative normal motion have
been widely used in the microelectronical devices, such as
for positioning (Chen and Dutton (1989); Menciassi et al.
(2004); Shao et al. (2004)), flow control problems (Chang
(2006)), micromixers and micropumps (Agarwal et al.
(2005)), microfabricated propulsion systems (Ketsdeveret
al. (2002)), automotive applications using microsensors
and micromechatronic actuators (Muller et al. (2003)),
RF- MEMS structures (Chia et al. (2007); Rottenberg et
al. (2007)).

Electrostatic actuation of microelectromechanical systems
(MEMS) (Judy (2001); Rocha et al. (2006); Zhang et all
(2003)) utilizes the attractive Coulomb forces that are
developed between capacitively coupled semiconductors
differing in voltage (Lee et al. (2003)). Their principle of
operation is based on the generation of electrostatic forces
that are proportional to the square of the applied voltage.

Silicon microstructures (sensors and actuators) that make
use of the capacitive measurement principles or electro-
static driving forces, are characterized by very small gaps
between the moving surfaces. Subsequently, if one surface
moves against the other, the gas in between behaves as a
squeezed gas film (Blench (1983); Veijola (2004); Westby
and Fjeldy (2002); Vemuri et al. (2000); Veijola et al.
(1995)).

In the presence of a compressible gas film, the moving
surfaces are forced to squeeze the gas from between them
in order to be able to move. Squeeze film effect due
to the gas between the moving and stable components
strongly affects their performance, and the design and con-
trol techniques ought to adapt to this phenomenon. The
understanding of the squeeze film damping mechanism in
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these microactuator (µ-A) devices is necessary in order to
optimize the controller designs (Yan and Lal (2006)).

The inclusion of the squeeze film damping effects increases
the complexity of the dynamics and appropriate con-
trollers should deal with this fact. Accordingly, as models
that describe these systems are highly non-linear and have
a large order, the tendency is to design controllers with
increased complexity which are difficult to be implemented
at the microscopic level. Low-order controllers (on/off, P,
PID) are considered the proper match for these µ-As, due
to their ease of design and implementation. Rather than
relying on a demanding adaptive scheme, accounting for
the “augmented dynamics” of the µ-A, simpler control
schemes are designed for systems that are good approx-
imations of the “real” plant (Vagia et al. (2006); Lu and
Fedder (2004); Sung et al. (2000); Seeger and Boser (2003);
Maithripala et al. (2003)). These controllers are easily
“implementable” using analog electronic components and
thus can be embedded in the µ-A system.

As a minimum requirement, these low complexity con-
trollers, should stabilize the “approximated µ-A system”
at any operating point. Moreover, it is desired that the
closed loop system be stable for any variations of its
linearized system dynamics within the convex-hull of these
operating points.

In this article, a “lower order” PID controller (Vagia et
al. (2006)) in conjunction with a feedforward term is
used at a microactuator. The purpose of the feedforward
term is to provide the necessary control input to move
the µ-A at a desired operating point. The PID controller’s
parameters are tuned in order to minimize a certain
quadratic cost function. To account for the “operating
point” uncertainty, the cost function is minimized over a
set of convex constraints and the overall design is cast in a
Linear-Matrix Inequalities (LMIs) framework. This LMI-
tuned robust PID controller is applied to the augmented
system while ensuring its stability. In this article an LMI-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5423 10.3182/20080706-5-KR-1001.3543



based robust PID controller is designed and applied for
controlling the positioning of a µ–A’s plate.

In the rest of this article, the model of the µ-A is described
in Section 2, while the control architecture of the robust
PID controller is presented in Section 3. In Section 4 the
simulation results are presented from where the conclu-
sions are drawn in Section 5.

2. MICRO-ACTUATOR MODELLING

The µ-A from a structural point of view corresponds to a
micro–capacitor whose one plate is attached to the ground
while its other moving plate is floating in the air (Hong et
al. (1998); Zarubinskaya and Horssen (2003); Maithripala
et al. (2003)). Figure 1 presents the structure of the µ-A.
The dynamic nonlinear equation of the system (Tzes et al.
(2005); Vagia et al. (2006)) is:

mη̈ + Fd + kη =
εAU2

2(ηmax − η)2
= Fel (1)

where η is the displacement of the plates from the relaxed
position, m is the plate’s mass, k is the spring’s stiffness,A
is the area of the plates, U is the applied voltage between
the capacitor’s plates, ηmax is the distance of the plates
when the spring is relaxed, Fd is the force caused by the
parallel plate damper and Fel is the electrically-induced
force as shown in Figure 2.
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Squeeze            Film

Fig. 1. µ-Actuator structure

2.1 Force caused from the parallel plate damper

Consider the squeezed-film problem, where two surfaces
are moving towards each other. When assuming a constant
pressure across the gap and when the gap is much smaller
than the surface dimensions, the 3–D Navier-Strokes equa-
tions are reduced to (Veijola (2004)):

ρ
ϑu

ϑt
= −

ϑp

ϑx
+ mi

ϑ2u

ϑz2
(2)

ρ
ϑυ

ϑt
= −

ϑp

ϑy
+ mi

ϑ2υ

ϑz2
(3)

where u and υ are the flow velocities in the x, y directions,
respectively, mi is the viscosity coefficient, ρ is the density,
and p is the pressure of the gas.

Analytic solution for these equations together with their
boundaries conditions, can be found, resulting in velocities

u(z, t) and υ(z, t). The average velocities ũ and υ̃ can be
written as

ũ = −
(ηmax − ηi)

2

12mi
Qpr

ϑp

ϑx
(4)

υ̃ = −
(ηmax − η)2

12mi
Qpr

ϑp

ϑy
(5)

where Qpr is the the relative flow rate coefficient that is
time dependent due to gas-inertia.

The relative modified Reynolds equation with inertial
effects is described as follows:

ϑ

ϑx

(
ρ(ηmax − η)3

12mi
Qpr

ϑp

ϑx

)

+
ϑ

ϑy

(
ρ(ηmax − η)3

12mi
Qpr

ϑp

ϑy

)

=
ϑ(ρ(ηmax − η))

ϑt
(6)

where Qpr can be approximated by a series expansion as:

Qpr,Ξ =

Ξ∑

ξ=1,3,...

1
ξ4π4

96 + ω
ξ2π2ρ(ηmax

−η)2

96 mi

(7)

where ξ is an odd integer ξ ∈ {1, 3, . . . ,Ξ}.

Solutions for Reynolds equations for rectangular, moving
surfaces have been presented by (Veijola (2004); Vemuri
et al. (2000); Veijola et al. (1995); Blench (1983)). The
structure and dimensions of the damper are presented in
Figure (2).

Moving Plate

Fd

Squeeze Film

Fel

Substrate

η
max

η
.

Fig. 2. Diagram of forces applied on the µ-A

The Fd–force acting on the surfaces due to the squeezed
film damping effect is:

Fd =
Λ∑

λ=1,3,...

N∑

n=1,3,...

η̇

Qpr,ΞGλn + ωCλn
(8)

with

Gλn =
π6(ηmax − η)3(λn)2

768mil2

(
λ2

l2
+

n2

l2

)

(9)

Cλn =
π4(ηmax − η)(λn)2

64l2PA
(10)

where λ and n are odd indices 1,3,5 . . ., PA is the ambient
pressure and l is the length of the square plate. After
inserting the expression of Q from Equation (7) into
Equation (8) the force mapping in the frequency domain
is:
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Fd =

Λ∑

λ=1,3,...

N∑

n=1,3,...

η̇
Ξ∑

ξ=1,3,...

1
Rλnξ+ωLλnξ

+ ωCλn

(11)

where

Rλnξ =
ξ2π4

96Gλn
, Lλnξ =

ξ2π2ρ(ηmax − η)2

96miGλn
(12)

where Cλn is a reflection of the gas compressibility, and
Lλnξ reflects the inertia of the gas. For the given square
microcapacitor, the expressions of the aforementioned
terms are

Rλnξ =
q1

(ηmax − η)3
, Cλn = q2(η

max − ηi), (13)

Lλnξ =
u1

ηmax − η
, (14)

where

q1 =
8 mi l2ξ4

(
λ2

l2 + n2

l2

)
π2(λn)2

, q2 =
π4(λn)2

64l2PA
(15)

u1 =
8ξ2ρl2

π4(λn)2
(

λ2

l2 + n2

l2

) . (16)

Truncation of the modes utilized in Equation (8) and
maintaining the primary one reflected by Λ = N = Ξ = 1,
results in the squeezed film damping description, as:

Fd = η̇
s 1

(ηmax
−η)q2

+ q1

(ηmax
−η)3u1q2

s2 + s q1

(ηmax
−η)2u1

+ 1
u1q2

. (17)

2.2 Linearized Equations of Motion

The nonlinear equation of motion (1) should be linearized
at certain operating points in order to design the con-
troller. The “equilibria”-points ηo

i , i = 1, . . . ,M depend
on the applied nominal voltage Uo. Equation (1) for η̇o

i = 0
yields

kηo
i =

εAU2
o

2(ηmax − ηo
i )2

Uo = ±

[

2kηo
i (ηmax − ηo

i )
2

εA

]1/2

.(18)

This nominal Uo–voltage must be applied if the capacitor’s

plate is to be maintained at a distance ηo
i ≤ ηmax

3 from its
un–stretched position (Zolotas et al. (2007)) and equals
to the feedforward term. This fact must be taken into
account as in the presented system a bifurcation point

exists at ηo
i = ηmax

3 . The resulting linearized systems that
exist below this point are stable, while the linearized sub–
systems above this limit are unstable. In the sequel Uo
will be indicated as the “bifurcation parameter” ( Khalil
(2000)).

The linearized equations of motion around the equilibria
points (Uo and ηo

i , η̇o
i = 0) can be found using standard

perturbation theory for the variables U and ηi where
U = Uo + δu and ηi = ηo

i + δηi. The linearized equation of
motion for the system in (1) is:

mδη̈i + F lin
d + kηo

i + kδηi =
εAU2

o

2(ηmax − ηo
i )2

+
εAU2

o

(ηmax − ηo
i )3

δηi +
εAUo

(ηmax − ηo
i )2

δu , (19)

with F lin
d = δη̇i

s

b1,i

︷ ︸︸ ︷

1

(ηmax − ηo
i )q2

+

b2,i

︷ ︸︸ ︷
q1

(ηmax − ηo
i )3u1q2

s2 + s
q1

(ηmax − ηo
i )2u1

︸ ︷︷ ︸

a1,i

+
1

q1q2
︸︷︷︸

a2,i

Inserting (18) into (19) when Ki =
[

k −
εAU2

o

(ηmax
−ηo

1,i
)3

]

,

and βi =
[

εAUo

(ηmax
−ηo

1,i
)2

]

the state space description of the

linearized model is:





δη̇i

δη̈i

ṗi

p̈i



 =






0 1 0 0
−Ki

m
0 −b2,i −b1,i

0 0 0 1
0 1 −a2,i −a1,i










η̇i

η̈i

pi

ṗi



 +





0
βi

0
0



 δu (20)

= Ãi





η̇i

η̈i

p1,i

p2,i



 + Biδu i = 1, . . . , M (21)

It should be noted that the elements of the Ãi matrix and
Bi vector depend on the selected operating point.

In comparison with the classical descriptions, where
F lin

d = bdcδηi, the dc–gain of the transfer function in
Equation (17) can be substituted. The dc–gain of the
reduced order model is bdc = q1

(ηmax
−ηo

i
)3 , and the model

from (21) can be further reduced to

[

δη̇1,i
δη̈1,i

]

=

[
0 1

−
Ki

m
−

bdc

m

] [

δη1,i
δη̇1,i

]

+

[
0
βi

m

]

δu. (22)

= Âi

[

δη1,i
δη̇1,i

]

+ Biδu, i = 1, . . . ,M. (23)

The “closeness” of this model w.r.t. the one defined in (21)
can be traced by their underlying frequency responses.
It should be noted that the frequency response of the
augmented system description defined in (21) exhibits a
lightly damped response at a frequency ω1; this value
depends on the bi and ai , i = 1, 2 parameters. For a
better match of these models a notch filter centered at
this frequency can be used. The typical transfer function
of this filter is

Fn =
s2 + 2sζ1ω1 + ω2

1

s2 + 2sζ2ω1 + ω2
1

, 0 < ζi ≤ 1 . (24)

Its purpose is to allow all frequency content to pass
through except the harmonics close to the ω1–frequency.

The final state space equations for the reduced order
system are

[

δη̇1,i
δη̈1,i

]

=

[
0 1

−
Ki

m
−

bdc

m

] [

δη1,i
δη̇1,i

]

+

[
0
βi

m

]

δu. (25)

= Âi

[

δη1,i
δη̇1,i

]

+ Biδu, i = 1, . . . ,M. (26)
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If a controller design is to rely on these reduced order dy-
namic model, the control effort should be filtered through
the aforementioned notch filter.

3. ROBUST PID CONTROLLER DESIGN

The feedback term is a robust PID controller for the set
of the M–linearized systems in (26). The LMI–based (Ge
et al. (2002)) PID controller design procedure is based on
the theory of Linear Quadratic Regulator (LQR).

This robust PID controller is specially designed to address
the case where multiple–models (Cheng and Yu (2000);
Hongfei and Jun (2001)) have been utilized in order
to describe the uncertainties that are inherent from the
linearization process of the non–linear system model. The
architecture of the control scheme is presented in Figure
3.

U0

Feed
Forward

δu

r(t)

Q ΜR

Σ

Σ

Robust
PID Controller

Notch Filter μ-Actuator
η(t)

Fig. 3. Controller Architecture

The nature of a PID–structure in the controller design
can be achieved if the linearized system’s state vector

η̄ = [δηi, δη̇i]
T

is augmented with the integral of the
error signal

∫
edt =

∫
(r(t) − ηi(t)) dt. In this case, the

augmented system’s description is:

[
˙̄ηi

−e

]

= Ai

[
η̄i

−

∫

edt

]

+

[
Bi

0

]

δu +

[
−1
0

]

r, (27)

where Ai =

[

Âi 0
1 0

]

.

The LQR–problem for the systems described in (27) can
be cast in the computation of δu in order to minimize the
cost:

J(δu) =

∞∫

0

(η̃T Q η̃ + δuT R δu)dt (28)

where η̃ =
[
η̄,−

∫
edt

]T
, and Q,R are semidefinite and

definite matrices respectively. The solution to the LQR
problem relies on computing a common Lyapunov matrix
that satisfies the Algebraic Ricatti Equations (AREs ):

AT
i P + PAi − PBiR

−1Bi
T P + Q = 0, i = 1, . . . ,M (29)

It should be noted that the optimal cost at (28) is equal to

η̃T (0)P̂−1η̃(0) for a P -matrix satisfying (29). An efficient
alternative for the optimal control δu = −Sη̃ can be com-
puted by transforming the aforementioned optimization
problem subject to the concurrent satisfaction of the AREs
(29) into an equivalent LMI–based algorithm (Boyd et al.

(1994)), where a set of auxiliary matrices P̂ , Y and an
additional variable γ (γ > 0) have been introduced.

min γ

subject to







[

γ η̃T (0)

η̃(0) P̂

]

≤ 0

[
AiP̂ + P̂AT

i + BiY + Y T BT
i P̂ Y T

P̂ −Q−1 0
Y 0 −R−1

]

≤ 0

for i = 1, . . . , M

P̂ > 0

The feedback control can be computed based on the
recorded values of P̂ ∗ and Y ∗ for the last feasible solution:

δu = Y ∗(P̂ ∗)−1η̃ = −Sη̃ = −S

[
η̄

−

∫

edt

]

(30)

= − [ sp sd si ]






δηi
δη̇i

−

∫

edt






=

[

spe + sdė + si

∫

edt

]

+ [sp (ηo
i − r) − sdṙ] . (31)

The first portion of the controller form in (31) is equivalent
to that of a PID–controller.

This controller is applied and tested on the augmented
order system and simulation studies prove the efficacy of
the suggested scheme.

3.1 Closed-Loop Switching-System Behavior

When the µ-A’s plate moves at different operating points
ηo

i during its travel there are switchings in the linearized
subsystems. Since there is no guarantee that the advocated
suboptimal controller can tolerate these switchings, an a
posteriori technique is used to determine (at a minimum)
the stability of the switched closed-loop system (Gahinet
et al. (1996); Hongfei and Jun (2001)).

The used theory relies on the notation of quadratic stabil-
ity, where the closed-loop system:

ẇ = Ai
clw (32)

where Acl denotes the closed-loop system’s matrix, the
state vector w contains the states of the system [δη, δη̇]
and those of the controller. Since the plant’s nominal
matrices Ai ∈ {A1, . . . , AM}, then the closed-loop switches
on the vertices Ai

cl ∈ {A1
cl, . . . , A

M
cl }. The stability of the

switching closed-loop system is guaranteed if a symmetric
positive matrix Q can be found such that:

Ai
clQ + QAiT

cl + A
j
clQ + QA

jT
cl < 0 (33)

∀i, j ∈ {1, . . . ,M}

Q > 0 (34)

It should be noted that the a posteriori nature of the inves-
tigation of the system’s stability is due to the computation
of Q from the LMIs (33, 34) after the formulation of the
feedback controller.

4. SIMULATION RESULTS

Simulation studies were carried on a µ-A’s non–linear
model, whose plates are made of SiO2.The parameters of
the system are presented in the following Table:
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parameter Description Value Unit

A Area of the plates 1.6 10−7 m

ηmax Distance between the plates 4 ×10−6 m

l Length 400 ×10−6 m

mi Viscosity Coefficient 18.5 ×10−6 kgm/sec2

ρ Density 1.155 kg/m3

ε Dielectric constant of the air 8.85 ×10−12 coul2/Nm2

Pa Ambient Pressure 105 N/m2

k Stiffness of the spring 0.816 N/m

The allowable displacements of the micro–capacitor’s plate
in the vertical axis were η ∈ [0.1, 1.3] µm=[ηmin

o , ηmax
M ].

This is deemed necessary in order to guarantee the sta-
bility of the linearized open–loop system.

Figure 4 shows the relationship between the squeezed
gas film damping dc–gain coefficient of the linearized
open loop “augmented” system, and the distance between
the plates of the µ-A. It should be noted that at the
“bifurcation” point the dc–gain switches its sign and
results in an unstable open loop system.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

−4

−2

0

2

4

6

8
x 10

−5
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D
c
−

g
a

in

Fig. 4. Squeezed gas film damping bdc–coefficient w.r.t.
mu–A plate gap

The Bode diagrams of the “augmented” system, the re-
duced order system and the augmented system in cas-
cade with the notch filter are presented in Figure 5. It
is apparent that the notch filter reduces the peak of the
underdamped augmented system by apprxoimately 50 dB.

The goal of the controller is to move the capacitor’s plates
from an initial position to a new desired one (set–point
regulation), and simulation studies were carried on the
non–linear model of the µ-A system.

In the sequel, two cases are examined; in the first one,
only 1 linearized point at ηo

i = 0.7µm was used while in
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Fig. 5. Bode diagrams of the linearized systems

the second one 15 points ηo
i = 0.1 + 1.33−0.1

15 (i − 1) µm
i = 1, . . . , 15 were utilized. The upper plate is allowed to
travel in the range of [0.1, 1.33] µm. In the sequel, unless
otherwise stated the parameters used in the formulation
of the LQR–cost were R = 10−8 and Q = 10−6I3×3.

The proposed control scheme was applied in multiple simu-
lation test cases in order to test its efficacy. For simulation
purposes, and while the micro–actuator is at rest at 0.3µm
(ηi(0) = 0.9µm), the µ-Actuator’s plate is asked to move in
a step-fashion to 0.9 µm. In Figure 6, the responses of the
µ-A’s plate for M = 1 and M = 15 are presented. Com-
paring the responses an apparent velocity improvement is
observed when using more operating points.
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D
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Step Response for M=15

Reference Signal
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Fig. 6. Step Response of the non-linear controller µ-A
system

Finally the frequency content of the PID controller’s effort
is presented in Figure 7, from where it is shown that it is
mainly affecting the lower frequency spectrum.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

2
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6

8

10

12

Frequency (Hz)

Fig. 7. Frequency content of control effort

5. CONCLUSION

In this article a robust PID controller tuned with the
theory of LMIs has been designed for an approximated
model of a µ-A with squeeze film gas film damping effect.
The control effort is filtered through a notch filter for
eliminating the harmonics around a frequency dictated by
the system’s characteristics. The robust control scheme has
been applied on the µ-A’s non–linear system in order to
prove its efficacy.
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