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Abstract: In this paper, a trajectory tracking control for a nonholonomic mobile robot by the
integration of a kinematic controller and a torque controller is investigated. The proposed torque
controllers (PTCs) are based on a Gaussian radial basis function neural network (RBFNN)
modeling technique, which are used to compensate the mobile robot dynamics, significant
uncertainties and disturbances. Also, the PTCs are not dependent of the robot dynamics neither
requires the off-line training process. The stability analysis and the convergence of tracking errors
to zero, as well as the learning algorithms (for weights, centers, and widths) are guaranteed with
basis on Lyapunov’s theory. In addition, the simulation results shows the efficiency of the PTCs.

1. INTRODUCTION

Mobile robots, which can move with intelligence without
any human intervention, have attracted the interest of
many researchers due to their extensive field of applica-
tions. Several control methods have been proposed for
motion control of a mobile robot under nonholonomic
constraints. Some nonlinear feedback controllers have been
suggested [Kanayama et al., 1990], which consider only
the kinematic model of a mobile robot and suppose ‘per-
fect velocity tracking’. Also, some researches consider the
dynamics of mobile robot to achieve ‘perfect velocity trac-
king’ [Yang and Kim, 1999]. There are few results on the
problems, regarding the integration of both, kinematic and
neural dynamic controllers for a mobile robot.

Controlling a mobile robot efficiently, with unknown dyna-
mics, and subjected to the uncertainties and/or unmodeled
significant disturbances is a field that has been motivated
various researches. The computed torque control approach
is able to accomplish the control of mobile robot, but
it demands the exact dynamics model that, in fact, is
impossible in practice. Adaptive controllers [Fukao et al.,
2000] can perform the control of mobile robots even with
partially unknown dynamics, however, a complicated on-
line estimation of such unknown dynamics is necessary.
Fierro and Lewis [1998] developed a neural network based
model by combining the backstepping tracking technique
with a torque controller, using a multilayer feedforward
neural network (known as MLP), that can learn the mobile
robot’s dynamics, the bounded unmodeled disturbances
and the unstructured dynamics, through its on-line lear-
ning. However, the control and neural network learning
algorithms are very complicated and it is computationally
expensive.

In this paper, the RBFNN is applied to control a dyna-
mic system, since the structure of an RFBNN is simpler
that a multi-layer perceptron (MLP), the learning rate of

RBFNN is generally faster that a MLP, and a RBFNN
is mathematically tractable easily [Seshagiri and Khalil,
2000]. Thus, the neural control method presented by Mar-
tins and de Alencar [2003], Martins et al. [2005] is extended
to the controlling a nonholonomic mobile robot, consi-
dering the trajectory tracking problem. Differently from
other investigations with mobile robots [Hu and Yang,
2001, Oh et al., 2003], the implementation of the PTCs is
based on the partitioning the RBFNN into several smaller
subnets in order to obtain more efficient computation. Mo-
reover, the values of centers m and widths σ of Gaussian
radial basis functions of the RBFNN are adjusted on-line.
Also, need neither an off-line training process nor the priori
information of the robot dynamics. Stability and conver-
gence of the robot control system, as well as the learning
algorithms (for weights, centers, and widths) are proved
by using Lyapunov’s theory, considering the presence of
bounded unstructured and unmodeled dynamics.

The present paper is organized as follows. In Section 2
the nonholonomic mobile robot dynamics, its structural
properties and the neural networks modeling, for mobile
robots, are shown. The kinematic controller for a reference
trajectory tracking, and the PTCs are described in Section
3. Section 4 shows the results of numeric simulations and,
finally, in Section 5 the conclusions are presented.

2. DYNAMICS AND NEURAL NETWORKS
MODELING FOR MOBILE ROBOTS

2.1 A Mobile Robot’s Dynamics and Structural Properties

In Fierro and Lewis [1998], the dynamic equation of the
nonholonomic mobile robot are:

q̇ = S(q)v(t) (1)

ST (q)H(q)S(q)v̇ + ST (q)
[

H(q)Ṡ(q) + C(q, q̇)S(q)
]

v+

+ ST (q)F (q̇) + ST (q)τd = ST (q)B(q)τ
(2)
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where q and q̇ are constrained positions and velocities
in cartesian coordinates, respectively; S(q) is a jacobian
matrix; v is the actual velocity of the mobile robot; H(q) is
a symmetric, positive definite inertia matrix; C(q, q̇) is the
centripetal and Coriolis matrix; τd denotes the bounded
unknown disturbances including unstructured and unmo-
deled dynamics; B(q) is the input transformation matrix;
and τ is the input vector. Disregarding surface friction
F (q̇) and G(q) = 0, one can rewritten (2) as follows:

Dynamics 1 H̄(q)v̇ + C̄(q, q̇)v + τ̄d = B̄(q)τ = τ̄ (3)

The following pattern properties must be emphasized:
Property 1 : Boundedness → H̄(q), the norm of the C̄(q, q̇)
and τ̄d are bounded.

Property 2 : Skew-symmetry → The matrix ˙̄H(q)−2C̄(q, q̇)
is skew symmetric. This property is particularly important
in the stability analysis of the control system.

To avoid the estimation of positions and orientation, due to
the nonholonomic constraints pertinent of mobile robots,
(3) can be rewritten as:

Dynamics 2 H̄(v̇) + C̄(v) + τ̄d = B̄(q)τ = τ̄ (4)

Mobile robot’s dynamics, (4), also it can be rewritten in
a linear form,

Dynamics 3 H̄(v̇) + C̄(v) + τ̄d = Ψ(v, v̇)φ + τ̄d (5)

where Ψ(v, v̇) is a coefficient matrix consisting of the
known functions of robot velocity v and acceleration v̇,
which is referred as the robot regressor; and φ is a vector
consisting of the known and unknown robot dynamic
parameters, such as geometric size, mass, moments of
inertias, etc.

2.2 Neural Networks Modeling

Based on (3)-(5), it can be verified that H̄(q), H̄(v̇)
and C̄(v) are functions of q, v̇ and v only, respectively,
thus, static neural networks are enough to model them.
Assuming that h̄kj(q), h̄k(v̇) and c̄k(v) can be modeled as:

h̄kj(q) =
∑

l

XT
h̄kjl

ξh̄kjl
(q)+ εh̄kj

(q) = XT
h̄kj

ξh̄kj
(q)+ εh̄kj

(q) (6)

h̄k(v̇) =
∑

l

W T
h̄kl

ξh̄kl
(v̇) + εh̄k

(v̇) = Wh̄k
T ξh̄k

(v̇) + εh̄k
(v̇) (7)

c̄k(v) =
∑

l

W T
c̄kl

ξc̄kl
(v) + εc̄k

(v) = Wc̄k
T ξc̄k

(v) + εc̄k
(v) (8)

where Xh̄kjl
, Wc̄kl

, Wc̄kl
∈ R are weights of the neural

networks; ξh̄kjl
(q), ξh̄kl

(v̇), ξc̄kl
(v) ∈ R are Gaussian

radial basis functions with their respective input vectors
q, v̇ and v only, as well as εh̄kj

(q), εh̄k
(v̇), εc̄k

(v) ∈ R are

modeling errors of h̄kj(q), h̄k(v̇) and c̄k(v), respectively,
and are assumed to be bounded. Bearing in mind that
C̄(q, q̇), (4), and N̄(v, v̇) = Ψ(v, v̇)φ, (5), are dynamic
neural networks, since they are functions of q and q̇, v
and v̇, respectively, its modeling are required. Assuming
that c̄kj(q, q̇) and n̄k (v, v̇) can be modeled as:

c̄kj(q, q̇) =
∑

l

Xc̄kjl
ξc̄kjl

(z)+εc̄kj
(z) = XT

c̄kj
ξc̄kj

(z)+εc̄kj
(z) (9)

n̄k(v, v̇) =
∑

l

W T
n̄kl

ξn̄kl
(v, v̇) + εn̄k

(v, v̇)

= W T
n̄k

ξn̄k
(v, v̇) + εn̄k

(v, v̇)

(10)

where z =
[

qT q̇T
]T

∈ R2n, Xc̄kjl
, Wn̄kl

∈ R are
weights vectors; ξc̄kjl

(z), ξn̄kl(v, v̇) ∈ R are Gaussian
radial basis functions with their respective input vectors
z, v and v̇ ; εc̄kj

(z), εn̄k
(v, v̇) ∈ R are modeling errors

of c̄kj(q, q̇) and n̄k(v, v̇), which are also assumed to be
bounded.

Foregrounded in (3)-(5), the mobile robot’s dynamics can
be expressed by (6) and (9); (7)-(8); (10), respectively.
Therefore, the stability of the neural networks can be
analyzed, where matrix Ge-Lee (GL) [Ge, 1996], defined
by {.}, and its product operator ’•’ are used. The ordinary
matrix and vector are denoted by [.].

Thus, H̄(q), C̄(q, q̇), H̄(v̇), C̄(v) and N̄(v, v̇) can be
expressed as:

Dynamics 1

{

H̄(q) =
[

{XH̄}T • {ξH̄(q)}
]

+ EH̄(q)

C̄(q, q̇) =
[

{XC̄}T • {ξC̄(z)}
]

+ EC̄(z)
(11)

Dynamics 2

{

H̄(v̇) =
[

{WH̄}T • {ξH̄(v̇)}
]

+ EH̄(v̇)

C̄(v) =
[

{WC̄}T • {ξC̄(v)}
]

+ EC̄(v)
(12)

Dynamics 3 N̄(v, v̇) =
[

{WN̄}T • {ξN̄ (v, v̇)}
]

+ EN̄ (v, v̇)(13)

where {XH̄}, {ξH̄(q)}, {XC̄} and {ξC̄(z)} are GL matri-
ces, whereas {WH̄}, {ξH̄(v̇)}, {WC̄}, {ξC̄(v)}, {WN̄} and
{ξN̄ (v, v̇)} are GL vectors; and their respective elements
are Xh̄kj

, ξh̄kj
(q), Xc̄kj

, ξc̄kj
(z), Wh̄k

, ξh̄k
(v̇), Wc̄k

, ξc̄k
(v),

Wn̄k
and ξn̄k

(v, v̇). EH̄(q) ∈ Rn x n and EC̄(z) ∈ Rn x n

are matrices and EH̄(v̇) ∈ Rn, EC̄(v) ∈ Rn and
EN̄ (v, v̇) ∈ Rn are vectors, and their modeling error
elements εh̄kj

(q), εc̄kj
(z), εh̄k

(v̇), εc̄k
(v) and εn̄k

(v, v̇), res-
pectively.

3. CONTROL DESIGN

For the mobile robot, the controllers design problem can
be described as: given the reference position qr(t) and
the velocity q̇r(t), design control laws (C1, C2 and C3 -
as PTCs will be stated later) for the actuator torques,
which drive the mobile robot to move, so the mobile robot
velocity tracking a smooth velocity control input and the
reference position.

Let velocity and position of a reference robot are given as:

qr =
[

xr yr θr

]T
vref =

[

vr ωr

]T

ẋr = vr cos(θr) ẏr = vrsin(θr) θ̇r = ωr

(14)

where vr > 0 for all t is the reference linear velocity
and ωr is the reference angular velocity. Thus, the position
tracking error vector is expressed in the basis of a frame
linked to the mobile robot platform as:

eq =

[

e1

e2

e3

]

=

[

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

][

xr − x
yr − y
θr − θ

]

(15)

The position error dynamics can be obtained from the
time derivative of (15) as:

ėq =

[

ė1

ė2

ė3

]

=

[

ωe2 − v1 + vr cos(e3)
−ωe1 + vrsin(e3)

ωr − ω

]

(16)

An auxiliary velocity control input vc that achieves
tracking for (1) that is given by [Kanayama et al., 1990]:

vc =

[

vr cos(e3) + k1e1

ωr + k2vre2 + k3vrsin(e3)

]

(17)

where k1, k2 and k3 are positive parameters.
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Given the desired velocity vc, one define now the auxiliary
velocity tracking error as:

ec = vc − v =

[

vc1 − v1

vc2 − ω

]

=

[

e4

e5

]

(18)

Differentiating (18) and substituting the result in (3)-(5),
respectively, the mobile robot dynamics using the velocity
tracking error can be rewritten as:

H̄(q)ėc = −C̄(z)ec − τ̄ + Ω + τ̄d (19)

where the important nonlinear mobile robot function is:

C1 Ω = H̄(q)v̇c + C̄ (z) vc (20)

C2 Ω = H̄(v̇c) + C̄(vc) (21)

C3 Ω = Ψ(v, v̇)φ (22)

Function Ω contains all the mobile robot parameters,
such as masses, moments of inertias, friction coefficients,
etc, which are quantities often imperfectly unknown and
difficult to determine.

Thus, the suitable control input for (3)-(5), respectively,
is given as:

τ̄ = τ̂NN + k4ec − γ (23)

where k4 is a diagonal positive definite design matrix, and
γ a robustifying term to compensate the unmodeled and
unstructured disturbances, τ̂NN is the generated torque
from the sum of output torque of the neural networks,
that is given by:

C1 τ̂NN =

[

{

X̂H̄

}T
•
{

ξ̂H̄(q)
}

]

v̇c +

[

{

X̂C̄

}T
•
{

ξ̂C̄(z)
}

]

vc(24)

C2 τ̂NN =

[

{

ŴH̄

}T
•
{

ξ̂H̄(v̇c)
}

]

+

[

{

ŴC̄

}T
•
{

ξ̂C̄(vc)
}

]

(25)

C3 τ̂NN =

[

{

ŴN̄

}T
•
{

ξ̂N̄ (vc, v̇c)
}

]

(26)

where
{

X̂H̄

}

,
{

X̂C̄

}

,
{

ŴH̄

}

,
{

ŴC̄

}

,
{

ξ̂H̄(.)
}

,
{

ξ̂C̄(.)
}

,
{

ŴN̄

}

, and
{

ξ̂N̄

}

represent estimates of true parame-

ters of the weights {XH̄}, {XC̄}, {WH̄}, {WC̄}, {ξH̄(.)},
{ξC̄(.)}, {WN̄}, and {ξN̄} of (11)-(13), respectively. Three
controllers structures are different in terms of input vectors
of the RBFNN, that is, C1 is formed by static and dynamic
neural networks, C2 is formed by static neural networks,
and C3 is formed by dynamic neural networks.

Substituting (23) into (19), and doing some mathematical
manipulations, the closed-loop system error dynamics can
be expressed as:

H̄(q)ėc = −(k4 + C̄)ec + δ + τ̄d + ENN + γ (27)

where:

C1







δ =

[

{

X̃H̄

}T
•
{

ξ̂H̄(q)
}

]

v̇c +

[

{

X̃C̄

}T
•
{

ξ̂C̄(z)
}

]

vc+

+
[

{XH̄}T •
{

ξ̃H̄(q)
}]

v̇c +
[

{XC̄}T •
{

ξ̃C̄(z)
}]

vc

ENN = EH̄ (q) v̇c + EC̄ (z) vc

(28)

C2







δ =

[

{

W̃H̄

}T
•
{

ξ̂H̄(v̇c)
}

]

+

[

{

W̃C̄

}T
•
{

ξ̂C̄(vc)
}

]

+

+
[

{WH̄}T •
{

ξ̃H̄(v̇c)
}]

+
[

{WC̄}T •
{

ξ̃C̄(vc)
}]

ENN = EH̄ (v̇) + EC̄ (v)

(29)

C3

{

δ =

[

{

W̃N̄

}T
•
{

ξ̂N̄ (vc, v̇c)
}

]

+
[

{WN̄}T •
{

ξ̃N̄ (vc, v̇c)
}]

ENN = EN̄ (v, v̇)
(30)

being that (̃.) = (.) − (̂.) define the error vector in the
parameters, and ENN define the neural network modeling
error.

Assuming that the unmodeled and unstructured distur-
bances are bounded, as well as the neural networks mode-
ling errors, such that ‖τ̄d‖ ≤ bd and ‖ENN‖ ≤ eNN , the
robustifying term is defined as:

γ = −(kd + In)ec (31)

where kd is a diagonal positive definite matrix, and In is
the identity matrix.

For the controllers (C1, C2, and C3) or (23)-(26), and (31),
learning algorithms for the neural networks should to be
developed, so that the control system can be stable, and
both the position and velocity tracking errors converge to
zeros.

Let us consider Lyapunov’s candidate function:

{

V = V1 + k1(e2

1
+ e2

2
) + 2(k1/k2)(1 − cos(e3))

V1 = (1/2)(eT
c H̄(q)ec + V2)

(32)

where:

C1







































V2 =

n
∑

k=1

X̃T
H̄k

Γ−1

H̄k
X̃H̄k

+

n
∑

k=1

X̃T
C̄k

Γ−1

C̄k
X̃C̄k

+

+

n
∑

k=1

m̃T
H̄k

Γ−1

mH̄k
m̃H̄k

+

n
∑

k=1

m̃T
C̄k

Γ−1

mC̄k
m̃C̄k

+

+

n
∑

k=1

σ̃T
H̄k

Γ−1

σH̄k
σ̃H̄k

+

n
∑

k=1

σ̃T
C̄k

Γ−1

σC̄k
σ̃C̄k

(33)

C2







































V2 =

n
∑

k=1

W̃ T
H̄k

Γ−1

H̄k
W̃H̄k

+

n
∑

k=1

W̃ T
C̄k

Γ−1

C̄k
W̃C̄k

+

+

n
∑

k=1

m̃T
H̄k

Γ−1

mH̄k
m̃H̄k

+

n
∑

k=1

m̃T
C̄k

Γ−1

mC̄k
m̃C̄k

+

+

n
∑

k=1

σ̃T
H̄k

Γ−1

σH̄k
σ̃H̄k

+

n
∑

k=1

σ̃T
C̄k

Γ−1

σC̄k
σ̃C̄k

(34)

C3



















V2 =

n
∑

k=1

W̃ T
N̄k

Γ−1

N̄k
W̃N̄k

+

n
∑

k=1

m̃T
N̄k

Γ−1

mN̄k
m̃N̄k

+

+

n
∑

k=1

σ̃T
N̄k

Γ−1

σN̄k
σ̃N̄k

(35)

with Γ.k , Γm.k and Γσ.k being dimensional compatible
symmetric positive definite matrices. Clearly, V ≥ 0, and

V = 0 if only if eq = 0, ec = 0,
{

X̃H̄

}

= 0,
{

X̃C̄

}

= 0,
{

W̃H̄

}

= 0,
{

W̃C̄

}

= 0,
{

W̃N̄

}

= 0, m̃H̄ = 0, m̃C̄ = 0,

m̃N̄ = 0, σ̃H̄ = 0, σ̃C̄ = 0, and σ̃N̄ = 0. Differentiating V ,

(32), and substituting the error dynamics, (27), V̇ is given
as:

{

V̇ = 2k1e1ė1 + 2k1e1ė2 + 2(k1/k2)ė3 sin(e3) + V̇1

V̇1 = −eT
c k4ec + eT

c τ̄d + eT
c ENN + eT

c γ + V̇2

(36)

where, using the property 2, V̇2 stays:
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C1































































V̇2 = eT
c (

[

{

X̃H̄

}T
•
{

ξ̂H̄(q)
}

]

+
[

{XH̄}T •
{

ξ̃H̄(q)
}]

)v̇c+

+ eT
c (

[

{

X̃C̄

}T
•
{

ξ̂C̄(z)
}

]

+
[

{XC̄}T •
{

ξ̃C̄(z)
}]

)vc+

+

n
∑

k=1

X̃T
H̄k

Γ−1

H̄k

˙̃XH̄k
+

n
∑

k=1

X̃T
C̄k

Γ−1

C̄k

˙̃XC̄k
+

+

n
∑

k=1

m̃T
H̄k

Γ−1

mH̄k

˙̃mH̄k
+

n
∑

k=1

m̃T
C̄k

Γ−1

mC̄k

˙̃mC̄k
+

+

n
∑

k=1

σ̃T
H̄k

Γ−1

σH̄k

˙̃σH̄k
+

n
∑

k=1

σ̃T
C̄k

Γ−1

σC̄k

˙̃σC̄k

(37)

C2































































V̇2 = eT
c (

[

{

W̃H̄

}T
•
{

ξ̂H̄(v̇c)
}

]

+
[

{WH̄}T •
{

ξ̃H̄)(v̇c)
}]

)+

+ eT
c (

[

{

W̃C̄

}T
•
{

ξ̂C̄(vc)
}

]

+
[

{WC̄}T •
{

ξ̃C̄(vc)
}]

)+

+

n
∑

k=1

W̃ T
H̄k

Γ−1

H̄k

˙̃WH̄k
+

n
∑

k=1

W̃ T
C̄k

Γ−1

C̄k

˙̃WC̄k
+

+

n
∑

k=1

m̃T
H̄k

Γ−1

mH̄k

˙̃mH̄k
+

n
∑

k=1

m̃T
C̄k

Γ−1

mC̄k

˙̃mC̄k
+

+

n
∑

k=1

σ̃T
H̄k

Γ−1

σH̄k

˙̃σH̄k
+

n
∑

k=1

σ̃T
C̄k

Γ−1

σC̄k

˙̃σC̄k

(38)

C3































V̇2 = eT
c

[

{

W̃N̄

}T
•
{

ξ̂N̄ (vc, v̇c)
}

]

+

+ eT
c

[

{WN̄}T •
{

ξ̃N̄ (vc, v̇c)
}]

+

n
∑

k=1

W̃ T
N̄k

Γ−1

N̄k

˙̃WN̄k
+

+

n
∑

k=1

m̃T
N̄k

Γ−1

mN̄k

˙̃mN̄k
+

n
∑

k=1

σ̃T
N̄k

Γ−1

σN̄k

˙̃σN̄k

(39)

Emphasizing that:

C1



































eT
c

[

{

X̃H̄

}T
•
{

ξ̂H̄(q)
}

]

v̇c =

n
∑

k=1

{

X̃H̄k

}T
•
{

ξ̂H̄k
(q)

}

v̇ceck

eT
c

[

{

X̃C̄

}T
•
{

ξ̂C̄(z)
}

]

vc =

n
∑

k=1

{

X̃C̄k

}T
•
{

ξ̂C̄k
(z)

}

vceck

∥

∥

[

{XH̄}T •
{

ξ̃H̄(q)
}]

v̇c

∥

∥ ≤ α
∥

∥

[

{XC̄}T •
{

ξ̃C̄(z)
}]

vc

∥

∥ ≤ β

(40)

C2



































eT
c

[

{

W̃H̄

}T
•
{

ξ̂H̄(v̇c)
}

]

=

n
∑

k=1

{

W̃H̄k

}T
•
{

ξ̂H̄k
(v̇c)

}

eck

eT
c

[

{

W̃C̄

}T
•
{

ξ̂C̄(vc)
}

]

=

n
∑

k=1

{

W̃C̄k

}T
•
{

ξ̂C̄k
(vc)

}

eck

∥

∥

[

{WH̄}T •
{

ξ̃H̄)(v̇c)
}]∥

∥ ≤ α
∥

∥

[

{WC̄}T •
{

ξ̃C̄(vc)
}]∥

∥ ≤ β

(41)

C3











eT
c

[

{

W̃N̄

}T
•
{

ξ̂N̄ (vc, v̇c)
}

]

=

n
∑

k=1

W̃ T
N̄k

ξ̂N̄k
(vc, v̇c)eck

∥

∥

[

{WN̄}T •
{

ξ̃N̄ (vc, v̇c)
}]∥

∥ ≤ λ

(42)

and also, it can be seen that
{

X̃.

}

= {X.} −
{

X̂.

}

,
{

W̃.

}

= {W.} −
{

Ŵ.

}

, m̃. = m. − m̂., and σ̃. = σ. − σ̂.,

then
{

˙̃X.

}

= −
{

˙̂
X.

}

,
{

˙̃W.

}

= −
{

˙̂
W.

}

, m̃. = −m̂.,

and σ̃. = −σ̂.. Therefore, the learning laws for the neural
networks are obtained as:

C1















˙̂
XH̄k

= ΓH̄k
•
{

ξ̂H̄k
(q)

}

v̇ceck
− KH̄k

ΓH̄k
‖ec‖ X̂H̄k

˙̂
XC̄k

= ΓC̄k
•
{

ξ̂C̄k
(z)

}

vceck
− KC̄k

ΓC̄k
‖ec‖ X̂C̄k

˙̂mH̄k
= −ΓmH̄k

‖ec‖ m̂H̄k
; ˙̂mC̄k

= −ΓmC̄k
‖ec‖ m̂C̄k

˙̂σH̄k
= −ΓσH̄k

‖ec‖ σ̂H̄k
; ˙̂σC̄k

= −ΓσC̄k
‖ec‖ σ̂C̄k

(43)

C2















˙̂
WH̄k

= ΓH̄k
•
{

ξ̂H̄k
(v̇c)

}

eck
− KH̄k

ΓH̄k
‖ec‖ ŴH̄k

˙̂
WC̄k

= ΓC̄k
•
{

ξ̂C̄k
(vc)

}

eck
− KC̄k

ΓC̄k
‖ec‖ ŴC̄k

˙̂mH̄k
= −ΓmH̄k

‖ec‖ m̂H̄k
; ˙̂mC̄k

= −ΓmC̄k
‖ec‖ m̂C̄k

˙̂σH̄k
= −ΓσH̄k

‖ec‖ σ̂H̄k
; ˙̂σC̄k

= −ΓσC̄k
‖ec‖ σ̂C̄k

(44)

C3

{

˙̂
WN̄k

= ΓN̄k
ξ̂N̄k

(vc, v̇c)eck
− KN̄k

ΓN̄k
‖ec‖ ŴN̄k

˙̂mN̄k
= −ΓmN̄k

‖ec‖ m̂N̄k
; ˙̂σN̄k

= −ΓσN̄k
‖ec‖ σ̂N̄k

(45)

where K.k > 0.

Then V̇1 of (36) can be simplified as:
{

V̇ ≤ 2k1e1ė1 + 2k1e1ė2 + 2(k1/k2)ė3 sin(e3) + V̇1

V̇1 ≤ −eT
c k4ec + eT

c τ̄d + eT
c ENN + eT

c γ + V̇2

(46)

where:

C1







































V̇2 ≤ KH̄ ‖ec‖

n
∑

k=1

X̃T
H̄k

X̂H̄k
+ KC̄ ‖ec‖

n
∑

k=1

X̃T
C̄k

X̂C̄k
+

+ ‖ec‖

n
∑

k=1

m̃T
H̄k

m̂H̄k
+ ‖ec‖

n
∑

k=1

m̃T
C̄k

m̂C̄k
+

+ ‖ec‖

n
∑

k=1

σ̃T
H̄k

σ̂H̄k
+ ‖ec‖

n
∑

k=1

σ̃T
C̄k

σ̂C̄k
+ ‖ec‖µ

(47)

C2







































V̇2 ≤ KH̄ ‖ec‖

n
∑

k=1

W̃ T
H̄k

ŴH̄k
+ KC̄ ‖ec‖

n
∑

k=1

W̃ T
C̄k

ŴC̄k
+

+ ‖ec‖

n
∑

k=1

m̃T
H̄k

m̂H̄k
+ ‖ec‖

n
∑

k=1

m̃T
C̄k

m̂C̄k
+

+ ‖ec‖

n
∑

k=1

σ̃T
H̄k

σ̂H̄k
+ ‖ec‖

n
∑

k=1

σ̃T
C̄k

σ̂C̄k
+ ‖ec‖µ

(48)

C3



















V̇2 ≤ KN̄ ‖ec‖

n
∑

k=1

W̃ T
N̄k

ŴN̄k
+ ‖ec‖

n
∑

k=1

m̃T
N̄k

m̂N̄k
+

+ ‖ec‖

n
∑

k=1

σ̃T
N̄k

σ̂N̄k
+ ‖ec‖µ

(49)

being that K. = K.k , µ = α + β of (47)-(48), µ =

λ of (49). Observing that tr
(

X̂.X̃
T
.

)

=
n
∑

k=1

X̃T
.k

X̂.k ,

tr
(

Ŵ.W̃
T
.

)

=
n
∑

k=1

W̃T
.k

Ŵ.k , tr
(

m̂.m̃
T
.

)

=
n
∑

k=1

m̃T
.k

m̂.k ,

tr
(

σ̂.σ̃
T
.

)

=
n
∑

k=1

σ̃T
.k

σ̂.k , and replacing the robustifying

term, (31), in V̇1 of (46), one obtain:
{

V̇ ≤ 2k1e1ė1 + 2k1e1ė2 + 2(k1/k2)ė3 sin(e3) + V̇1

V̇1 ≤ −eT
c ec − eT

c k4ec − eT
c (kdec − τ̄d − ENN ) + V̇2

(50)

where:

C1







V̇2 ≤ KH̄ ‖ec‖ tr
(

X̂H̄X̃T
H̄

)

+ KC̄ ‖ec‖ tr
(

X̂C̄X̃T
C̄

)

+

+ ‖ec‖ tr
(

m̂H̄m̃T
H̄

)

+ ‖ec‖ tr
(

m̂C̄m̃T
C̄

)

+

+ ‖ec‖ tr
(

σ̂H̄ σ̃T
H̄

)

+ ‖ec‖ tr
(

σ̂C̄ σ̃T
C̄

)

+ ‖ec‖µ

(51)

C2







V̇2 ≤ KH̄ ‖ec‖ tr
(

ŴH̄W̃ T
H̄

)

+ KC̄ ‖ec‖ tr
(

ŴC̄W̃ T
C̄

)

+

+ ‖ec‖ tr
(

m̂H̄m̃T
H̄

)

+ ‖ec‖ tr
(

m̂C̄m̃T
C̄

)

+

+ ‖ec‖ tr
(

σ̂H̄ σ̃T
H̄

)

+ ‖ec‖ tr
(

σ̂C̄ σ̃T
C̄

)

+ ‖ec‖µ

(52)

C3

{

V̇2 ≤ KN̄ ‖ec‖ tr
(

ŴN̄W̃ T
N̄

)

+ ‖ec‖ tr
(

m̂N̄ m̃T
N̄

)

+

+ ‖ec‖ tr
(

σ̂N̄ σ̃T
N̄

)

+ ‖ec‖µ
(53)
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or
{

V̇ ≤ 2k1e1ė1 + 2k1e1ė2 + 2(k1/k2)ė3 sin(e3) + V̇1

V̇1 ≤ −eT
c ec − k4min

‖ec‖
2 −

−‖ec‖ (kdmin
‖ec‖ − bd − eNN − ϕ − µ)

(54)

with:

C1







φ = KH̄ tr
(

X̂H̄X̃T
H̄

)

+ KC̄ tr
(

X̂C̄X̃T
C̄

)

+

+ tr
(

m̂H̄m̃T
H̄

)

+ tr
(

m̂C̄m̃T
C̄

)

+ tr
(

σ̂H̄ σ̃T
H̄

)

+

+ tr
(

σ̂C̄ σ̃T
C̄

)

(55)

C2







φ = KH̄ tr
(

ŴH̄W̃ T
H̄

)

+ KC̄tr
(

ŴC̄W̃ T
C̄

)

+

+ tr
(

m̂H̄m̃T
H̄

)

+ tr
(

m̂C̄m̃T
C̄

)

+ tr
(

σ̂H̄ σ̃T
H̄

)

+

+ tr
(

σ̂C̄ σ̃T
C̄

)

(56)

C3
{

φ = KN̄ tr
(

ŴN̄ W̃ T
N̄

)

+ tr
(

m̂N̄ m̃T
N̄

)

+ tr
(

σ̂N̄ σ̃T
N̄

)

(57)

and ‖φ‖ ≤ ϕ, k4min
and kdmin

are the minimum singular
values of k4 and kd, respectively. Substituting the position
error dynamics, (16), the time derivative of V results in:











V̇ ≤ 2k1e1(ωe2 − v1 + vr cos(e3)) + 2k1e2(vr sin(e3) − ωe1)+

+2k3vr(ωr − ω) sin(e3) + V̇1

V̇1 ≤ −eT
c ec − k4min

‖ec‖
2 −

−‖ec‖ (kdmin
‖ec‖ − bd − eNN − ϕ − µ)

(58)

where k3vr = (k1/k2). Substituting ec and v = vc − ec,

(18), V̇ becomes:

{

V̇ ≤ −k2

1e2

1 − ((k1k3)/k2)vr sin2(e3) − (k1e1 − e4)
2−

− (k1/(k2k3vr))(k3vr sin(e3) − e5)2 − k4min
‖ec‖

2 −
− ‖ec‖ (kdmin

‖ec‖ − bd − eNN − ϕ − µ)

(59)

Since ‖ec‖ ≥ ((bd + eNN + ϕ + µ)/kdmin
), V̇ is guaranteed

negative. According to a standard Lyapunov theory and

Barbalat lemma, all signals ‖eq‖, ‖ec‖,
{

X̃H̄

}

,
{

X̃C̄

}

,
{

W̃H̄

}

,
{

W̃C̄

}

,
{

W̃N̄

}

, m̃H̄ , m̃C̄ , m̃N̄ , σ̃H̄ , σ̃C̄ , and σ̃N̄

are bounded.

4. SIMULATION RESULTS

For accomplishing the simulations, the dynamic model
described in Fierro and Lewis [1998] is used, with d =
0.2m, vr = 0.5m/s, and ωr = 0.0rad/s.

To illustrate the performance of the three PTCs (C1, C2,
and C3 or (23)-(26), and (31)), the robot should to track a
straight line with the disturbance of Coulomb friction that
subject to sudden changes, as well as load disturbance.

The reference trajectory is a straight line with initial
coordinates (1, 2) and orientation of 26.56◦, respectively.
The initial position of the robot is [x0, y0, θ0] = [2, 1, 10◦].
The design parameters of controllers are chosen as: k1 = 1,
k2 = 3, k3 = 2, k4 = diag[7], Γ.k = 10, Γm.k = 0.001,
Γσ.k = 0.001, K. = 0.001, and kd = diag[7]. In this case,
the number of hidden neuron is: 20 for C1, 20 for C2
and 16 for C3. The values of centers m and widths σ of
Gaussian radial basis functions of the RBFNN are adjusted
on-line. Different tracking performance can be achieved by
adjusting parameters gains and others factors, such as the
size of the RBFNN. A Coulomb friction term unmodeled
disturbance, as well as bounded periodic disturbance are
added to the robot system as,

F =

[

(f1 + f1(t))sgn(v1) + 0.1 sin(2t)
(f2 + f2(t))sgn(ω) + 0.1 cos(2t)

]

where f1 = 0.3, f2 = 0.5. Function f(t) is non-linear, defi-
ned as: [ f1(t) f2(t) ] = [ 0.0 0.0 ]T if t < 8 ; [ f1(t) f2(t) ] =
[ 0.2 0.2 ]T if t ≥ 8, respectively. Thus, disturbance is
subject to a sudden change at time goes to 8 sec. Moreover,
in 8 sec, the mobile robot suddenly dropped of an object
of 2.5kg, that is, a quarter of its original mass.

The tracking performance of the PTCs (C1, C2, and C3)
are verified in the tracking of the reference trajectory (Fig.
1), in the tracking errors in the X and Y directions, and in
the orientation (Fig. 2), in the total control torques (Fig.
3) and in the actual linear and angular velocities of the
mobile robot (Fig. 4). It can be observed that the tracking
errors of the PTCs (C1, C2, and C3) tend to zero, as well
as the robot velocities and the control torques converge
to its steady state. In addition, when the sudden change
of friction and load variation occurs, is observed that the
tracking errors tend to zero, because the PTCs (C1, C2,
and C3) are able to compensate the sudden changes of
the robot dynamics through learning mechanism of the
RBFNN. Also, for comparison, the trajectory tracking
performance of the controllers (only k4 controllers and
PTCs) can be quantified using the mean square quadratic
error (MSE), where the results are on the Table 1.
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Trajectory Tracking

Y
[m
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X [m]

Ref. traj.
k4
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Fig. 1. Reference trajectory and actual trajectory - k4

controller; C1, C2, and C3 controllers

Table 1. Mean Square Quadratic Error - MSE

Controller
MSE

X direction Y direction θ orientation angle

k4 0.0609 0.0930 0.1397

C1 0.0478 0.0463 0.0887

C2 0.0507 0.0573 0.1169

C3 0.0355 0.0623 0.0953

5. CONCLUSIONS

This paper suggests control algorithms for a nonholonomic
mobile robot, with a completely unknown robot dynamics,
and subject to bounded unknown disturbance including
unmodeled and unstructured dynamics.

Since the three dynamic neurocontrollers have different
structures in terms of connection of the input vectors to
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RBFNN, the implementation these controllers is based on
the partitioning the neural networks into several smaller
subnets in order to obtain more efficient computation,
which simplifies the design, gives added controller struc-
ture, and also leads to contributes to faster weight tuning
algorithms.

The RBFNN used in the PTCs neither requires an off-line
training process nor the priori information of the robot
dynamics. Stability and convergence of the robot control
system, as well as the learning algorithms (for weights,
centers, and widths), are proved by using Lyapunov’s
theory, considering the presence of bounded unstructured
and unmodeled dynamics. The simulation results show the
efficiency of the PTCs, where it is possible to note different
dynamic behaviours, since these controllers have different
structures.
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