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ABSTRACT

This document reports work on the application of a Multiple

Controller Adaptive Control algorithm based on fictitious

reference signals. The algorithm has to select a controller in

a small set of candidate controllers. The work shows steps

towards a good selection of a cost functional and an analysis,

based on recent stability results, shows why a cost function

that is usual in other control methods is not suitable. With

appropriate cost functional and set of controllers, simulations

show the method is able to control a time varying process

in the presence of measurement noise and loop delay, even

outside the design interval for the parameter variation.
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I. INTRODUCTION

This work was motivated by the belief that a multiple

controller adaptive control (MCAC) of the unfalsified control

type could reach results at least as good as those presented

by Fekri et al in 2006, [1], in a simpler manner. Here,

”an algorithm of the unfalsified control type”, means an

algorithm that uses a fictitious reference signal for the

evaluation of each controller in a set of possible controllers

and does not make explicit use of a process model.

The task revealed to be harder than initially expected, but

the initial hypothesis is not ruled out. The cost functional

to be used must be carefully chosen. With an appropriate

candidate controllers set it is possible to obtain reasonably

good results in a control problem that is not very easy.

Stability is guaranteed but some concerns, and the need for

further study on performance still remain.

II. THE PROCESS

The process to be controlled is as shown in figure 1. The
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Fig. 1. Process to be controlled.

control input is a force u(t) applied to mass m1. Initially

all parameters will be considered constant in time and their
values are in equation (1). Later, in section VIII, k1 will be
considered time varying.

m1 = m2 = 1, k2 = 0.15, k1 = 1, b1 = b2 = 0.1 (1)

There is a disturbance force, v(t), acting upon mass m2. This

force is a stationary first-order (colored) stochastic process

generated by a low-pass filter, Wv(s), with continuous-time

white noise input, ξ(t), with zero mean and a variance equal

to 1, that is, E{ξ(t)ξ(τ)} = δ(t − τ), as follows:

v(s) = Wv(s)ξ(t) =
α

s + α
ξ(s) , α = 0.1 (2)

The process output, y, is the x2 cart position. The state and
output equations for the process have the standard form with
the state space matrices in equations (3) and (4), and the state
vector is xT (t) =

[

x1(t) x2(t) ẋ1(t) ẋ2(t)
]

, where
x1 and x2 are the positions of mass m1 and m2, respectively.
The first input is the disturbance v(t) and the second input
is the control force.

A =







0 0 1 0
0 0 0 1

−k1/m1 k1/m1 −b1/m1 b1/m1

k1/m2 −(k1 + k2)/m2 b1/m2 −(b1 + b2)/m2







(3)

B =







0 0
0 0
0 1/m1

1/m2 0







, C =
[

0 1 0 0
]

, D =
[

0 0
]

(4)

The system is open-loop stable. The open loop response

is shown in figure 2.
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Fig. 2. Disturbance, v(t) and open-loop output.

Control goals are attenuation of the effect of the dis-

turbance on the position of mass m2 and good reference

following. The frequency range of interest will be the low

frequencies, until around 0.1rad ·s−1, where the disturbance
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v(t) has most of its power. The following is a study on the

ability of a MCAC algorithm to achieve these objectives with

a small set of candidate controllers.

III. THREE CONTROLLERS AND A COST FUNCTIONAL

An important characteristic that a controller must possess

to be used in an unfalsified control setting is that a unique

fictitious reference signal can be determined, given the

controller and past measurement data, [2]. In that case the

controller is said to be causally left invertible.

Consider controllers with the structure described in equa-

tion (5). The symbol y represents the measured output and

r is the reference signal. It is the same PID structure used

in [3] and it is causally left invertible. The proportional gain

is kP , kI is the integral gain, kD is the derivative gain and

ε is a small number (our choice was ǫ = 1/20).

u =

(

kP +
kI

s

)

(r − y) −
skD

εs + 1
y (5)

Three controller parameter sets were selected by an ad-hoc

method and are shown in table I. Examples of closed loop

TABLE I
KP KI KD

controller 1: 1.0 0.01 0.05

controller 2: 0.2 0.01 0.05

controller 3: 0.01 0.01 0.05

output signals, obtained with each controller in the loop, for

a particular instance of the disturbance input, are shown in

figure 3. All simulation conditions were equal except for the
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Fig. 3. Output signal with each PID controller.

controller. Observing the output plots in figure 3 it may be

apparent that the best controller for disturbance attenuation

is controller 2. A possible measure of the quality of each of

these controllers is the 2-norm of each output signal in figure

3. That norm confirms controller 2 is better then the others

after some simulation time. The first controller results in an

unstable closed loop.

Consider that the performance of each controller is eval-

uated by the cost functional in equation (6). It is selected

because it weights control error and control effort and is quite

common in optimal control. For the present case it helps

showing how some cost functionals can lead to bad behavior

in this kind of algorithms, based on fictitious references,

enforcing the need for careful cost functional selection.

V1 =

∫ t

0

[(y(τ) − r(τ))2 + u(τ)2]dτ (6)

The cost for each controller, obtained with that controller in

the loop during all the simulation time, with a null reference

and the disturbance described in section II,is plotted in figure

4. It can be seen from the plots that, although the controller

with lower cost changes over time in the first part of the

simulation, after around 120 seconds the best controller

becomes controller 2 and that remains for the rest of the

time. The cost functional in equation (6) could be thought to

be a reasonable cost since it weighs output error and control

effort.
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Fig. 4. Cost values for controllers 1 (black), 2 (red) and 3 (blue).

IV. ALGORITHM FOR CONTROLLER SELECTION

The performance of each controller in a candidate con-

trollers set is evaluated using a cost functional. If the

controller being evaluated is in the loop one can compute

the cost value using input output data and the real reference

signal for the system. The controllers that are not in the

loop can be evaluated using a fictitious reference signal. That

is the reference signal that would have produced the same

measured data, had that controller been in the loop.

In a pure unfalsified control algorithm, [2], [3], the

evaluation of controllers in a set is used to exclude the

ones that have been proven not to be able to meet the

performance specifications. Those controllers are said to be

falsified because their ability to meet specification has been

proven false. In that case, when the controller in the loop is

falsified, one of the unfalsified controllers in the set is put

in the closed loop.

In another family of different, but closely related algo-

rithms, [4], [5], [6], the evaluation of controllers is used to

select, from all controllers in the candidate controllers set,

which at each moment, should be put in the loop, because

it has a better evaluation. No controller is falsified. The

controller switching can be considered periodically, at any

moment, or based on the cost values of the controllers.

This last approach is tested here for the control of the

process in figure 1 considering as candidate controllers the

three controllers presented in section III. The algorithm

selects, at each sampling instant, the controller to be put

in the loop using the cost functional shown in equation (6).

The fictitious reference signal for each of our three candi-

date controllers can be computed using equation (7). That is,

given the actually measured output, y(t), and control signal,

u(t), the only reference signal that could be compatible

to those signals, if controller i was in the loop, is r̃i, as

computed by equation (7). Equation (7) can be deduced from

equation (5).

r̃i = y +
s

KPi
s + KIi

(

u +
sKDi

εs + 1
y

)

(7)

In the present case, using the cost functional in equation

(6) the algorithm selects controller 1 as the best controller to
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put in the loop. It does so very shortly after the simulation is

started and independently of which of the three controllers

is active in control. This is an unexpected result since, from

the plots in the last section, controller 2 is understood as a

better controller and controller 1 is in fact a destabilizing

controller.

Figure 5 shows the cost of each controller using data

collected when controller 1 is in the loop. Using the input and

output data from the process with controller 1 in the loop, a

fictitious reference signal is computed for each controller and

that reference signal and the input and output data from the

process are used in the computation of the cost associated

with the controller. The cost of controller 3 is always much

bigger then the costs of controllers 1 and 2 so only this last

two are shown in the plot in figure 5. Controller one has the

lower cost and that is why it is selected.
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Fig. 5. Cost values for controllers 1 (black) and 2 (red) with data obtained
with controller 1 in the loop.

The fact that this controller selection algorithm does not

recognize the best controller is a matter of some concern

and deserves attention. Although nothing in the theory of

unfalsified control guarantees the best controller, in this

sense, is always chosen, it was expected, based on previously

seen cases, that the algorithm could perform well. The non

adequacy of the cost functional just used is the cause for the

algorithm failure and is analyzed in the next section.

V. PARTICULAR MECHANISM CAUSING THE ALGORITHM

FAILURE WITH THE FIRST COST FUNCTIONAL

Consider the first cost functional, defined in equation (6).

It has two terms inside the square brackets. The second of

this terms is in fact equal for all controllers because u(t)
is the control signal effectively applied to the process. This

second term does not change the value of a controller cost

relative to the others.

The first term is the integral of (y(τ) − r̃i(τ))2, and it

uses the same measured output and the particular fictitious

reference signal for the controller being evaluated. It may

be relevant to look at equation (7) and observe the particular

transfer function from y to r̃ for each controller. A Bode plot

of each of these transfer functions show, see figure 6, that

their gains are close to one for the low frequencies and the

phase shift is also small for the low frequencies. It can be

observed that the gain and phase are smaller for controller

1, then for controller 2 and then for controller 3. This means

the absolute value of (y − r̃) is smaller for controller 1 then

for controllers 2 or 3. That is the reason why controller 1

has a lower cost and is selected as the better controller when

the cost functional in equation 6 is used.

VI. ANALYSIS

The analysis of the problem above is presented in this

section in light of the stability results by Wang et al (2005),
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in [7]. In that paper stability of a multiple controller adaptive

control (MCAC) of the kind used here is ensured by the

following Theorem from [7], where d stands for data, K for

controller, and τ for the present instant of time.

Theorem: ([7]) If the following Assumptions 1, 2 and 3

hold, the unfalsified MCAC system is stable.

Assumption 1: The cost function V (d, K, τ) is L2e-gain-

related.

Assumption 2: Each candidate controller K ∈ K is SCLI.

Assumption 3: The safe adaptive control problem is

feasible.

The analysis will proceed with the verification of each of

these Assumptions.

Assumption 3 means that there is at least one stabilizing

controller in the candidate controllers set that can control

the process with the desired performance. In our case study,

no specific performance requirement is stated, stability is

enough, for now.

In the present problem Assumption 3 can be proven, or

refuted, since the process and the controllers are known.

(5) and the process transfer function Wp(s). Computing the

closed loop poles for each of the three candidate controllers

in table I and the process in equation (4) shows only

controller 1 leads to unstable poles. One can conclude that

Assumption 3 is satisfied, the adaptive control problem is

feasible.

Assumption 2 states that all the candidate controllers
should be Stable Causally Left Invertible (SCLI). This means
that the fictitious reference generator associated with each
candidate controller must exist, must be causal and must
be incrementally stable. In the present case, the fictitious
reference generators are given by equation (7) that can be
written as

r̃ =
s

KP s + KI

u +
(KD + ǫKP )s2 + (KP + ǫKI)s + KI

ǫKP s2 + (KP + ǫKI)s + KI

y

(8)

Computing the transfer functions in (8) for each controller in

table I readily shows that the fictitious reference generators

exist and are causal and stable for all the three controllers.

It can be easily shown that if a linear system is stable then

it is also incrementally stable. Assumption 2 is true for the

present case.
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A. Verification of Assumption 1

Assumption 1 is that the cost function V (d, K, τ) is L2e-

gain-related. Recall the following definition of L2e-gain-

related from [7].

Definition: Given a cost/candidate controller-set pair

(V, K), we say that the cost V is L2e-gain-related if for

each d ∈ L2e and K ∈ K,

1) V (K, d, τ) is monotone in τ ,

2) the fictitious reference signal r̃τ (K, d) ∈ L2e exists and,

3) for every K ∈ K and d ∈ L2e, V (K, d, τ) is bounded as

τ increases to infinity if, and only if, stability is unfalsified

by the input-output pair (r̃τ (K, d), d).

The first condition in the above definition of L2e-gain-

related is readily verified since the cost function in equation

(6) is the integral of the sum of two squared functions. The

second condition was already verified since, by equation (8),

the signal r̃ always exist for the selected set of controllers.

The verification or invalidation of the third condition will

now be studied.

To prove that the third condition holds one has to prove

that the following two statements are equivalent:

a) V (K, d, τ) is limited as τ increases to infinity;

b) stability is unfalsified by the input-output pair

(r̃τ (K, d), d).
The definiton of unfalsified stability is as follows, [7]:

Given an input-output pair (r, d) of a system, we say that

stability of the system is unfalsified by (r, d) if there exist

β, α ≥ 0 such that

‖dτ‖ < β‖rτ‖ + α, ∀t ≥ 0 (9)

holds; otherwise, we say stability of the system is falsified

by (r, d).
The norm of a scalar signal, ‖rτ‖, used here is defined

as ‖rτ‖ =
(∫ τ

0 |r(t)|2dt
)

1

2 . Since dτ =
[

uτ yτ

]T
is a

vector signal with two components one can use the norm

definition used by Wang et al in [8], which states that, for

a vector of functions x(t) =
[

x1(t) x2(t) . . . xn(t)
]

the L2e norm is defined as ‖x‖ = maxi=1,2,...,n ‖xi‖. In

the present case, expression (9) can then be written as

max(‖uτ‖, ‖yτ‖) < β‖r̃τ‖ + α, ∀τ ≥ 0.

It is apparent that our first cost functional, in equation (6),

is not L2e-gain-related because even when the closed loop

system is stable the cost can grow to infinity when τ grows.

To see that, consider a periodic input, not identically zero, for

which the control signal is also periodic. In that case, even if

reference following is perfect, the value of V1(K, d, τ) tends

to infinity as time grows without, however, stability being

falsified by r̃((K, dτ ), dτ ). This proves the selected cost is

a candidate for causing the failure of the control algorithm.

VII. SELECTION OF A COST FUNCTIONAL

To have stability guaranties we look for a cost detectable

cost functional. It seems natural, in view of equation (9), to

select such a cost to be of the form V = ‖d‖
‖r‖ , since stability

means there are constants β, α ≥ 0 such that

‖d‖ < β‖r‖ + α ⇒
‖d‖

‖r‖
< β +

α

‖r‖
(10)

As argued above, ‖dτ‖ = max(‖yτ‖, ‖uτ‖) so the following

cost could be suggested

V2(K, d, τ) =
max(‖yτ‖, ‖uτ‖)

‖r̃τ‖
(11)

This is, by design, a cost function that has the property

of cost detectability. However it is not monotone which

is one of the conditions for guaranteed stability, present

in Assumption 1 above. Cost functional V3(K, d, τ) =

max[0,τ ]
max(‖yτ‖

2,‖uτ‖
2)

‖r̃τ‖2 guarantees the L2e-gain-related

property. With V3, the algorithm selects a stabilizing con-

troller but performance is not good. Cost functional V3 could

perhaps be expected to generate poor behavior because its

numerator is equal for all controllers in the set, it depends

only on the data. It is only the denominator, the norm of the

fictitious reference, that ”decides about” the relative cost of

the controllers.

Aiming at a better control behaviour another cost func-

tional, V4(K, d, τ) = max[0,τ ]
‖y(t)−r̃(t)‖2

‖r̃‖2 , was tested. Cost

V4 is an attempt to make the cost explicitly dependent on the

reference following qualities of the closed loop. With cost

functional V4 and this set of controllers the algorithm can

not be used for disturbance rejection in this system with a

null reference.

Other cost functionals, similar to V4, where tried, without

success. There is a need for frequency weighting to get

better performance in the frequencies of interest. This can

be accomplished with cost functional V5 in equation (12).

V5(K, d, τ) = max[0,τ ]
‖y(t) − wm ∗ r̃(t)‖2

‖r̃‖2
(12)

In equation (12), wm is the inverse Laplace transform of a

transfer function specifying a desired frequency behavior for

the closed loop. This allows for the specification of different

performance requirements in different frequencies. In the rest

of this document wm is selected as wm(t) = L−1{ 1
s+1}.

Cost functional V5 results in a more robust control scheme

then cost functional V4. It can also be said that with cost

functional V5 the dependence of the cost on the initial

instants of simulation becomes less severe. With this cost

functional the algorithm can be used for disturbance rejec-

tion.

VIII. A SET OF FIVE CONTROLLERS

The three controllers set used above is a poor set and

the performance of its best controller is not very good as

can be concluded with a few simulation runs. This can be

confirmed comparing the simulation results shown in figure 3

with results reported in Fekri et al (2006), [1]. The weakness

of the controllers set just considered and the intent for study

of the performance capabilities of the algorithm motivates

the use of another set of candidate controllers.

The adaptive control algorithm’s performance and robust-

ness should be tested in the presence of measurement noise,

parameter variations and delay in the feedback loop. A

small set of candidate controllers will be considered. The

testing conditions are similar to those described in [1] by

Fekri et al (2006), as follows. Parameter k1 changes in the

interval [0.25, 1.75]. A delay τ ≤ 0.05s affects the loop. An
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additive measurement noise, θ(t), affecting the measurement

y = x2(t), independent of ξ(t), is present in the tests. The

measurement noise is defined by

E{θ(t)} = 0, E{θ(t)θ(τ)} = 10−6δ(t − τ) (13)

Parameter k1 can change in the interval [0.25, 1.75] giving

origin to a continuous set of different models for the process.

Particular points in the range of k1 are selected for the design

of controllers, say five points. The interval [0.25, 1.75] is

divided in five smaller intervals and the middle point of each

of this intervals is selected for the design of a controller.

We hope that the algorithm can select, at each moment, an

adequate controller, as the model changes in time.

Each interval has a wideness of 0.3 and the middle points

of the intervals are p1 = 0.40, p2 = 0.7, p3 = 1.0, p4 = 1.3,

p5 = 1.6. Corresponding to each of this points controllers

Cp1 to Cp5 are designed. The MCAC algorithm with this

five controllers will be tested.

A. Controllers design

The requirements on each controller are good disturbance

rejection and zero steady state error. The process to be

controlled is completely controllable and observable. The

design of each controller is done via pole placement. The

control structure is as shown in figure 7. In the diagram, Kpp

N
r u y+

Estimator
x

Process

-Kpp

+

Fig. 7. Control structure.

is a vector of gains for state feedback and N is a constant

that is computed for zero steady state error using equation

(15) after solving equation (14), [9]. In equation (15) the

matrices A, b, C and D are the process state space matrices

from the control input to the measured output. The control

signal is computed as in the second equation in (15).
[

A b
C D

]

×

[

Nx

Nu

]

=

[

0
1

]

(14)

N = Nu + KppNx , u(t) = Nr − Kppx (15)

The state estimator poles and the closed loop poles are

selected in the same places for all controllers. The state

estimator poles are at −10, −15, −20 and −25 and the

closed loop poles are placed at −0.5, −2± i, and −5. Con-

sidering only the controlled input, u(t), the state estimator

is described by equation (16) where b is the second column

of matrix B in equation (4).

˙̂x = (A − LC)x̂(t) + [ b L ]

[

u(t)
y(t)

]

(16)

The gain, L, of the estimator is selected using the place

function of Matlab so that the eigenvalues of (A−LC), the

estimator poles, are at the chosen locations. According to

this design the values of L, K and N computed for each

controller are shown in tables II and III. Each controller is

able to control the process in its respective design interval

TABLE II

CONTROLLER GAINS (K ) AND ESTIMATOR GAINS (L)
Controller Gain vector

K1 :
[

19.8616 6.2903 9.2400 71.9041
]

K2 :
[

22.3763 −9.4640 9.2000 37.2374
]

K3 :
[

23.4086 −13.5699 9.2400 24.4343
]

K4 :
[

23.2839 −16.5052 9.2000 16.1606
]

K5 :
[

23.1525 −17.6605 9.2000 11.4753
]

L1 :
[

1180.20 69.70 185739.75 1753.13
]T

L2 :
[

12124.08 69.70 105383.21 1.752.53
]T

L3 : 104
×

[

1.1680 0.0070 7.3241 0.1752
]T

L4 :
[

10300.02 69.70 55933.86 1751.33
]T

L5 :
[

9031.76 69.70 45117.15 1750.73
]T

with good performance and stability. Note however that the

controllers designed for lower values of k1 lead the closed

loop to be unstable if k1 surpasses certain values inside its

interval of variation.

TABLE III

REFERENCE GAIN

N1 N2 N3 N4 N5

31.2500 17.8571 12.5000 9.6154 7.8125

IX. SIMULATION RESULTS

The MCAC algorithm was implemented with the above

five candidate controllers for control of the process in figure

1 with the parameter values in equations (1) except for k1

that was made time-variant. Several simulation experiments

where done and the results of two of them are presented next.

In both an actuation delay of 0.05s and measurement noise,

as described in the beginning of section VIII, are present.

The sampling time for the measurements is 0.01s and the

minimum time between controller switches is 0.25s.

a) Experiment 1: Parameter k1 changes according to

k1(t) = 1 − 0.75 × cos(0.01t). The algorithm was able to

control the process in a stable way. Disturbance rejection

results for a null reference and the disturbance already

described in section II can be seen in figure 8. The output

peak value a few seconds before t = 200s is −0.4.
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Fig. 8. Output magnitude and controller in the loop (experiment 1).

b) Experiment 2: In this experiment k1 takes values

inside and outside the range of design. The results indicate

that reasonably good behavior can be expected if one of

the controllers can stabilize and control the process for

such values of k1. Suppose that k1 changes according to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4879



k1(t) = 1.5 − 0.75 × cos(0.02t), that is k1 changes in the

interval [0.75, 2.25] with a frequency of twice that considered

before. If k1 changes this way the algorithm behaves as

shown in the plots in figure 9. It can be seen that the MCAC

scheme can find a reasonable controller for the process,

even outside the initial range of variation of k1. The lower
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Fig. 9. Output magnitude and controller in the loop (experiment 2).

numbered controllers become unstabilizing as the value of

k1 grows. It can be seen that the algorithm changes from

the initial controller 3 to controller 1 because controller 1

has a better performance. After some time, as k1 grows, that

controller becomes a destabilizing one and controllers 2, 3,

4 and 5 are put in the loop. Note however that controller

5 remains in the loop, even in times when other controllers

would result in better performance.

X. DISCUSSION

This work enforces the idea that the selection of a cost

functional for an MCAC algorithm of the unfalsified control

type described must be done with care. It also launches

some doubts on the goodness of the basic ideas behind

the algorithm for controller selection in this kind of MCAC

control schemes.

Although there is a solid logical reason for ”pure” unfal-

sified control to work, [2], [3], proving that some controllers

are not able to satisfy some performance criteria and keeping

the others, we have not found a good reason for a MCAC

of the present type, the one exposed in [7], to be able to

guarantee performance, even if good performance controllers

are included in the candidate controllers set.

The MCAC switching algorithm, selects the best controller

to be put in the loop, according to a cost functional that

uses fictitious reference signals. This is similar to the optimal

unfalsified control algorithm or best-fit controller in [4], [5],

[6]. It seems possible, however, that there in no good reason

to believe that a cost computed using a fictitious reference

signal is a good indicator of controller performance, although

this fictitious signal must be compatible with the data col-

lected in the functioning system.

The best reason for such a belief we have found are the

results described in some papers by Safonov and his co-

workers showing, by means of some simple examples, that

this idea can work, namely in [4] and [5]. In this references

however the candidate controller sets were of the model

reference adaptive control (MRAC) type and the controller

sets have infinite cardinality. We have also obtained good

results, in other works, using the same algorithm and the

same kind of candidate controller sets to other processes.

If, before selecting the optimal controller, an unfalsifi-

cation step is done, guaranteeing that the remaining set

only contains controllers at a certain unfalsified cost level,

then, performance should be guaranteed. This however is

not always easy to apply because it may be hard to select

an appropriate cost level. The adequate cost functional may

also be difficult to select. On the other hand if the system is

time varying it may be inappropriate to exclude controllers

that latter may be needed.

XI. CONCLUSIONS

This multiple controller adaptive algorithm is able to

stabilize a time varying process, both in cases of slow

parameter variations and in cases when there are jumps in

the parameter values, even in the presence of measurement

noise and delay in the feedback loop.

Care must be taken in the selection of the cost functional

since for stability guarantees it must be cost detectable and

monotone, as shown by Wang et al, [7].

Performance can be compared to that of more compli-

cated algorithms, namely that of the robust multiple model

adaptive control (RMMAC) architecture presented in [1]. It

should also be emphasized that the present algorithm has the

advantage of requiring less assumptions on the process and

the signals that may affect it. We are close to confirm the

initial hypothesis that this MCAC algorithm can be used to

attain results comparable to those of the RMMAC, at least

for this process.

Further study is needed on the performance of this type

of best-fit control algorithm with finite cardinality controller

sets and on ways to improve it.
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