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Abstract: The management problem of water reservoirs can be formulated as a stochastic
optimal control (SOC) problem, where the objective function is an aggregated cost that
accounts for the interests acting in the water system (e.g. hydropower production, irrigation
supply, etc.) and the design variable is the reservoirs release policy. Solving the SOC problem
through stochastic dynamic programming is often impossible, since the numerical resolution
of the Bellman equation is computationally prohibitive even for small reservoir networks. An
approximate solution can be searched for by assuming a priori the family of function to which the
control laws belong and replacing the SOC problem with a nonlinear programming one. Recently,
a method based on this approach has been proposed in the literature, coupled with the use of
nonlinear approximating networks to approximate the optimal control laws. This optimization
method, called Extended RItz Method (ERIM), is suited for finite horizon SOC problems.
However, management problems for environmental systems are spontaneously formulated over
an infinite horizon, since the life time of the system is infinite. This paper thus presents an
extension of the ERIM to the infinite horizon case. The algorithm that implements such method
is tested on a numerical example where a 10-reservoirs network is optimized for hydropower
production and irrigation supply.

1. INTRODUCTION

The policy design problem for a reservoir network can be
formulated as a Stochastic Optimal Control (soc) prob-
lem, where the objective function is obtained by aggre-
gating a number of partial cost functions that express the
different interests in play in the water system (e.g. flood
control, hydropower production, irrigation supply, ecosys-
tem conservation). Since the water system is dynamical,
with uncertain inputs (namely inflow to the reservoirs) and
possibly constrained on the state and/or on the control,
Stochastic Dynamic Programming (sdp) appears to be
the most suitable solution approach to the soc problem.
Unfortunately, the analytical solution obtained in the so-
called lqg framework can not be exploited in most of
the real world applications, since none of the assumptions
of the lqg framework (linear system, quadratic objective
function and Gaussian random inputs) is satisfied. An
approximate solution can be obtained by discretizing the
state, control and disturbance spaces, and numerically
solving the Bellman equation. The limit of this approach
is that its computing time increases exponentially with
the number of components of the state, control and dis-
turbance vectors, thus making the problem intractable
even for ‘simple’ water systems, e.g. a few reservoirs in
the network (curse of dimensionality, Bellman (1957)). In
order to overcome this difficulty, many approaches have
been proposed. Some are based on a manipulation of the
problem aimed at making it tractable with sdp, e.g. by
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simplifying the model of the water system or using smart
approximators for the cost-to-go functions or reducing
the discretization grid giving up regular grids for the
state space discretization and using Montecarlo or quasi-
Montecarlo. Others abandon sdp and turn to different
optimization techniques: either choosing a priori the family
of functions to which the control laws belong, thus trans-
forming the soc problem into a mathematical program-
ming one, or by using a partial model-free approach and
reinforcement learning algorithms. Recent reviews of the
above approaches, as well as discussion of strengths and
difficulties of each method can be found in Baglietto et al.
(2006) and Soncini-Sessa et al. (2007).

This paper focuses on the Extended RItz Method (erim)
proposed by Zoppoli et al. (2002). Here, an Approximating
Network (an) is used as a fixed-class control law and
its parameters are optimized based on the Ritz method.
This method has been developed for finite horizon soc

problems. Unfortunately, when managing environmental
systems, the assumption that the life-time of the system
be finite is unrealistic. A finite horizon could be considered
only if it were possible to define a penalty function over the
(‘fake’) final state, to express the cost from that instant
on. By doing so, however, the problem of dealing with
an infinite horizon is just shifted to the definition of the
penalty function. In the case of real-time management,
the algorithm developed for the finite horizon case can be
exploited also over an infinite horizon, through the appli-
cation of the receding horizon principle. However, again
the problem arises of choosing the appropriate penalty
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function over the final state of the receding horizon: unap-
propriate choice, in fact, can compromise the performances
of the control scheme.
Following the above considerations, in this paper an ex-
tension of the erim to the case of infinite horizon soc

problems is proposed. The paper is organized as follows. In
the next section, the management problem for a reservoir
network is formulated as a soc problem for either the finite
and infinite horizon case. In section 3, the soc problem
is transformed into a nonlinear programming problem by
introducing suitable approximators for the optimal control
laws. The optimization of the approximator parameters
is based on a gradient descent method, thus requiring
the knowledge of the gradient of the cost function. The
approximate computation of the latter is the keystone for
the extension of the erim to the infinite horizon case.
Therefore, we will first introduce a new method for the
computation of the gradient over a finite horizon; this is
equivalent to the one proposed by Zoppoli et al. (2002),
however it has the advantage that it can be easily extended
to the infinite horizon case, as it will be shown in section
3.3. The proposed approach is tested (section 4) on a
simplified 10-reservoirs system that is often used as a test
system in the literature of water systems management.
Finally, a brief discussion of the open issues of the proposed
approach is given in the last section.

2. PROBLEM STATEMENT

The water system is composed of reservoirs, natural catch-
ments that feed the reservoirs, diversion dams, water users
(e.g. hydropower plants or irrigation districts) and artifi-
cial and natural canals that connect all the above com-
ponents. It can be described as a discrete-time dynamical
system. Discrete time is considered because the decision
time step is discrete: release decisions are usually taken
daily and, in any case, at least every few hours, because of
physical constraints in the implementation of the decision
(e.g., operating the dam’s gates). The system dynamics
is given by the following time-varying state transition
equation

xt+1 = ft(xt, ut, εt+1) (1)

where xt ∈ R
nx and ut ∈ Ut ⊆ R

nu are the state and
control at time instant t; and εt+1 ∈ R

nε is the disturbance
acting in the time interval [t, t + 1), which is generated
by a white noise process. In the adopted notation, the
time subscript of a variable indicates the instant when
the its value is deterministically known. The state xt

is composed of the state variables of the reservoirs, i.e.
their storages, and, when the case, the state variables
of the catchments, of the canals and of the water users.
The control is composed of the release decisions of the
reservoirs and the distribution decisions at the regulated
diversion dams, if any. The disturbance εt+1 is a random
vector and as such, at each time t, it is described by its
probability density function (pdf) φt(·).
The global performances of the system over the finite
horizon [0, h] can be evaluated by means of the following
cost function

J = E
εh
1

[

h−1
∑

t=0

gt(xt, ut, εt+1) + gh(xh)

]

(2)

where the notation εh
1 is used to indicate the trajectory of

the variable εt from time 1 to time h, gt(·) is a scalar
function that expresses the step-cost associated to the
system transition from t to t + 1 and gh(·) is the penalty
function over the final state. The step-cost and penalty
functions are derived by linear combination of the partial
step-costs and penalties that express the costs incurred by
the single water users’, e.g. irrigation deficit, flooded area,
etc. (for the meaning of the aggregation in the perspective
of multi-objective optimization, see Soncini-Sessa et al.
(2007) and references therein).
If, at each time t, the control is taken on the basis of a
control law ut = mt(xt), the finite horizon soc problem
can be formulated as:

Problem P1 Find the sequence {u∗t = m∗

t (xt) ∈ Ut : t =
0, . . . , h−1} of optimal control laws that minimizes (2) for
a given initial state x0.

2.1 Formulation of the infinite-horizon SOC problem

If an infinite horizon is considered, the cost function cannot
be defined as in equation (2). In fact, first the penalty
function gh(·) is no more necessary. Furthermore, some
corrections must be introduced to avoid the divergence
of J . To this end, two approaches are possible. The first
consists in introducing a discount factor γ (with 0 < γ < 1)
and defining J as the expected Total Discounted Cost
(tdc), i.e.

J = lim
h→∞

E
εh
1

[

h−1
∑

t=0

γtgt(xt, ut, εt+1)

]

(3)

The second consists in considering the Average Expected
Value (aev)

J = lim
h→∞

E
εh
1

[

1

h

h−1
∑

t=0

gt(xt, ut, εt+1)

]

(4)

The infinite horizon soc problem is now well posed and
it can be solved provided that the water system be cyclo-
stationary, i.e. the functions ft(·) in (1), gt(·) in (3)-(4)
and the disturbance pdf φt(·) be periodic. This is common
in water systems, where the period T is usually equal to
one year. Under this assumption, the infinite horizon soc

problem is formulated as:

Problem P2 Find the periodic sequence {u∗t = m∗

t (xt) ∈
Ut : t = 0, 1, . . . ;m∗

t (·) = m∗

t+T (·)} of optimal control laws
that minimizes (3) - or (4) - for a given initial state x0.

3. EXTENDED RITZ METHOD

The difficulty in solving the soc problem formulated in
previous section (both in its finite and infinite version)
stems from the fact that each control law m∗

t (·) belongs to
an infinite-dimensional space of functions. The problem
is simplified if, for each t = 0, 1, . . ., the control law
is forced to belong to a pre-selected family of functions
{m̂t(xt, θt) : θt ∈ Θt}, where Θt ⊆ R

nθ is such that
m̂t(xt, θt) ∈ Ut for any xt. Then, the cost function J is
a function of the sequence {θt : t = 1, 2, . . .} and the
soc problem turns into a nonlinear programming one. For
example, in the finite horizon case, the soc problem P1 is
replaced by the following
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Problem P3 Find the sequence {θ∗t : t = 0, . . . , h − 1}
of optimal parameters that minimizes (3) - or (4) - with
u∗t = m̂t(xt, θ

∗

t ) for each t, m̂t(·) belonging to the a priori
selected family {m̂t(·, θt) : θt ∈ Θt}, and given initial state
x0.

3.1 Solution of the nonlinear programming problem

In general, problem P3 is just an approximation of the
original soc problem P1, because the optimal control laws
m∗

t (·) that compose the solution of the latter might not be-
long to the pre-selected families {m̂t(·, θt)}. Zoppoli et al.
(2002) discuss the very concept of ‘approximation’ of an
optimization problem and provide results about the accu-
racy of the approximate solution {m̂t(·, θ

∗

t ) : t = 0, . . . , h−
1} when the functions m̂t(·, θt) are Approximating Net-
works (ans). An Approximating Network is a nonlinear
function obtained as a linear combination of simple basis
functions. More precisely, if ut is obtained as the output
of an an, its j-th component is given by

uj
t (xt) =

ν
∑

i=1

cijψi(xt, ki) (5)

where ψi(·), i =1,...,ν are basis functions and ki ∈ R
k are

inner parameters. The parameter vector that collects all
the an parameters is θt = col(cij , ki : i = 1, . . . , ν; j =
1, . . . , nu) and it belongs to R

nθ with nθ = ν(k + nu). In
the following, for the sake of simplicity and without loss
of generality, it will be assumed that the ans m̂t(·) all
have the same structure (same number and type of basis
functions) for t = 0, ..., h − 1. If no inner parameters ki

appear in the basis functions, the ans are linear in the
unknown parameters cij and Problem P3 can be solved by
means of the classical Ritz method.

Zoppoli et al. (2002) propose an extension of the Ritz
method for solving problem P3 when nonlinear ans are
used, i.e. the parameters ki are to be determined too, and
call it Extended RItz Method (erim). They also propose
an algorithm based on gradient descent for solving problem
P3 when the parameters are unconstrained (Θt = R

nθ ).
Conventional gradient descent method foresees that the
estimate of the parameter vector θ = col(θt : t = 0, . . . , h−
1) be iteratively derived as

θi+1 = θi − αi∇θJ (6)

However, this would require the computation of the gradi-
ent of J . Analytical computation is almost always impos-
sible because of the complexity of the definition of J , and
numerical computation is time consuming.

In order to reduce the computational effort, the gradient
∇θJ in (6) can be replaced by the gradient ∇θZ, where
Z is the total cost associated to a single realization of the
disturbance,

Z =

h−1
∑

t=0

gt(xt, ut, εt+1) + gh(xh) (7)

The algorithm so obtained belongs to the class of stochas-
tic approximation algorithms (see e.g. Kushner and Yin
(1997)). In order to guarantee convergence of the algo-
rithm, it is necessary that the step-size αi tends to zero as
i goes to infinity; here, the form αi = c1/(c2 + i) will be
considered.

The gradient ∇θZ can be computed rather efficiently: each
partial derivative ∂Z/∂θj

t (j =1,...,nθ) that compose ∇θZ

can be obtained from the product ∂Z/∂ut ·∂m̂k/∂θ
j
t , while

∂Z/∂ut is obtained through an algebraic combination of
∂gt/∂ut, ∂ft/∂ut and ∂Z/∂xt+1; and ∂Z/∂xt is recursively
computed, backward in time, based on ∂gt/∂xt, ∂ft/∂xt,
∂m̂t/∂xt and ∂Z/∂ut (see for example Zoppoli et al.
(2002)).

3.2 Alternative computation of the gradient

The backward computation of ∂Z/∂xt presented in pre-
vious paragraph requires an initialization that is possible
only in the finite horizon case, where ∂Z/∂xt = ∂gh/∂xh.
In the infinite horizon case, instead, the final instant goes
to infinity and ∂Z/∂xt can not be initialized. Therefore,
in order to extend the method to problems defined over
an infinite horizon, it is first necessary to derive an algo-
rithm for the forward computation of ∇θZ. This is easy:
in fact, from (7) it follows that each of the hnθ partial

derivatives ∂Z/∂θj
t , t=0,...,h − 1 and j=1,...,nθ, is given

by the following equation

∂Z

∂θj
t

=
∂

∂θj
t

(

h−1
∑

k=0

gk(xk, uk, εk+1) + gh(xh)

)

=

=
∂gt

∂ut

∂m̂t

∂θj
t

+

h−1
∑

k=t+1

(

∂gk

∂xk

+
∂gk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

+
∂gh

∂xh

∂xh

∂θj
t

The sensitivity vector ∂xk/∂θ
j
t (k=t+1,..., h) that appears

in the above equation can be recursively obtained by
posing ∂xt/∂θ

j
t = 0 and using the following equation

(sensitivity system) for k = t, . . . , h− 1

∂xk+1

∂θj
t

=
∂fk

∂xk

∂xk

∂θj
t

+
∂fk

∂uk

(

∂m̂k

∂θj
t

+
∂m̂k

∂xk

∂xk

∂θj
t

)

=

=

(

∂fk

∂xk

+
∂fk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

+
∂fk

∂uk

∂m̂k

∂θj
t

(8)

Note that the term ∂m̂k/∂θ
j
t is zero for any k exception

made for k = t; therefore the second term on the right
hand side of equation (8) actually appears only for k = t.

It is easy to prove that the backward and forward compu-
tation of the gradient are equivalent. However, the back-
ward computation is preferable when the ans m̂t are multi-
layer neural networks. In this case, in fact, the compu-
tation of the partial derivatives ∂m̂t/∂θ

j
t and ∂m̂t/∂xt

can require some tedious algebra, which can be avoided
if the backward procedure is used. In fact, with little
modification the backward procedure can be combined
with the back-propagation equations, in order to directly
compute the partial derivatives ∂Z/∂θj

t without requir-

ing the knowledge of ∂m̂t/∂θ
j
t and ∂m̂t/∂xt. The same

cannot be done with the forward procedure. However, the
forward procedure was proposed because, to the author’s
knowledge, it is the only one that can be applied in the
infinite horizon case, as it shall be seen in the next section.

3.3 Extended Ritz method for the infinite-horizon problem

In the infinite horizon case, we consider a cyclostationary
nonlinear system of period T and search for a periodic
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policy, i.e. a periodic sequence of control laws m∗

t (·)
(for the study of the optimality properties of periodic
policies for infinite horizon soc problems, see Bertsekas
(1976)). Following the approximate approach introduced
in previous section, we search for a periodic sequence of
approximators m̂t(·, θ

∗), i.e. we formulate the following
nonlinear programming problem.

Problem P4 Find the periodic sequence {θ∗t : t =
0, 1, . . . ; θ∗t = θ∗t+T } of optimal parameters that minimizes
(3) - or (4) - with u∗t = m̂t(xt, θ

∗

t ) for each t, m̂t(·)
belonging to the a priori selected family {m̂t(·, θt) : θt ∈
Θt}, and given initial state x0.

This problem can be solved by using the same approach as
in the finite horizon case, i.e. a gradient descent method
where ∇θJ is replaced by ∇θZ. The parameter vector
is θ = col(θt : t = 0, . . . , T − 1) and it has nθT
components, nθ being the number of components of each
θt, t = 0, . . . , T−1. The proposed stochastic approximation
algorithm is

θi+1 = θi − αi∇θZ (9)

where the total cost Z is defined as

Z =

h−1
∑

t=0

γtgt(xt, ut, εt+1) (10)

if the tdc formulation is used, or

Z =
1

h

h−1
∑

t=0

gt(xt, ut, εt+1) (11)

if the aev formulation is used. The algorithm works as
follows: at each iteration, the gradient ∇θZ is evaluated at
the current parameter estimate and subject to a randomly
extracted trajectory ε̄h

1 of the disturbance, where the finite
length h of the horizon is suitably chosen (we shall go
back to this issue in the following). Once h has been fixed,
the computation of ∇θZ is straightforward, as it will be
shown in what follows. Before proceeding, however, it is
interesting to note that, under the assumption that the
operations of limit and derivation can be exchanged, the
gradient ∇θZ in (9) can be viewed as an approximation
of ∇θJ where (a) the expected cost is replaced by the
cost subject to a particular disturbance trajectory; and
(b) the cost is computed based on the trajectories of the
system variables truncated at time h instead of the entire
trajectories over an infinite horizon.

Back to the computation of ∇θZ, the forward computation
introduced in sec. 3.2 will be exploited. In fact, if Z is
defined as in equation (10), its Tnθ partial derivatives

∂Z/∂θj
t (for t=0,...,T−1 and j =1,...,nθ) are given by

∂Z

∂θj
t

=
h−1
∑

k=t

γk

[

∂gk

∂uk

∂m̂k

∂θj
t

+

(

∂gk

∂xk

+
∂gk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

]

(12a)
while, if Z is defined as in equation (11), they are given
by

∂Z

∂θj
t

=
1

h

h−1
∑

k=t

[

∂gk

∂uk

∂m̂k

∂θj
t

+

(

∂gk

∂xk

+
∂gk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

]

(12b)

The sensitivity vector ∂xk/∂θ
j
t , for k=t,t+1,... can be

obtained by posing ∂xt/∂θ
j
t = 0 and recursively using

equation (8). Note that here, since we consider a periodic

policy, ∂m̂k/∂θ
j
t = ∂m̂t/∂θ

j
t if k=t+nT (n ∈ N) and zero

otherwise.

Now, the question arises on how to choose the parameter
h that appears in equations (12a) and (12b). To obtain
a reasonable choice of h, it is first necessary to derive
a recursive formula for the computation of the partial
derivatives ∂Z/∂θj

t . To this end, let us denote by zτ
tj the

partial summations

zτ
tj =

τ
∑

k=t

γk

[

∂gk

∂uk

∂m̂k

∂θj
t

+

(

∂gk

∂xk

+
∂gk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

]

in the tdc case, and

zτ
tj =

1

τ + 1

τ
∑

k=t

[

∂gk

∂uk

∂m̂k

∂θj
t

+

(

∂gk

∂xk

+
∂gk

∂uk

∂m̂k

∂xk

)

∂xk

∂θj
t

]

in the aev case. Then, the partial derivatives that compose
∇θZ are given by

∂Z

∂θj
t

= zh−1

tj

for t=0,...,T -1 and j=1,...,nθ. The partial derivatives zh−1

tj

can be obtained by recursively computing zτ
tj for τ=0,...,h-

1. To this end, notice that from equations (12a) and (12b)
it follows that, for t = 0, . . . , T − 1 and j = 1, . . . , nθ,

zτ
tj =























0 if τ < t

zτ−1

tj +γτ

[

∂gτ

∂uτ

∂m̂τ

∂θj
t

+

+

(

∂gτ

∂xτ

+
∂gτ

∂uτ

∂m̂τ

∂xτ

)

∂xτ

∂θj
t

]

if τ ≥ t

(13a)
in the tdc case and

zτ
tj =























0 if τ < t
τ − 1

τ
zτ−1

tj +
1

τ

[

∂gτ

∂uτ

∂m̂τ

∂θj
t

+

(

∂gτ

∂xτ

+
∂gτ

∂uτ

∂m̂τ

∂xτ

)

∂xτ

∂θj
t

]

if τ ≥ t

(13b)
in the aev case. In the next paragraph, the above equa-
tions will be used to derive a reasonable value of h. The
same equations are exploited in the algorithm for the
computation of the gradient ∇θZ, which is as follows.

Algorithm for the computation of ∇θZ

Initialization

Choose the length h of the simulation horizon and ran-
domly extract a trajectory ε̄h

1 .
Set the state x0 to the given initial state value and let
τ = 0.

Iteration. While τ < h:

Compute the control value uτ = m̂τ (xτ , θt), with t =
mod(τ, T ), based on the current estimate θi of the pa-
rameter vector.

For t = 1, . . . , T − 1 and j = 1, . . . , nθ:
- compute zτ

tj with (13a) or (13b)

- compute the state of the sensitivity system ∂xτ+1/∂θ
j
t
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according to (8) where k is replaced by τ
(all the partial derivatives are evaluated at point
(xτ , uτ , ε̄τ+1, θ

i))

Compute the state xτ+1 = fτ (xτ , uτ , ε̄τ+1).
Increase τ of one unity.

Termination

The algorithm terminates when τ = h. The values zh−1

tj ,
for t = 1, . . . , T − 1 and j = 1, . . . , nθ, are the partial
derivatives ∂Z/∂θj

t that compose the gradient ∇θZ in
(6).

3.4 Choice of the length of the simulation horizon

From equations (13a) and (13b) it can be seen that,
if the terms in brackets are finite for any τ and any
t = 0, . . . , T − 1, j = 1, . . . , nθ, then zτ

tj ≃ zτ−1

tj for τ
sufficiently large. This correspond to saying that the limit
limh→∞ ∇θZ exists and is finite. Therefore, a criterion for
selecting h may be that of setting it to the time instant
at which the change in the value of all the zτ

tj becomes
negligible. The choice of h can thus be made once and for
all before starting the stochastic approximation algorithm,
by proceeding as follows. Let τ̄ be a positive scalar such
that

|zτ
tj − zτ−1

tj | ≤ αZ ∀τ ≥ τ̄ and ∀t, j

where αZ is a prefixed accuracy value. Once αZ is fixed,
the value of τ̄ can be derived by solving one of the following
equalities

γτ ḡ = αZ or
1

τ
ḡ = αZ

where ḡ is the maximum possible value of the second term
on the right hand side of equations (13a) and (13b), i.e.

ḡ = max
xτ ,uτ ,ετ+1,τ,θ

∣

∣

∣

∣

∂gτ

∂uτ

∂m̂τ

∂θj
t

+

(

∂gτ

∂xτ

+
∂gτ

∂uτ

∂m̂τ

∂xτ

)

Xτ
tj

∣

∣

∣

∣

Then, the length of the finite horizon h can be set to τ̄ .
With this choice, the truncated summation zh

ij turns out

to be an estimate of limh→∞ ∂Z/∂θj
i with accuracy αZ .

However, the recursive computation of zτ
ij might be also

arrested at a time h < τ̄ , thus reducing the computing
time for deriving ∇θZ. The effect of different choices of h
have been empirically studied on the case study presented
in section 4, which showed that satisfactory optimization
results can be obtained also for relatively small h (of the
order of 100T ). However, the choice of such parameter and
the analysis of the effects of this choice remains an open
issue of the presented approach.

4. NUMERICAL EXAMPLE

The proposed algorithm has been tested on the 10-
reservoir system presented in Yakowitz (1982) and in
Baglietto et al. (2006). The system topology is shown in
figure 1. The state transition function of the j-th reservoir
(j=1,...,10) is

xj
t+1 = min






xj

t − uj
t +

∑

h∈I
+

j

uh
t + ej

t+1, x
j
max






(14a)

0 ≤ uj
t ≤ sj

t +
∑

h∈I
+

j

uh
t + ej

min
(14b)

where xj
t is the water storage in the j-th reservoir at time

t and xj
max its maximum storage, uj

t is the release decision
from the j-th reservoir, I+

j denotes the set of indexes
of the reservoirs that release water directly into the j-th
one, and ej

t+1 is the inflow to the j-th reservoir from the
uncontrolled catchment in the time interval [t, t + 1). In
model (14), superficial spills that occur when the storage
overcomes its maximum value xj

max are assumed not to

reach the downstream reservoirs. The natural inflow ej
t+1 is

described as a stochastic variable drawn from a continuous
uniform distribution on the interval [ej

min
, ej

max], and is
assumed to be independent of other inflows ei

t+1, i 6= j.

In Baglietto et al. (2006), the interval [ej
min

, ej
max] is the

same for all t, here we assume that the boundaries ej
min

and ej
max be a periodic function of time, thus making the

water system time-variant and periodic. The time period
T has been assumed equal to 12. The benefit function to
be maximized is of the form (3) - or (4) - with a step-cost
function defined as

gt(xt, ut, εt+1) = g(ut) = cp · ut + cfu
10
t (15)

where the product cp · ut accounts for the benefit from
hydropower generation downstream of each reservoir and
cfu

10
t accounts for the benefit from irrigation downstream

of the 10th reservoir.
A nonlinear approximating network is used to approximate
the optimal control law. The release decision uj

t from the
jth reservoir is computed as a function of the state vector
xt=col(xj

t : j = 1, ..., 10) as in equation (5) with

ψ(xt, ki) =
1

1 + exp(−x′t · αi + βi)

where ki=col(αi, βi : i = 1, ..., ν), αi being a parameter
vector of the same size as xt. When estimating the control
law parameter with the algorithm presented in the pre-
vious section, suitable penalty function have been added
to (15) in order to implement the constraint (14b). The
system parameter and initial state where set to the values
reported in Baglietto et al. (2006), except for the minimum
and maximum natural inflows, for which T values were
considered by randomly perturbing the original values
proposed in Baglietto et al. (2006) (see table 1).

Several optimization experiments were run, with both tdc

and aev formulations and different number ν of basis
functions in the nonlinear an (5). In each experiment,
the initial value θ0 of the parameter vector was randomly
extracted from a uniform distribution over [0, 0.005]. The
length h other simulation horizon used for the computation
of ∇θZ was set to 1200. Results were compared through
Monte Carlo simulation of the system, subject to the
optimized policies, over a horizon of again 1200 steps (see
table 2). Ten realizations of the disturbance trajectory
were considered in the Monte Carlo simulation. As it can
be noticed from the table, the performances of the system
are significantly improved after optimization of the control
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Fig. 1. The configuration of the 10-reservoir system con-
sidered in the numerical example.

Table 1. Parameter and initial state values
used in the numerical example.

j 1 2 3 4 5 6 7 8 9 10

x
j
max 10 10 10 10 10 10 10 10 18 25

x
j

0
10 10 10 10 10 10 10 10 18 25

e
j

min
0.98 0.98 0.98 0 0.68 0.68 0 1.47 0 0 (T = 1
0.94 0.94 0.94 0 0.65 0.65 0 1.40 0 0 2
1.09 1.09 1.09 0 0.76 0.76 0 1.63 0 0 3
1.01 1.01 1.01 0 0.71 0.71 0 1.52 0 0 4
0.94 0.94 0.94 0 0.66 0.66 0 1.41 0 0 5
0.96 0.96 0.96 0 0.67 0.67 0 1.44 0 0 6
1.00 1.00 1.00 0 0.70 0.70 0 1.50 0 0 7
1.07 1.07 1.07 0 0.75 0.75 0 1.60 0 0 8
0.97 0.97 0.97 0 0.68 0.68 0 1.45 0 0 9
0.98 0.98 0.98 0 0.69 0.69 0 1.47 0 0 10
1.04 1.04 1.04 0 0.73 0.73 0 1.56 0 0 11
0.97 0.97 0.97 0 0.68 0.68 0 1.45 0 0 12)

e
j
max 1.47 1.47 1.47 0 1.17 1.17 0 1.95 0 0 (T = 1

1.40 1.40 1.40 0 1.12 1.12 0 1.87 0 0 2
1.63 1.63 1.63 0 1.31 1.31 0 2.18 0 0 3
1.52 1.52 1.52 0 1.22 1.22 0 2.03 0 0 4
1.41 1.41 1.41 0 1.13 1.13 0 1.88 0 0 5
1.44 1.44 1.44 0 1.15 1.15 0 1.92 0 0 6
1.50 1.50 1.50 0 1.20 1.20 0 2.01 0 0 7
1.60 1.60 1.60 0 1.28 1.28 0 2.14 0 0 8
1.45 1.45 1.45 0 1.16 1.16 0 1.94 0 0 9
1.47 1.47 1.47 0 1.17 1.17 0 1.96 0 0 10
1.56 1.56 1.56 0 1.25 1.25 0 2.09 0 0 11
1.45 1.45 1.45 0 1.16 1.16 0 1.93 0 0 12)

Table 2. Performances (benefit) of the system
subject to optimized control laws. Numbers
between parenthesis refer to the system per-
formances obtained with the initial estimate

of the parameter vector.

no of neurons system performances
ν J (tdc) J (aev)

1 29.03 (0.16) 2.98 (0.01)
2 51.95 (0.29) 5.47 (0.03)
3 66.19 (0.46) 7.26 (0.05)
4 74.72 (0.61) 8.42 (0.06)
5 75.53 (0.78) 8.58 (0.07)

law parameters. Feasibility of the control values provided
by the optimized control laws was also checked and all the
values turned out to satisfy constraint (14b).

5. FINAL REMARKS AND FUTURE RESEARCH

The paper presents an extension of the erim to stochastic
optimal control problems defined over an infinite horizon.
The algorithm that implements such method has been
tested on a numerical example with promising results. The
application to a real world reservoir network is presently
under study.

Further research is also needed for giving formal proof of
the convergence properties that were empirically demon-
strated by testing the algorithm. In fact, the optimization
method is based on a stochastic approximation algorithm
where two sources of approximation are present: the one
arising from the substitution of the average value E[Z]
with a single realization of Z (as in the original version of
the erim) and the truncation error due to the substitution
of an infinite sum with a finite one. As discussed in section
3.4, the choice of the time h at which the truncation is
made is also an open issue of the proposed approach.
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