
Control of Time-Varying Distributed

Parameter Plug Flow Reactor by LQR ⋆

Ilyasse Aksikas, Adrian M. Fuxman, J. Fraser Forbes

Department of Chemical and Materials Engineering,
University of Alberta, Edmonton, AB, T6G 2G

e-mail: {aksikas; afuxman; fraser.forbes }@ualberta.ca

Abstract: The linear quadratic (LQ) optimal control problem is studied for a partial differential
equation model of a time-varying plug flow tubular reactor. First some properties of the
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is computed by using the corresponding operator Riccati differential equation, whose solution
can be obtained via a related matrix Riccati partial differential equation. The controller is
applied to the nonlinear reactor system and tested numerically.
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1. INTRODUCTION

The dynamics of nonisothermal plug flow reactors are
usually described by nonlinear partial differential equa-
tions derived from mass and energy balances (see. e.g.,
Aksikas et al., [2007], Laabissi et al., [2001], and references
therein). The main source of nonlinearities in the dynamics
of a (bio)-chemical reaction are often due to the kinetics
terms of the model equations.

In Aksikas et al., [2007], the linear-quadratic control prob-
lem was studied for a plug flow reactor model with time-
invariant rate of reaction by using the method of spectral
factorization (Callier et al., [1992]). In this paper, we are
interested in the time-varying case by using the well-known
Riccati equation approach (Curtain et al., [1995], Ben-
soussan et al., [2007] and Pandolfi., [1992]). Time-varying
rates of reaction arise from loss of catalyst activity which
is an important issue in catalytic reactors. The literature
provides several models for catalyst deactivation. For the
purpose of this paper, we will adopt a simple exponential
decay model form.

The contributions of this paper can be summarized as fol-
lows. In section 2, we recall some basic results on evolution
systems and linear quadratic control problem for infinite
dimensional time-varying systems. Section 3, describes
both the dynamics of the time-varying plug flow reactor
that we are interested in, its steady state profile and its
linearized model around this profile. In designing an LQ-
controller, some useful results on the dynamical properties
of the linearized model are established in Section 4. The
optimal control design problem is the subject of Section
5. An LQ-control feedback is computed by using the cor-
responding operator Riccati differential equation, whose
solution can be obtained via a related matrix Riccati par-
tial differential equation. Finally, the controller is applied
⋆ Paper accepted for presentation as a regular paper at IFAC World
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to the nonlinear closed-loop system and tested numerically
in Section 6.

2. BASIC RESULTS

2.1 Evolution Systems

Evolution systems theory generalizes the concept of one
parameter semigroup TA(t) (generated by a given operator
A) for the non-autonomous case, i.e. in the case where A(t)
depends on t: see e.g., Pazy. [1983], Acquistapace et al.,
[1984] and Tanabe., [1975].

Definition 1. Let H be a Hilbert space. A two parameter
family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T ,
on H is called an evolution system if the following two
conditions are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤
t ≤ T .
(ii) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ r ≤
t ≤ T .

The following concept is needed for the existence and
uniqueness of an evolution system for a time-varying initial
value problem:

Definition 2. Let H be a Hilbert space. A family A(t), t ∈
[0, T ] of infinitesimal generators of C0-semigroup on H is
called stable if there are constants M ≥ 1 and ω such that

ρ(A(t)) ⊃ ]ω,∞[ for t ∈ [0, T ]

and

‖Πk
j=1R(λ : A(tj))‖ ≤M(λ− ω)−k forλ > ω

and every finite sequence 0 ≤ t1 ≤ t2 ≤ . . . ,≤ tk ≤ T, k =
1, 2, . . ..

The following perturbation theorem is a useful criterion
to prove that a given family of infinitesimal generators is
stable ([Pazy. , 1983, Theorem 2.3. p. 132]).
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Theorem 3. Let {A(t)}t∈[0,T be a stable family of infinites-
imal generators. Let D(t), 0 ≤ t ≤ T be bounded linear
operators on H. If ‖D(t)‖ ≤ K for all 0 ≤ t ≤ T
then {A(t)+D(t)}t∈[0,T ] is a stable family of infinitesimal
generators.

[Pazy. , 1983, Theorem 4.6, p.143] shows that if {A(t)}t∈[0,T ]

satisfies some conditions then one can associate a unique
evolution system to {A(t)}t∈[0,T ]. One special case in
which the conditions of [Pazy. , 1983, Theorem 4.6, p.143]
can be easily verified is the case where D(A(t)) = D0 is
independent of t.

Theorem 4. Let {A(t)}t∈[0,T ] be a stable family of in-
finitesimal generators of C0-semigroup on H. If D(A(t)) =
D0 is independent of t and for every v ∈ D0, A(t)v is
continuously differentiable in H then there exists a unique
evolution system UA(t, s), 0 ≤ s ≤ t ≤ T , satisfying

(i) ‖UA(t, s)‖ ≤Meω(t−s), for 0 ≤ s ≤ t ≤ T.

(ii)
∂

∂t
UA(t, s)x = A(t)UA(t, s)x, for x ∈ D0, 0 ≤ s ≤ t ≤ T.

(iii) UA(t, s)D0 ⊂ D0 for 0 ≤ s ≤ t ≤ T.

2.2 LQ-Optimal Control: Finite Time Horizon

Consider the system
{

ẋ(t) = A(t)x(t) +B(t)u(t),
x(0) = x0,

(1)

where A(t) : D(A(t)) ⊂ H → H and B(t) ∈ L(U ;H) are
linear operators. We make the following assumptions on
the families {A(t)}t∈[0,T ] and {B(t)}t∈[0,T ]:

i) A(t) generates a C0-semigroup in H for all t ∈ [0, T ],
ii) there exists a strongly continuous mapping UA(·, ·) :
{(t, s) ∈ IR2 : t ≥ s} −→ L(H) such that U∗

A(·, ·) is also
strongly continuous and

∂

∂t
UA(t, s)x = A(t)UA(t, s)x, UA(s, s)x = x

∀x ∈ D(A(t)), 0 ≤ s ≤ t ≤ T, (2)

iii) we have limn→∞ UAn
(t, s)x = UA(t, s)x, ∀x ∈ H uni-

formly on the bounded sets of {(t, s) ∈ IR2 : t ≥ s}, where
UAn

(t, s) is the evolution operator generated by the Yosida
approximations of A(t),
iv) B(·)u is continuous for all u ∈ U .

Under these assumptions problem (1) has a unique mild
solution given by

x(t) = U(t, 0)x0 +

t
∫

0

U(t, s)Bu(s)ds.

Assumptions (2) are verified in many problems both
parabolic and hyperbolic (see Acquistapace et al., [1984],
Pazy. [1983] and Tanabe., [1975]).

We want to minimize the cost function

J(u) =

T
∫

0

{

|Cx(s)|2 + |u(s)|2
}

ds+ 〈P0x(T ), x(T )〉 (3)

over all controls u ∈ L2(0,∞;L2(0, 1) subject to the
differential equation constraint (1), where the operators
B,C, and P0 satisfy the following assumptions

P0 ≥ 0, C ∈ Cs([0, T ];L(H;Y )),

B ∈ Cs([0, T ];L(U ;H)) (4)

Let us consider the operator Riccati differential equation
{

Q̇+A∗Q+QA−QBB∗Q+ C∗C = 0
Q(T ) = P0 and Q(D(A)) ⊂ D(A∗).

(5)

Existence and uniqueness criteria for the solution of the
operator Riccati differential equation are given by the
following theorem, which is an immediate consequence of
[Bensoussan et al., , 2007, Theorem 7.2 and Proposition
7.1, p. 416].

Theorem 5. Assume (2) and (4). Then the Riccati equa-
tion (5) has a unique nonnegative mild solution Q.

The solution of the linear-quadratic optimal control prob-
lem is given by the following well-known result.

Theorem 6. [Bensoussan et al., , 2007, Theorem 7.3, p.416]
Assume (2) and (4), and let x0 ∈ H. Then there exists
a unique optimal pair (u∗, x∗) and u∗ ∈ C([0, T ];U) is
related to x∗ by the feedback formula

u∗(t) = −B∗(t)Q(t)x∗(t), t ∈ [0, T ].

Finally, the optimal cost J(u∗) is given by

J(u∗) = 〈Q(0)x0, x0〉.

2.3 LQ-Optimal Control: Infinite Time Horizon

Let us consider the system (1). Here we want to minimize
the cost function

J∞(u) =

∞
∫

0

{

|Cx(s)|2 + |u(s)|2
}

ds (6)

over all controls u ∈ L2(0,∞;U) subject to the differential
equation constraint (1). First the following concept is
needed.

Definition 7. (A(t), B(t)) is said to be C(t)-stabilizable if
there exists K ∈ L(H;U), M > 0 and ω > 0 such that

‖C(t)TK(t, s)‖ ≤Me−ω(t−s), 0 ≤ s ≤ t,

where TK(·, ·) is the evolution system generated by A(t)+
B(t)K(t).

Remark 8. Note that if A(t) generates an exponen-
tially stable evolution system then (A(t), B(t)) is C(t)-
stabilizable for any bounded operator C(t).

Theorem 9. [Bensoussan et al., , 2007, Theorem 5.2, p.507]
Assume that conditions (2) and (4) are verified, and that
(A,B) is C-stabilizable. Then the Riccati equation

Q̇+A∗Q+QA−QBB∗Q+ C∗C = 0, in [0,∞) (7)

has a nonnegative bounded solution Q . This solution is
minimal among all nonnegative bounded solutions of (7).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11956



3. PLUG FLOW REACTOR MODEL

3.1 Nonlinear Model

Let us consider a nonisothermal plug flow tubular reactor
with the following chemical reaction:

A−→ bB,

where b > 0 denotes the stoichiometric coefficient of
the reaction. In general the dynamics of tubular reactors
are typically described by nonlinear PDE’s derived from
mass and energy balance principles. Here if the kinetics
of the above reaction are characterized by first order time-
varying kinetics with respect to the reactant concentration
C (mol/l) and by an Arrhenius-type dependence with
respect to the temperature T (K), the dynamics of the
process are given by the following energy and mass balance
PDE’s:

∂T

∂τ
= −v

∂T

∂ζ
−

∆H

ρCp

k(τ)Ce−
E

RT − β0(T − Tc) (8)

∂C

∂τ
= −v

∂C

∂ζ
− k(τ)Ce−

E
RT (9)

where β0 := 4h
ρCpd

. In this paper, we adopt the simple

deactivation model given by k(τ) = k0 + k1e
−ατ . The

boundary conditions are given, for τ ≥ 0, by :

T (0, τ) = Tin

C(0, τ) = Cin.
(10)

The initial conditions are assumed to be given, for 0 ≤ ζ ≤
L, by

T (ζ, 0) = T0(ζ)
C(ζ, 0) = C0(ζ).

(11)

In the equations above, v, ∆H, ρ, Cp, k, E, R, h,
d, Tin and CA,in hold for the superficial fluid velocity, the
heat of reaction, the density, the specific heat, the kinetic
function, the activation energy, the ideal gas constant, the
wall heat transfer coefficient, the reactor diameter, the
inlet temperature, and the inlet reactant concentration,
respectively. In addition τ, ζ and L denote the time and
space independent variables, and the length of the reactor,
respectively. Finally T0 and C0 denote the initial tempera-
ture and reactant concentration profiles respectively, such
that T0(0) = Tin and C0(0) = Cin.

Let us denote by Tss, Css and Tc,ss the temperature equi-
librium, the reactant concentration equilibrium and the
corresponding coolant temperature equilibrium, respec-
tively. Then the corresponding steady-state equations of
the PDEs model (8)-(11) are given by the following ordi-
nary differential equations:



















v
∂Tss

∂ζ
= −

∆H

ρCp

k0Csse
− E

RTss + β0(Tc,ss − Tss),

v
∂Css

∂ζ
= −k0Csse

− E
RTss ,

Tss(0) = Tin, Css(0) = Cin.

(12)

3.2 Dimensionless Model

Let us consider the following dimensionless state variables
θ1(t) and θ2(t), and dimensionless coolant temperature
θc(t), t ≥ 0 defined as follows:

θ1 =
T − Tin

Tin

, θ2 =
Cin − C

Cin

, and θc =
Tc − Tin

Tin

(13)

Let us consider also dimensionless time t and space z
variables:

t =
τv

L
, and z =

ζ

L
.

Then we obtain the following equivalent representation of
the model (8)-(11):

∂θ1
∂t

= −
∂θ1
∂z

+ (h0 + h1e
αt)(1 − θ2)e

µθ1
1+θ1 − β(θ1 − θc)(14)

∂θ2
∂t

= −
∂θ2
∂z

+ (l0 + l1e
αt)(1 − θ2)e

µθ1
1+θ1 (15)

where the parameters β, µ, α, l0, l1, h0 and h1 are related
to the original parameters as follows:

β =
β0L

v
µ =

E

RTin

, α = −
αL

v
(16)

l0,1 =
k0,1L

v
exp(−µ), and h0,1 = −

∆H

ρCp

Cin

Tin

l0,1. (17)

The equivalent state-space description of the model (14)-
(15) is given by the following time-varying semilinear
infinite-dimensional system on the Hilbert space H :=
L2(0, 1) × L2(0, 1):

{

θ̇(t) = A0θ(t) +N0(t, θ(t)) +Bθc(t)
θ(0) = θ0 ∈ D(A0) ∩ F0

(18)

where A0 is the linear (unbounded) operator defined on
its domain

D(A0) := {θ ∈ H : θ is a.c. ,
dθ

dz
∈ H and θ(0) = 0} (19)

(where a.c. means that θ is absolutely continuous) by

A0 θ :=







−
d.

dz
− βI 0

0 −
d.

dz







[

θ1
θ2

]

(20)

and the nonlinear operator N0 is defined on [0,∞) × F0,
where F0 is the closed convex subset given by

F0 := {θ ∈ H : θ1 ≥ −1 and 0 ≤ θ2 ≤ 1}

(where the inequalities hold almost everywhere on [0, 1])
by

N0(t, θ) :=

[

(h0 + h1e
−αt)(1 − θ2)e

µθ1
1+θ1

(l0 + l1e
−αt)(1 − θ2)e

µθ1
1+θ1

]

. (21)

The operator B ∈ L(L2(0, 1),H) is the linear bounded
operator defined by

B0 = β

[

I
0

]

. (22)

In terms of dimensionless variables, let us denote by θss :=
(θ1,ss, θ2,ss)

T ∈ H and θc,ss ∈ L2[0, 1] the equilibrium
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profile of the system (14)-(15).

Now we are in a position to establish a result for the exis-
tence and uniqueness of the solution of the nonautonomous
equation (18).

Theorem 10. For any θ0 ∈ D(A0) ∩ F0, the initial value
problem (18) has a unique mild solution on [0,∞).

Proof: To prove this result it suffices to prove that the
nonlinear operator N0 is uniformly Lipshitz, whence we
can apply [Pazy. , 1983, Theorem 1.2, p. 184].

3.3 Linearized Model

Now we are interested in the linearization of the nonlinear
model (14)-(15) around the equilibrium profile θss. Let us
consider the state transformation

x(t) =

[

x1(t)
x2(t)

]

=

[

θ1(t) − θ1,ss

θ2(t) − θ2,ss

]

(23)

The linearization of the system (14)-(15) around the
equilibrium θss leads to the following linear time-varying
infinite-dimensional system on the Hilbert space H:

{

ẋ(t) = A(t)x(t) +Bu(t)
x(0) = x0 ∈ H .

(24)

Here {A(t)}t≥0 is the family of linear operators defined on
their domains:

D(A(t)) = {x ∈ H : x is a.c. ,
dx

dz
∈ H and x(0) = 0}(25)

by

A(t) =







−
d.

dz
+ α1(t, z)I α2(t, z)I

α3(t, z)I −
d.

dz
+ α4(t, z)I






, (26)

where the functions αi are given by

α1(t, z) = −β + (h0+h1e
−αt)

µ(1 − θ2,ss)

(1 + θ1,ss)2
exp

(

µθ1,ss

1 + θ1,ss

)

,

α2(t, z) = −(h0 + h1e
−αt) exp

(

µθ1,ss

1 + θ1,ss

)

,

α3(t, z) = (l0 + l1e
−αt)

µ(1 − θ2,ss)

(1 + θ1,ss)2
exp

(

µθ1,ss

1 + θ1,ss

)

and

α4(z) = −(l0 + l1e
−αt) exp

(

µθ1,ss

1 + θ1,ss

)

.

The operator B is given by (22).

Remark 11. Note that the domain of the operator A(t) is
independent of time.

4. TRAJECTORY AND STABILITY ANALYSIS

In this section, we are interested in the trajectory and the
exponential stability of the linearized model described in
the previous section. The following lemma is useful in order
to prove the existence and uniqueness of the trajectory of
the linearized model (24).

Lemma 12. The family of operators {A(t)}t≥0 is a stable
family of infinitesimal geneartors.

Proof: Note that the operator A(t) can be written as

A(t) = A0+D(t) =







−
d.

dz
0

0 −
d.

dz






+

[

α1(t, z)I α2(t, z)I
α3(t, z)I α4(t, z)I

]

.

The operator A0 is a stable family of infinitesimal genera-
tors and D(t), t ≥ 0 is bounded linear operators, then, by
using the perturbation theorem (Theorem 3), the operator
A(t) is a stable family of infinitesimal geneartors.

Theorem 13. There exists a unique evolution system
UA(·, ·) : {(t, s) ∈ IR2 : t ≥ s} −→ L(H) such that
∂

∂t
UA(t, s)x = A(t)UA(t, s)x, ∀x ∈ D(A(t)), 0 ≤ s ≤ t.

Moreover, there are constants M ≥ 1 and w such that

‖UA(t, s)‖ ≤Mew(t−s), 0 ≤ s ≤ t.

Proof: By Lemma 12 A(t) is a stable family of infinitesi-
mal generators of C0-semigroup on H. On the other hand,
note that D(A(t) is independent of t (Remark 11), then
the rest of the proof is a consequence of Theorem 4.

Theorem 14. The family of operators {A(t)}t≥0 generates
an exponentially stable evolution system.

Proof: This result can be proved by two ways. The first
one is based on the corresponding Lyapunov equation and
it suffices to prove that the latter has a nonnegative solu-
tion. The second one is based on [Pazy. , 1983, Theorem
8.1, p.173].

5. OPTIMAL CONTROL DESIGN

This section deals with the computation of an LQ-optimal
feedback operator for the linearized plug flow reactor
model (24)-(26), (22) by using the corresponding operator
Riccati equation. First let us define an output function y(.)
by

y(t) = Cx(t) := [w1I w2I ]x(t), t ≥ 0, (27)

where w1, w2 : [0, 1] → IR are continuous functions. In
view of the definition (3) of the corresponding quadratic
cost and the linearized model state definition (23), these
functions can be interpreted as weighting factors for esti-
mates of the distance between the initial model state and
the chosen equilibrium profile.

It turns out that the solution of corresponding operator
Riccati differential equation is based on the solution of a
matrix Riccati partial differential equation.

Lemma 15. Let us consider the follwing matrix functions
on [0,∞) × [0, 1]

M(t, z) = −

[

α1(t, z) α2(t, z)
α3(t, z) α4(t, z)

]

, Q =

[

w2
1 w1w2

w1w2 w
2
2

]

,

and S := diag(β2, 0) and let us consider the matrix Riccati
partial differential equation:

∂Ψ

∂t
= −

∂Ψ

∂z
+M∗Ψ + ΨM −Q+ ΨSΨ,

Ψ(t, 1) = 0, t ∈ [0,∞).
(28)
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Then the latter has a nonnegative solution on [0,∞)×[0, 1].

Proof: By using the method of characteristics, the matrix
Riccati partial differential equation becomes the following
matrix Riccati differential equation along the characteris-
tics

dΨ

dr
= M∗Ψ + ΨM +Q− ΨSΨ,

Ψ(1) = 0.
(29)

Then by using [Aboukandil et al., , 2003, Corollary 6.7.36],
it can be shown that equation (29) has a nonnegative
solution.

Now we are in a position to state the following theorem.

Theorem 16. Let us consider the linearized plug flow re-
actor model, with control operator B given by (22) and
observation operator C given by (27). Let

Ψ(t, z) =

[

ψ1(t, z) ψ2(t, z)
ψ2(t, z) ψ3(t, z)

]

= Ψ∗(t, z) ≥ 0 (30)

be the nonnegative solution of the matrix partial differen-
tial equation (28). Then Q(t) := Ψ(t, z)I is a nonnegative
solution of the operator Riccati differential equation (7).
Moreover, the optimal control is given by

uopt(t, z) = −βψ1(t, z)x1(t, z) − βψ2(t, z)x2(t, z).

Proof: By assuming that the solution of the operator
Riccati equation (7) has the form Q(t) = Ψ(t, z)I, it
can be shown by straightforward calculation that if Ψ
is a nonnegative solution of the matrix Riccati partial
differential equation (28) then Q is a nonnegative solution
of equation(7).

6. NUMERICAL SIMULATIONS

This section provides with numerical simulations of the
nonlinear closed-loop reactor model in (8) and (9). The
model parameter values used for numerical simulations are
given in Table 1. The operating conditions chosen are:

Tin = 340K, Cin = 0.02mol · l−1, Tc(z, t) = 400K (31)

Table 1. Model Parameters.

Parameter Value

v 0.025 m · s−1

L 1 m

E 11250 cal · mol−1

k0 105 s−1

k1 105 s−1

R 1.986 cal · mol−1
· K−1

4h
ρCp d

0.2 s−1

∆H
ρ Cp

-4250 K · l · mol−1

α 0.1

Using the operating conditions in (31), the steady state
distribution is computed (see Figure 1) to formulate the
LQ-feedback controller. With the choice of weighting func-
tions w1(z) = 1 and w2(z) = 1, the LQ-state feedback
function in Figure 2 and Figure 3 is obtained. To im-
plement the LQ-controller, we use 100 equally distributed
points along the reactor at which the temperature is ob-
served and the jacket temperature is adjusted.

0 0.2 0.4 0.6 0.8 1
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400

450

ζ (m)

T
 (

K
)

0 0.2 0.4 0.6 0.8 1
0

0.01
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ζ (m)

C
 (

m
o

l/
l)

Fig. 1. Steady state profile.
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Fig. 2. LQ-feedback function Ψ1 for w1(z) = 1 and w2(z) =
1.
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11
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0.15
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ζ (m)τ (s)

ψ
2

Fig. 3. LQ-feedback function Ψ2 for w1(z) = 1 and w2(z) =
1.

To illustrate the control performance of the LQ controller,
we set both the initial temperature and concentration
profiles to the inlet temperature and concentration, re-
spectively and we simulate the closed-loop response. The
resulting fluid temperature, reactant concentration and
jacket temperature along the reactor are shown in Figures
4, 5 and 6, respectively. It can be observed that the state
converges numerically to the chosen equilibrium profile.

7. CONCLUDING REMARKS

In this paper, the linear quadratic optimal control problem
has been studied for a plug flow tubular reactor with time-
varying rate of reaction. To design the LQ-controller, some
useful results on evolution systems and linear quadratic
control problem for time-varying infinite dimensional sys-
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Fig. 4. Closed-loop concentration distribution.

Fig. 5. Closed-loop jacket temperature distribution.

Fig. 6. Closed-loop temperature distribution.

tems have been reviewed. An LQ-control feedback has
been computed by using an operator Riccati differential
equation, whose solution can be obtained via a related
matrix Riccati partial differential equation. The controller
has been tested numerically on a nonlinear model for a
plug flow reactor.

Work is continuing on stability and other controller de-
sign issues for plug flow reactor models with deactivity
catalysts.
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