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Abstract: This paper presents a method for closed-loop order reduction of linear systems.
An approximation is carried out on the Lagrangian or Hamiltonian system that is obtained
from the problem to minimize an optimization criterion subject to plant dynamics and system
constraints. The resulting Hamiltonian system is reduced in complexity by means of a standard
reduction techniques. The merits of the method are illustrated on an example of a distillation
process.
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1. INTRODUCTION

The advances in modeling and computational tools have
lead to the development of sophisticated but computation-
ally intensive models. However, the use of such models in
optimal control system design often results in controllers
for which the state dimension is at least as large as the
number of states of the model. In control system design one
therefore generally faces the paradigm that high quality
controllers will have a considerable complexity because
they are inferred from high quality models. Complex and
high order controllers are definitely not preferred in prac-
tice. Even when such controllers have desired stability, per-
formance and robustness characteristics, they are generally
more difficult to implement in either hardware or software,
they are more difficult to understand and maintain, and
require substantial on-line computations. On the other
hand, simple low order controllers are easy to implement,
are less likely to cause failures in software or hardware and
are fast. Therefore, the construction of simple low-order
controllers for high-order systems has taken a significant
interest in the last decades [Wortelboer, 1994, Goddard,
1995, Atwell, 2000, Codrons, 2005].

There exist mainly three ways of obtaining low-order con-
trollers as illustrated in Figure 1. The first method is an
indirect one and amounts to reducing the high order plant
followed by the controller design (reduce-then-optimize).
This procedure is popular in many applications since there
exists a vast and extensive amount of literature on model
reduction techniques, especially for the class of linear and
stable systems [Antoulas, 2005]. In this approach, the state
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space dimension of the original model is reduced after
which a controller is designed based on the approximate
model. A major disadvantage of this technique is that the
control synthesis procedure lacks all information on the
physical characteristics of the plant that is left out or
ignored in the reduction scheme. As a consequence, the
controller may give poor performance when being imple-
mented on the high order system [Codrons et al., 1999].
One way of circumventing this problem is to use iterative
schemes as suggested in [Wortelboer, 1994, Wortelboer
et al., 1999, Van den Hof and Schrama, 1995]. Iterative
schemes have also been utilized for the synthesis of low
order controllers for distributed parameter systems [Fahl,
2000, Hinze and Volkwein, 2004, van Doren et al., 2006] in
order to obtain a better representation of the closed-loop
system.

The second indirect method, on the other hand, first in-
volves the construction of a controller that is subsequently
reduced in complexity (optimize-then-reduce). The idea
behind this method is that if a high order controller is
optimal with respect to the plant dynamics and desired
performance specifications, a small mismatch between the
optimal controller and a low order approximation will
result in satisfactory performance. Apart from the fact
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that there exist counter examples for this belief, this
method is often computationally demanding as it requires
the construction of an optimal controller on the basis of
the full order plant. Since controller reduction amounts to
simplifying one or more components in an interconnected
control configuration, the controller reduction problem is,
in essence, an approximation problem for interconnected
systems where stability, performance and robustness de-
termine the quality of the reduction process. It is for this
reason that frequency weighted approximation techniques
have been investigated [Anderson and Liu, 1989, Obinata
and Anderson, 2001] in which closed loop specifications
are translated to reduction schemes.

The third class of reduction techniques are the direct
methods. In these methods, the parameters that define
a low order controller are determined by performing an
optimization on the basis of some control criterion. These
methods have the advantage that the control objectives are
taken into account explicitly in the optimization process
and that the complexity and structure of the controller
is fixed a priori. These methods impose constraints and
structure on the controller and use a parameter optimiza-
tion to obtain an acceptable performance. Probably due
to the complexity of a direct reduced order controller syn-
thesis problem, only very few direct methods exist today
[Hyland and Richter, 1990, Ly et al., 1985].

It is the purpose of this paper to develop a different view on
the problem of model reduction for controlled systems. We
consider the adjoint system that is defined by the optimal
control problem as the prime object for model reduction.
We show that this adjoint system, that is defined by
applying variational analysis to the optimization problem,
admits a state realization in primal and dual states that
can be reduced in complexity. By doing so, we directly infer
a reduced order approximation of the optimally controlled
system. The controller synthesis question to construct
a controller that, after interconnection with the plant,
establishes the reduced controlled system, then becomes
a realization problem that we will address in a different
paper.

This paper is organized as follows. Section 2 formulates the
main optimization problem and provides some background
material on Lagrangian dualization theory. In section
3 we specialize the treatment to the control of linear
systems in which a quadratic performance criterion is to
be minimized. That is, the standard Linear Quadratic
Regulator problem is used to demonstrate the reduction
strategy of controlled systems that we adopt in this paper.
In Section 4, we apply the proposed reduction strategy
to an industrial example of a binary distillation process.
conclusions are deferred to Section 5.

2. PROBLEM FORMULATION

We consider a general optimal control problem for the
time-invariant dynamical system

ẋ = f(x, u), x(0) = x0 (1)

where the associated cost is defined by an integral func-
tional of the form

J(x, u) =

∫ t1

0

F (x(t), u(t)) dt + E(x(t1)). (2)

Here, x(t) ∈ R
n is the state, u(t) ∈ R

m the input, f and
F are given Lipschitz continuous functions on R

n+m that
assume values in R

n and R, respectively. The time at which
the response reaches its end-point is t1. The system and
the optimization is subject to a number of constraints. We
distinguish inequality and equality constraints of the form

g(x, u) ≤ 0, h(x, u) = 0 (3)

that are supposed to hold for all time instances in the
optimization interval [0, t1]. Here, h : R

n+m → R
q and

g : R
n+m → R

r are functions that are twice continuously
differentiable and the inequality in (3) is understood
to hold componentwise. Following standard terminology,
F (x, u) is called the stage cost and E(x) is the end-point
weighting. It is assumed that both F and Φ are non-
negative. In addition, it is assumed that the constraint
qualification condition is satisfied which states that there
exist at least one pair (x, u) such that h(x, u) = 0 and
gj(x, u) < 0 for all components gj , j = 1, . . . , r of g.

We aim to minimize J subject to the state evolution (1),
the equality and inequality constraints (3). That is, we
consider the primal optimization problem

Popt : minimize J(x, u) (4)

subject to ẋ = f(x, u)

g(x, u) ≤ 0

h(x, u) = 0

x(0) = x0

For any pair of vectors (x, u) for which g(x, u)) ≤ 0 we
define the active constraint set A(x, u) := {j | gj(x, u) =
0, j = 1, . . . , r}.

The nonlinear optimization problem Popt admits a solution
via variational analysis. For this, let L2([0, t1]) denote
the Hilbert space of square integrable functions on [0, t1]
equipped with the inner product

〈v, w〉 :=

∫ t1

0

v(t)∗w(t) dt

Define the Lagrangian functional by

L(x, u, λ, µ, ν) := 〈1, F (x, u)〉 + E(x(t1))+

+ 〈λ, f(x, u) − ẋ〉 + 〈µ, h(x)〉 + 〈ν, g(x)〉. (5)

The Lagrange dual cost is defined by

ℓ(λ, µ, ν) := inf
(x,u)

L(x, u, λ, µ, ν)

and is called feasible if there exists a triple (λ, µ, ν) for
which ℓ(λ, µ, ν) > −∞. The Lagrange dual cost is a
concave function of its arguments and satisfies ℓ(λ, µ, ν) ≤
Popt for all functions λ, µ and ν ≥ 0 defined on [0, t1]. If
we assume that the Lagrange dual cost is feasible, the dual
optimization problem is

Dopt : maximize ℓ(λ, µ, ν) (6)

subject to ν ≥ 0. (7)

By construction, the optimal value Dopt of the dual
optimization problem is a lower bound for Popt, the
optimal value of the primal optimization problem, i.e.,
Dopt ≤ Popt.

The generalized Karush-Kuhn-Tucker theorem provides
necessary conditions for a local minimum (x∗, u∗) of the
primal optimization problem.
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Theorem 1. If the cost functional J has a local minimum
under the constraints (3) at the regular point (x∗, u∗), then
there exist functions λ∗, µ∗ and a non-negative function
ν∗ ≥ 0 defined on [0, t1] with values in R

n, R
q and R

r,
respectively, such that the Lagrangian functional L is
stationary at (x∗, u∗, λ∗, µ∗, ν∗), i.e.,

∇L(x∗, u∗, λ∗, µ∗, ν∗) = 0.

Moreover, in that case we have that ν∗

i (t)gi(x
∗(t), u∗(t)) =

0 for all t ∈ [0, t1] and i = 1, . . . , r.

Under suitable convexity conditions on the cost and con-
straint function a sufficient condition for the existence of
a global minimizer for the optimization problem Popt is
given as follows.

Theorem 2. Suppose that J , g are convex and h is affine.
Assume that the primal optimization (6) satisfies the con-
straint qualification. Then Dopt = Popt. Moreover, there
exist functions λ∗, µ∗ and ν∗ ≥ 0 defined on [0, t1] such
that Dopt = ℓ(λ∗, µ∗, ν∗), i.e., the dual optimization prob-
lem admits an optimal solution. In addition, (x∗, u∗) is an
optimal solution of the primal optimization problem and
(λ∗, µ∗, ν∗) is an optimal solution of the dual optimization
problem, if and only if for all time instances t ∈ [0, t1]:

(1) g(x∗, u∗) ≤ 0 and h(x∗, u∗) = 0,
(2) ν∗ ≥ 0 and (x∗, u∗) minimizes L(x, u, λ∗, µ∗, ν∗) over

all (x, u) ∈ L2([0, t1]) and
(3) ν∗

j gj(x
∗, u∗) = 0 for all j = 1, . . . , r.

Using partial integration, the conditions on the stationary
point (x∗, u∗, λ∗, µ∗, ν∗) of the Lagrangian functional allow
a representation as the (unique) solution of the equations

ẋ = f(x, u) (8a)

λ̇ = −∇x

[
F (x, u) + f(x, u)⊤λ + h(x, u)⊤µ + g(x, u)⊤ν

]
(8b)

0 = ∇u

[
F (x, u) + f(x, u)⊤λ + h(x, u)⊤µ + g(x, u)⊤ν

]
(8c)

0 = h(x, u) (8d)

0 ≤ g(x, u) (8e)

0 = ν⊤

i
gi(x, u) for i = 1, . . . , r (8f)

0 ≤ ν (8g)

where the differential equation is subject to the two-point
boundary conditions

x(0) = x0, λ(t1) = ∇xE(x(t1)).

We refer to (8) as the adjoint system corresponding to the
optimization. Note that (8) is an autonomous system in
the sense that solutions of (8) only depend on boundary
conditions in (8a) and (8b).

The adjoint system (8) represents the optimal controlled
system as it contains information about the plant, the
optimization criterion and the optimization constraints.
It is the purpose of this paper to reduce the complexity of
the adjoint system (8) by finding a lower order state space
representation for (8). In particular, we aim to reduce the
2n dimensional state space of the differential equations
(8a)-(8b) by projecting the state variable col(x, λ) on a
suitably defined manifold U of dimension 2k < 2n.

3. REDUCTION OF LINEAR ADJOINT SYSTEMS

In the remainder of the paper we focus on various reduc-
tion strategies for the adjoint system (8). For this, we
make the simplifying assumption to consider the convex

optimization problem where the system (1) is linear and
represented by

ΣG :

{
ẋ = Ax + Bu

y = Cx + Du

The pair (A,B) is assumed to be stabilizable and we
denote by G the transfer function corresponding to ΣG.
The cost function is given by (2) with a quadratic stage
cost and end-point weighting

F (x, u) :=
1

2

[
x
u

]⊤ [
C⊤C C⊤D

D⊤C D⊤D

] [
x
u

]

E(x) :=
1

2
x⊤(t1)Ex(t1).

That is, J(x, u) = 1
2

∫ t1

0
y(t)⊤y(t) dt. Let Q := C⊤C,

R = D⊤D and N = D⊤C and assume that R > 0. Let the
end-point weighting E = P be the non-negative definite
solution of the algebraic Riccati equation

A⊤P + PA − (B⊤P + N)⊤R−1(B⊤P + N) + Q = 0.

and suppose that the primal optimization is subject to the
affine equality constraint

h(x, u) := Ahx + Bhu + Ch = 0. (9)

The Lagrangian (5) associated with this optimization is
given by

L(x, u, λ, µ) :=〈1, F (x, u)〉 + 〈λ, Ax + Bu − ẋ〉+

〈µ,Ahx + Bhu + Ch〉 + E(x(t1)).

By Theorem 1, an optimal solution (x∗, u∗, λ∗, µ∗) neces-
sarily satisfies the stationarity condition

∇L(x∗, u∗, λ∗, µ∗) = 0. (10)

Theorem 2 promises that (x∗, u∗) solves the primal op-
timization problem whenever (x∗, u∗, λ∗, µ∗) satisfy the
adjoint equations

0 = ∇λL = Ax + Bu − ẋ

0 = ∇xL = Qx + N⊤u + A⊤λ + A⊤

h µ + λ̇

0 = ∇uL = Nx + Ru + B⊤λ + B⊤

h µ

0 = ∇µL = Ahx + Bhu + Ch

with boundary conditions x(0) = x0 and λ(t1) = Px(t1)
(cf. (8)). In matrix form, this is equivalently represented
by the system of differential algebraic equations

ΣH :

{
E ż = Az + Bv + F

u∗ = Cz
(11)

where z = col(x, λ, µ) is the state variable,

A =

(
A−BR−1N −BR−1B⊤

−BR−1B⊤

h

N⊤R−1N−Q N⊤R−1B⊤
−A⊤ N⊤R−1B⊤

h
−A⊤

h

Ah−BhR−1N −BhR−1B⊤
−BhR−1B⊤

h

)

E =
(

I 0 0
0 I 0
0 0 0

)
, B =

(
I
P
0

)
, F =

(
0
0

Ch

)

C = (−R−1N −R−1B⊤
−R−1B⊤

h
)

and where the input v in ΣH is the impulse v(t) = x0δ(t)
with δ the Dirac distribution.

In the absence of the constraint (9), the primal opti-
mization problem (6) coincides with the standard linear
quadratic regulator problem and the above expression
considerably simplifies to the Hamiltonian system
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Fig. 2. Reduction of the linear adjoint system

ΣH :






[
ẋ∗

λ̇∗

]
=

[
A − BR−1N −BR−1B⊤

N⊤R−1N − Q N⊤R−1B⊤ − A⊤

] [
x∗

λ∗

]

+

[
I

P

]
v(t)

u∗ =
[
−R−1N −R−1B⊤

] [x∗

λ∗

]

(12)

in which the auxiliary input v is taken to be the impulse
function v(t) = x0δ(t). In either case, the stationary
solution of the Lagrangian is generated as the impulse
response of the system ΣH .

The Hamiltonian system ΣH will be reduced in complexity
by a number of methods. The idea will be to compare
the output y∗ of the optimally controlled system with the
output ŷ of the system where the control input is generated
by the reduced order Hamiltonian system. See Figure 2.
To simplify the exposition and the discussion, we focus
on the Hamiltonian system (12). However, with suitable
modifications, the reduction techniques discussed below
also apply to the DAE system (11).

3.1 Reduction of uncontrollable states

The representation (12) is non-minimal. In fact, if we
perform a non-singular state transformation(

x
σ

)
=

(
I 0

−P I

)(
x
λ

)

on (12) then one easily shows that σ = 0 is an un-
controllable state variable. The Hamiltonian system (12)
is therefore equivalently represented by the minimal and
stable dynamical system

Σmin
H :

{
ẋ∗ = (A − BR−1(B⊤P + N))x∗ + Iv

u∗ = −R−1(B⊤P + N)x∗
(13)

that generates the optimal control u∗ provided that the
input v(t) = x0δ(t).

3.2 Modal truncation

In this subsection we reduce (13) to a kth order approxi-
mation by performing a modal truncation. Let Ψ ∈ R

n×n

be a nonsingular matrix such that

Ω := Ψ
(
A − BR−1(B⊤P + N)

)
Ψ−1

is in Jordan canonical form

Ω = diag(Ω1, . . . ,Ωr)

where Ωj is the jth Jordan block of dimension ℓj ×ℓj with
ℓj the algebraic multiplicity of the jth eigenvalue λj of
A−BR−1(B⊤P +N). Suppose that the modes are ordered
according to

Re(λr) ≤ · · · ≤ Re(λ2) ≤ Re(λ1) < 0.

After transformation, Σmin
H admits a representation in the

new coordinate system as follows

Σmin
H :

{
ẋ∗ = Ωx∗ + Ψ−1v

u∗ = −R−1(B⊤P + N)Ψx∗

Partition this model according to
(

ẋ∗

1
ẋ∗

2

)
=

(
Ω11 Ω12

Ω21 Ω22

)(
x∗

1
x∗

2

)
+

(
Γ1

Γ2

)
v

u∗ = (Υ1 Υ2) x∗

where Ω11 = diag(Ω1, . . . ,Ωk0
) has dimension k × k and k

is such that k = ℓ1 + . . . + ℓk0
for some 1 ≤ k0 ≤ r. The

order k modal truncation of (13) is then given by

Σ̂H :

{
ẋ∗

1 = Ω11x
∗

1 + Γ1v

û = Υ1x
∗

1

(14)

The dynamics of (14) is dominated by the slow modes of
Σmin

H . The system (14) is both stable and minimal.

3.3 Balanced truncation

As a second method of reduction of the system (13) we
consider the method of frequency weighted balancing as
described in [Gugercin and Antoulas, 2004, Varga and
Anderson, 2003, Sreeram, 2004]. The method is based on
the computation of a frequency weighted controllability
gramian and a frequency weighted observability gramian
associated with a stable linear time invariant system and
rational stable frequency weightings on the input and
output.

Frequency weighted balanced truncations are particularly
interesting for the application here as we wish to minimize
the output error ‖y∗ − ŷ‖ of the controlled system rather
than the error ‖u∗ − û‖. See Figure 2. Since y = Gu, the
output error

‖y∗ − ŷ‖2 = ‖Gu∗ − Gû‖2 = ‖G(u∗ − û)‖2

is equal to a frequency weighted error of the output of

the system ΣH − Σ̂H when excited by the input signal
v(t) = x0δ(t).

We therefore determine a frequency weighted balanced
representation of the system (13) with input and output
weight

Wi = I; Wo = G

and use this representation to truncate the state to its
dominant k states. For details of this procedure, see
[Gugercin and Antoulas, 2004, Varga and Anderson, 2003,
Sreeram, 2004].

4. APPLICATION TO BINARY DISTILLATION

We illustrate the reduction methodology on a model of
a binary distillation process. We used a linearized time-
invariant model of a stabilized binary distillation column
with 41 stages. A detailed description of this originally
non-linear model can be found in Skogestad [1997]. A
schematic representation of the distillation column with
nomenclature is depicted in figure 3. Flow units are in
kmol/min, holdups in kmol, and compositions in mole
fraction. The model contains two proportional controllers
in order to stabilize the levels using the product flows.
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Inputs of the model are

u = col(VB , LT )

and outputs of the model are taken to be the bottom and
distillate product compositions

y = col(XB , XD).

The model is inferred from the total material balance at
each of the 41 trays in the column and is described in terms
of a state variable of dimension n = 82. In this study, we
consider only VB and LT to exert control over the product
compositions XB and XD. The resulting plant model is
therefore a stable LTI model with 2 inputs, 2 outputs and
n = 82 states. The stage cost is defined by

F (x, u) =
1

2
[x⊤Qx + u⊤Ru]

where x⊤Qx = X2
B + X2

D = y⊤y and R = 0.001 · I2, with
I2 being the 2×2 identity matrix.

For a reduced order controller of the distillation column,
only a frequency weighted balanced truncation was con-
sidered. As suggested in the previous section, the plant
transfer function has been used as frequency weight in the
truncation so as to approximate the optimal controlled
output rather than the optimal control input. In Figure
4, the feed-forward results are depicted where the Hamil-
tonian system was reduced to the order k = 2. As can
be seen, there is some difference in the control signals but
there is virtually no difference between the optimal plant
output y∗ and its approximation ŷ.

VB

VT

LT

LB B, XB

D, XD

MD

MB

KD

KB

F, zF

Reboiler

Condensor

XB Bottom composition

XD Distillate composition

VB Boilup vapor flow

LT Reflux flow

LB Bottom liquid flow

VT Top vapor flow

MB Reboiler holdup

MD Condensor holdup

B Bottom product flow

D Distillate product flow

KB Stabilizing P-controller

KD Stabilizing P-controller

Fig. 3. Distillation column

5. CONCLUSIONS

In this paper, a method for closed-loop controller reduction
was presented. We consider approximations of the adjoint
system that is obtained from a variational analysis on the
optimal control. For linear systems with quadratic cost
functions, the adjoint system allows a representation as
a standard LTI system whose impulse response generates
the optimal control trajectories. Modal truncation and
balanced truncation were used to obtain approximations of
this system. A frequency weighted balanced approximation
has been applied to the example of a 82 order binary
distillation process that was succesfully reduced to a
second order approximation. The controlled outputs of the
optimal system and the controlled outputs obtained from
the second order approximation of the Hamiltonian system
were almost indistinguishable.
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Fig. 4. Approximation results for controlled distillation
column

The theory in this paper has ben worked out for linear
systems and quadratic cost functions, but the ideas pre-
sented here allow generalization to reduction techniques
on more general nonlinear adjoint systems such as the one
presented in (8). We are currently investigating proper or-
thogonal decompositions and Galerkin type of projections
to reduce the complexity of the adjoint system defined in
(8).

Results obtained in this paper might further improve by
using frequency weighted Hankel norm approximations to
reduce the Hamiltonian system. Optimal Hankel norm ap-
proximation is a feasible candidate to reduce the Hamilto-
nian system as the Hankel norm operator maps past inputs
to future outputs. This corresponds to the character of
the Hamiltonian system as this system generates optimal
trajectories of the controlled system from an input signal
that is only non-zero at t = t0. Frequency weighted Hankel
norm approximation is expected to have similar benefits
as the method of frequency weighted balanced truncation.

The reduced order controllers in this paper were provided
as feed-forward control to the plant. Placing a reduced
order controller in feed-back with the plant will improve
robustness and performance of control. Currently only
the optimization problem was constrained by the plant’s
dynamics. Equality and inequality constraints can be
added to the problem to consider low-order (sub-optimal)
constrained control.
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