Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

[FAC

Hierarchical control architectures in
industrial automation: a design approach
based on the generalized actuator concept

Eugenio Faldella* Andrea Paoli**! Matteo Sartini **
Andrea Tilli**

* DEIS - Department of Electronic, Computer Science and Systems,
University of Bologna,
Viale Risorgimento, 2 - 40136 Bologna, ITALY,
efaldella@deis.unibo.it
** Center for Research on Complex Automated Systems (CASY)
Giuseppe Fvangelisti, DEIS - Department of Electronic, Computer
Science and Systems, University of Bologna,
Viale Pepoli, 3/2 - 40123 Bologna, ITALY,
{andrea.paoli ; matteo.sartini ; andrea.tilli}@unibo.it

Abstract: In this paper an effective design approach to the design of hierarchical control
architectures for the automation industrial plants is presented. The main characteristic of the
solution is the clear and structural separation between “policies” and “actions” deriving from
the use of a novel abstract entity in modelling automation plants: the Generalized Actuator.
Particular attention is paid to illustrate how to define generalized actuators starting from a
“bare plant”. The potentialities of this method are emphasized by means of a case study.

Keywords: Modelling and design of automation control systems; Process supervision; Flexible

and reconfigurable automation systems

1. INTRODUCTION

In software engineering, concepts as modularity, encap-
sulation, composability and reusability are strongly em-
phasized and profitably realized in the so-called object-
oriented methodologies. These methodologies are fruit-
fully pervading the industrial automation world too, as
testified not only by current availability of commercial
products conforming, at least to a certain extent, to the
standards defined for this specific domain by International
Organisms, such as IEC and OMG, but also by some
interesting proposal about generally applicable modelling
and design frameworks recently published in the scientific
and technical literature. From the latter point of view, in
(Vyatkin and Hanisch [2001]) the framework of TEC61499
is exploited to define a formal modelling suitable for ver-
ification. In (Bonfé and Fantuzzi [2004]) the Mechatronic
Object has been introduced to deal with mechanical and
electronic issues involved in the automation of industrial
plant. This approach has been further extended in (Bonfe
et al. [2006] where a solid unification of dynamic systems
and industrial control software modelling is proposed. In
(Thramboulidis [2005]) a model integrated paradigm is
introduced to represent mechatronic systems. Differently,
in (Ferrarini et al. [2006]) the Control Module is intro-
duced following the agent paradigm to achieve a modular
representation of automation functions for flexible manu-
facturing systems.

As a matter of fact, a key element for the effectiveness of

1 Corresponding author.

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 69

a proposed modelling framework is the correlation with a
clear procedure to deal with it. Taking inspiration from
this basic consideration, the main focus of this paper is to
present a modelling framework and a design procedure to
realize automation functions exploiting a clear and struc-
tural separation between Policies and Actions. Toward
this purpose, a novel entity is introduced for modeling
industrial automation systems: the Generalized Actuator
(GA). The main characteristics of the proposed modelling
framework and design procedure are the following:

e Introduce a straightforward way to encapsulate “ac-
tuation mechanisms”, using GA;

e Effectively support hardware virtualization, compo-
nent interoperability and reusability;

e Allow hierarchical management of a plant, separating
control policies from actuation mechanisms;

e Allow detection of anomalous situations following a
distributed hierarchical approach.

The paper is organized as follows. In Section 2 a case study
is presented to emphasize the basic idea of the proposed
methodology. It’s Generalization and formalization is pre-
sented in Section 3. The potentialities of the approach,
concluding remark and future work directions are outlined
in Section 4.

2. CASE STUDY
To introduce the design procedure, let us start presenting

a simple example: a marking machine that marks some
packs in a production line. We will deal with the different

10.3182/20080706-5-KR-1001.3528

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

StartProcess
TemperatureSensor

== UPLimitSensor
e DOWNLIimitSensor

PackPlacedSensor
PackTypeSensor

Fig. 1. The considered production line.

control functionalities desired for the system in different
steps; namely these functionalities are:

(1) Mark a pack using pack presence sensors;

(2) Control the stamping tool temperature;

(3) Control the tool temperature according to a suitable
policy.

The system to control is schematically shows in Figure 1;
it is composed by a conveyor belt that feeds some packs
produced by an upstream machine, and a stamping ma-
chine that marks the packs. The conveyor belt is actuated
through the command signal BeltMotorON; the system
is equipped with a sensor that indicates when a pack is
in the marking position (signal PackPlacedSensor). The
hydraulic ram that actuates the mark has two possible di-
rections of movement, decidable through command signals
RamMotorON and RamMotorDirection, namely upward di-
rection command can be issued through the combina-
tion RamMotorON=1 and RamMotorDirection=1, while the
downward direction is imposed through the combination
RamMotorON=1 and RamMotorDirection=0. Two sensors
indicate the up limit stop (signal UPLimitSensor), and the
down limit stop (signal DOWNLimitSensor) of the hydraulic
ram. When a new pack arrives under the ram, this must
reach its downward position and stop for 0.2 seconds; after
this time interval the ram must reach its upward limit
while the pack is expelled. During the marking interval
the tool temperature has to be maintained at a specified
level, depending on a policy defined later, using an heating
system activated by HeatingON and an analog temperature
sensor TemperatureSensor. The overall process must start
when the command StartProcess is active and should
stop when StartProcess becomes false. In Table 1 a
description of signals used in the example is given.

2.1 A classic design procedure

First of all we present a “common” solution for the
considered problem, under the following hypotheses.

e Suppose the pack presence sensor to be ideal consid-
ering that the signal PackPlacedSensor immediately
raise when a pack is in the correct marking position.

e Assume a policy requiring a constant temperature,
TemperatureReference, for the marking tool.

In Figure 2 the “common” SFC solution is reported and it
reflects the usual approach adopted in industrial automa-
tion design. On the left hand side, a sequence to handle
the conveyor belt and mark ram coordinate motions is
depicted, while on the right hand side a tool temperature
controller, based on hysteresis mechanism is presented. In

70

this scheme the functioning logic behind the overall process
is hidden in the graph and it is impossible to distinguish
between the implementation of the main functions of the
systems. As a matter of fact, despite the use of SFC lan-
guage, the designed solution lacks of separation between
logic policies and actuation mechanisms, reflecting into
a lack of reusability and modularity, as it can be noted
considering the following modifications to the plant and
policies.

(1) Suppose that the considered system is equipped with
a presence sensor which cannot be considered as ideal:
signal PackPlacedSensor becomes true as soon as
the pack reaches the sensor, but this position is not
centered below the ram; for this reason, once sensor is
covered by the pack, the belt should continue moving
for a given time that depends on its actual speed in
order for the pack to reach the correct position.
Suppose that the system can manage two dif-
ferent products and, depending on the kind of
the pack (distinguished through a sensor readings
PackTypeSensor), the marking action should be per-
formed at different temperatures (i.e. the reference
for the temperature control changes according to the
actual product).

The control logic for this more involved situation is de-
picted in Figure 3; the reader can observe that the new
solution is slightly different from the starting one presented
in Figure 2. But it is even more interesting noting that the
modification (1) is related to an action sensor (in general to
an action mechanism), while the modification (2) is related
to a policy change, but this characteristics are not clearly
distinguishable in the proposed solution (see Figure 3, with
the highlighted modifications). This fact clearly testifies
the mixing of mechanisms and policies which minimize
modularity and reusability properties.

Another worthy remark concerning the solutions of Fig-
ures 2 and 3 is to note that the diagnostic phase has
been completely disregarded. Even diagnosis of anoma-
lous situation can be considered at two different levels:
detection of mechanisms failures (e.g., sensor or actuator
faults, components malfunctioning, etc.) and functional
anomalies (e.g., forbidden control sequences that occur due
to external influences). Having a control logic as the one
presented in Figure 3 prevents from obtaining a separation
between mechanisms diagnostics and policies diagnostics;
this aspect is fundamental when we require the system
to be tolerant to faults having to distinguish between
mechanisms reliability (e.g. considering redundancy) and
policies reconfigurability (e.g. switching between different
control logic).

Taking motivation from the enlightened drawbacks, a
novel approach procedure is presented in next section.
The procedure is devoted to obtain a reusable, modular
control logic by exploiting a structural separation between
mechanisms and policies.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

| Signal || Meaning || Type |
StartProcess Operator command to start the process. DIGITAL
BeltMotorON Command signal to move the conveyor belt. DIGITAL
PackPlacedSensor Pack presence sensor readings. DIGITAL
PackTypeSensor Pack type sensor readings. DIGITAL
RamMotorON Command signal to move the hydraulic ram. DIGITAL
RamMotorDirection Command signal to motion direction for the hydraulic ram. DIGITAL
UPLimitSensor Hydraulic ram upward limit switch signal. DIGITAL
DOWNLimitSensor Hydraulic ram downward limit switch signal. DIGITAL
TemperatureSensor Tool temperature sensor readings. ANALOG
HeatingON Command to warm up the marking tool. DIGITAL

Table 1. List of signals used in the benchmark example.

Init

E

—TRUE

|

~StartProcess

Stept

M

Step2

-

r‘N BeltMotorON

—PackPlacedSensor

1

T

Step3

AND <=62

N [RamMotorON

L

1

Step12 FN [HeatingON

NOT Step10.x AND TemperatureSensor>=62 —-][S‘epm X

Stept14

—————

H Step13
R Ramotorbrecior]
~-DOWNLimitSensor NOT Step10.x AND TemperatureSensor<=58 —— ~Step10.x
Step5
Step12
—-Step5.>T#0.25
Step6 N [RamMotorON Steps N BeltMotorON | [Step14
{s__[RamMotorDirection

~UPLimitSensor

|

—tStartProcess.

Step? Step9 [»

—+NOT StartProcess

Step10

j*

~-NOT PackPlacedSensor

J[;w

Fig. 2. “Common” SFC solution for the case study.

Stpet

2.2 A solution to the benchmark example based on the
generalized actuator concept

The novel approach proposed in this Section starts from
the idea of considering logic control as a recipe mainly
composed by two ingredients:

- a set of basic actions;
- one or more desired sequences to coordinate actions
execution.

The first ingredient represents mechanisms of functionality
implementation, while the second represents the control
policy. As enlightened previously the needs for reusable,
modular control software require the two to be completely
independent. First of all, all the action/mechanisms are

7

defined, using the GA entity; afterwards the overall control
policy is considered.

The first step for mechanism definition is to identify ba-
sic actions that cannot be reasonably furthermore de-
composed. For the considered system the basic actions
to perform are (1) move the pack in marking position,
indicated as Positioning; (2) expel the marked pack, in-
dicated as Expulsion; (3) move the ram upward, indicated
as RamGoUp; (4) move the ram downward, indicated as
RamGoDown; (5) control the heating system to maintain
a given temperature on the marking tool, indicated as
TemperatureControl.

Each basic action is then associated with a set of actu-
ators and sensors that physically perform the action. As

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Step19.6>=T40655

(1)

Step12 ‘-‘N [HeatingON

NOT Step10.x AND TemperatureSensor>=TemperatureReference+2 —— Step10.x

Stept4

Stepi3 [»

- PackTypeSensor NOT PackTypeSensor
NOT Step10.xAND TemperatureSensor<=TemperatureReference-2 —-Stepto.x
P | TemperatureReference=60H Step20 W Step21 P [TemperatureReference=80)|
Stepi2
TRUE TRUE 2

Stept4 [1

~f-StartProcess ~-NOT StartProcess

e >

Step10 [i

NOT PackPlacedSensor

BellMotorON

~-TRUE

>

Stept

Fig. 3. Solution of Figure 2 adapted to plant and policies modifications.

depicted in Figure 4, action Positioning and Expulsion
both involve sensor PackPlacedSensor and actuator
BeltMotorON. Actions RamGoUp and RamGoDown involve
sensors UPLimitSensor and DOWNLimitSensor, respec-
tively, and actuators RamMotorON and RamMotorDirection,
both of them. Finally action TemperatureControl in-

volves sensor TemperatureSensor and actuator HeatingON.

At this point, the proposed subsequent step is the effective
definition of GAs following this basic concept (which is a
sort of definition of a GA): every GA is a “virtual” actuator
with the following characteristics:

- it is in charge of the execution of a small subset of
the basic actions identified in previous steps (hence it
handles actuators and sensor associated to them);

- it is always “alive” during the operations of the
automation plant, even if no specific action is required
to it.

In order to give effective “guide-lines” for this phase, the
following rules are introduced:

- the union of the actuators associated with the set of
GAs must be equal to the whole actuators set of the
system (for what concern the sensors usually the same
condition should be satisfied but it is not mandatory);

72

Actions Sensors Actuators
Positioning PackPlacedSensor, PackTypeSensor BeltMotorON
GoUP UPLimitSensor RamMotorON, RamMotorDirection
GoDOWN DOWNLimitSensor RamMotorON, RamMotorDirection
Expulsion PackPlacedSensor BeltMotorON
TemperatureControl TemperatureSensor HeatingON
Actions s0rs A ——
Positionin PackPlacedSensor BackTypeSensor BeltMotorON L
G] Titsensor [RamMotorON, RarmMotorDirection
GoDOWN et R e
Expulsion PackPlacedSensor BeltMotorON >
TemperatureControl | TemperatureSensor HeatingON
Actions Sensors Actuators
Positioning PackPlacedSensor, PackTypeSensor RaltMotoroi
GoUP UPLimitSensor RamM: L >
GoDOWN DOWNLimitSensor RamMotorON, RamMotorDirection >
Expulsion PackPlacedSensor eTtVIotor
TemperatureControl TemperatureSensor HeatingON
Actions Sensors Actuators
Positioning PackPlacedSensor, PackTypeSensor BeltMotorON
GoUP UPLimitSensor RamMotorON, RamMotorDirection
GoDOWN DOWNLimitSensor RamMotorON, RamMotorDirection
Expulsion % m
TemperatureContro TemperatureSensor HeatingON =>

Fig. 4. Actions, sensors and actuators of the systems.

- pursuing a non interference idea, sets of sensors
and actuators belonging to different GAs must be
disjointed.

In the considered example, the situation depicted in lower
part of Figure 4 is obtained. Looking for common equip-
ment used in different actions (circled in Figure 4), leads

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

to group them in three GAs respectively devoted to the
positioning of packs, marking of packs and temperature
control.

From the considered example, it is immediate to note that
there exist two different kinds of actions and, consequently,
of GAs; there are actions which structurally terminate
after a finite time (e.g. action Positioning implies moving
the belt until the pack reaches the marking position), while
there are others which, in principle, could continue for
an infinite time and whose termination has to be decided
“externally” (e.g. action TemperatureControl).

The GAs associated to the first kind of actions are denom-
inated Do-Done GA. They are characterized by a input
signal Do used to command the starting of an action, an
input signal DoWhat to specify what kind of action has to
be performed (if more than one is available) and an output
signal Done to signal when the action has terminated
successfully.

Differently, the GAs associated to the second kind of
actions are denominated Start-Stop GA. Their charac-
teristic I/O signals are the input Start to command the
beginning of an action, defined by the input StartWhat,
and the input command Stop to stop the action.

Other I/O can be present for both types of GA, different
I/O categories are described in details in next section.
For the presented example, the following GAs can be
defined:

e PackMotion, a Do-Done GA that is devoted to packs
positioning;

e RamMotion, a Do-Done GA that is aimed at moving
the hydraulic ram;

e TemperatureControl, a Start-Stop GA that is aimed
at controlling the stamping tool temperature.

These three GAs are described and realized using the
Function Block (FB) formalism defined in TEC61131-3 in
Figure 5. It is worth noting that the FB are not used by
chance, in fact they represent Program Organization Units
(POUs) which have to be always active during overall
control execution. The input/output interfaces for these
GAs PackMotion, RamMotion and TemperatureControl
are presented in tabular form in Figure 6. It is worth noting
that the internal variables with “Port” suffix are used to
identify the physical sensor and actuators linked to the
GAs.

For the sake of brevity we describe now only the im-
plementation of the PackMotion GA, based on SFC for-
malism and depicted in Figure 7. After its activation
the GA is in Init state in which some initialization op-
erations are performed; when these actions are accom-
plished, the GA moves into the Ready state in which
waits for the Do command. Right after receiving the Do
signal the GA moves into a Busy macro-state; the first
action within the macro-state is to distinguish between
the Positioning action and the Expulsion action. In
the first case the belt is moved until SensorPosition
(which is sensor PackPlacedSensor) reads the presence
of a pack; due to the non ideality of the sensor the belt
continues to be actuated for a given time specified in pa-
rameter PositioningDelayTime. After having positioned
the pack under the hydraulic ram the signal coming from
sensor PackTypeSensor is filtered in state PackModel and

73

PackMotion

Do
DoWhat

Done |—
DoneWhat |—
State —

PackTy

ONPort

PackT

T#0.55S — PositioningDelay Time

TypeDescprition f—

TemperatureControl

Start
Stop
Startwhat

DoingWhat
State
TemperatureOK

DOWNLimitSensor -

~ T

TemperatureReference
HysteresisUPLevel
HysteresisDOWNLevel

ort HeatingONPort (— HeatingON

RamMotion

— Do
— DoWhat

UPLimitSensor - UPLimitSensorPol

Fig. 5. Function Block representation of GAs PackMotion,

DOWNLimitSensorPort

Done
DoneWhat|
State
rt RamMotorOnPort

orON

RamMotorOn

Di

RamMotion and TemperatureControl.

Direction

GA IN ouT
PortName Values PortName Values
TRUE TRUE
Do FALSE Done FALSE
DOWhat P;’;"Lcl’sr;z)"ng DoneWhat Pé’:'tl'ﬁs"i;”ng
PACK PackT P ka |d|p B
MOTION ackiype | FacklyPe | state c | Pusy
SensorPort Sensor Ready
Positioning| T40.555 Type Pack0
DelayTime Description Pack1
PackPlaced | PackPlaced Belt Belt
SensorPort Sensor | MotorONPort [MotorON
TRUE TRUE
DO D
FALSE one FALSE
DOWhat RamGouP DoneWhat GouP
RamGoDOWN GoDOWN
RAM DOWNLimit | DOWNLimit| ¢ Idle [Busy
MOTION SensorPort Sensor Ready
UPLimit UPLimit RamMotor | RamMotor
SensorPort Sensor ONPort ON
RamMotor | RamMotor
DirectionPort | Direction
TRUE TRUE
Start FALSE Done FALSE
TRUE . Warming60
Stop FALSE DoingWhat 980
Warm60 Idle | Busy
StartWhat Warm8o State Ready
TEMPERATURE Temperature [Temperature| Temperature TRUE
CONTROL SensorPort Sensor OK FALSE
Temperature 60 HeatingON .
Reference 80 Port HeatingON
Hysteresis P
UPLevel
Hysteresis 2
DOWNLevel

Fig. 6. Input/output interfaces for GAs PackMotion,
RamMotion and TemperatureControl.

the measured pack type is communicated through signal
PackDescription. Having positioned the pack and com-
municated its type the Done signal is issued and the GA
moves back in state Ready. If the action to performed
was Expulsion the GA just actuates the belt until the
presence sensor reads that the pack is away from the
marking position.

It is worth noting that the particular strategy required to
handle the non-ideality of sensor SensorPosition (intro-
duced by modification (1) of Section 2.1, and here high-
lighted in the shaded box (1) of Figure 7) is now clearly
encapsulated inside the PackMotion GA, enlightening that

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

—Endinit

\ I:Ready :‘ !
[reaDY !

—-DO AND DoWhat="Positioning’ DO AND DoWhat="Expulsion’

+-PackPlacedSensorPort —~ NOT PackPlacedSensorPort

|

|

|

|

Qi ovingBatPositoningDeiay FN BeltMotorONPort NonePackModel }
|

|) " ’

Q)]

|

I

I

I

I

|

I

[

|

ingDelar DelayTime

- TRUE

—TRUE

Finished rN Done

+-NOT DO

\
\
\
\
\
\
\
PackModel ‘
\
\
\
\
\
\
\

Ready

Fig. 7. SFC implementation of the PackMotion GA.

this strategy is simply related to a particular mechanism,
it doesn’t affect other mechanisms and the overall policy.

Once all the GAs are completely defined, the overall
control policy can be designed. The supervision policy,
adopted to coordinate the three GAs of the proposed
example, is defined using SFC implementation as depicted
in Figure 8. After an initialization phase performed in state
Init, the system moves in state Ready in which wait for
the command StartProcess. After this last is issued from
the operator, the logic moves into state StartTemperature
control in which the Start-Stop GA TemperatureControl
is activated and the reference temperature is set to the
lower one using signal TemperatureReference. At this
point, entering state Positioning, the PackMotion GA
is activated with Doingwhat=’Positioning’ in order to
have a pack positioned in the marking station. When
the signal PackMotion.Done is true, the logic is sure
that the marking operation can start, therefore, accord-
ing to the pack type communicated by the PackMotion
GA it sets the correct temperature reference and wait
for the signal TempCont . Temperature0K generated by the
TemperatureControl GA to state that the desired tem-
perature has been reached. At this point in state MarkDown
the RamMotion GA is activated with DoWhat=’RamGoDOWN"’
in order to move downward the hydraulic ram; when the
GA communicates that the desired movements has been
performed (signal Mark.Done), the logic waits for 0.2 sec-
onds and, after that, in parallel move upward the ram
activating the RamMotion GA with DoWhat=’RamGoUP’
(state MarkUp) and expel the marked pack activating
the PackMotion GA with DoWhat=’Expulsion’ (state
Expulsion). When both the actions are finished (signals
Mark.Done and Pack.Done both raised to one). Finally
if the StartProcess is still active the logic moves back
to positioning state to let a new pack to be manip-
ulated, while, if the StartProcess signal is false the
TemperatureControl GA is stopped and the SFC moves
back to Ready state. It is worth noting that in this case the
particular strategy for the temperature reference setting

74

H

—+EndInit

t—StartProcess

StartTemperatureControl }

-TRUE

Positioning

L]
i

i

| PackMotion.Done AND

TypeD

PackMotion.Done AND
tion="Pack0" iption="Pack1"

Pack0 Pack1

4

TRUE

WaitTemperature

~1TemperatureControl. TemperatureOK

RamDown

—tRamMotion.Done

Marking

—+Marking.t>=T#0.25

TRUE

@

aHsla

N

RamUp Expulsion

]

~tPackMotion.Done

|

NOT StartProcess

—~RamMotion.Done

~tStartProcess

_{>

Positioning

StopTemperatureControl

N

Ready

Fig. 8. SFC implementation of the supervision policy for
the benchmark example.

(required by the modification (2) reported in Section 2.1),
and highlighted here in the shaded box (2) of Figure 8)
is now clearly classified as part of the supervision policy,
without any connection to the mechanisms encapsulated
in GAs.

To conclude this Section it is possible to note that now
policies are completely independent from mechanisms:
changing sensors or actuators will not affect the policy but
only GAs implementation, being the supervision logic in-
fluenced just by signals generated by GAs through physical
signals filtering. Implementing this solution instead to the
one shown in Figure 3 let the designer to obtain a fully
encapsulated and modular software which can be easily
modified, enriched with new functionalities and reused.
Moreover, even if this point is not stressed in this work,
it is immediate to understand that the diagnostics phase
becomes easier thanks to the structure of the control
logic, being possible to distinguish between mechanisms
diagnostics (which can be performed on-the-fly by GAs,
even when they are idle) and policy diagnostics performed
just considering the command sequences issued at high
level and the responses of GAs.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3. GENERALIZED ACTUATOR DEFINITION AND
DESIGN PROCEDURE FORMALIZATION

We are now ready to define the structure of a GA spe-
cializing its input/output interface and its basic dynamics
by means of a state diagram; after that, generalizing the
procedure proposed in Section 2.2 to solve the benchmark
example, we furnish some guidelines to design the control
logic using the GA approach.

In Figure 9 the interface section of both Do-Done GA (Fig-
ure 9(a)) and Start-Stop GA (Figure 9(b)) are depicted;
in both cases the interface can be mainly divided in two
sections in the following described.

(1) Interface to policy: this section represents the in-
put/output section between the GA and the super-
vision policy. It can be further decomposed in two
subsections separating the standard communications
between the GA and the policy and all the case
dependent communications.

Standard interface: embeds all command inputs
for the GA and the outputs that communicate the
actual state of the GA and the task that it is
accomplishing. More in details the Do-Done GA
will receive as command the Do signal to start
operations and the DoWhat signal to specify the
desired action, while the Start-Stop GA will be
commanded through inputs Start to start opera-
tions and Stop to conclude operations, and through
signal StartWhat to define the required action. In
both cases input signals Alarm, AlarmType can be
used to communicate to the GA the occurrence of
an external anomalous situation. The outputs of
this section are, for the Do-Done GA, the Done
signal by which the GA communicate that the task
has been performed and the DoneWhat signal by
which the terminated task is specified; the Start-
Stop GA outputs are the signal DoingWhat rep-
resenting the task that the GA is performing. In
both kind of GAs, a State signal communicate the
actual state in which the GA is evolving.

Communications: represents all the non standard
communications between the policy and the GA,
as the results of sensor readings filtering (e.g. the
PackDescription signals in PackMotion GA, that
distinguish between two different kind of packs
filtering the sensor readings PackTypeSensor, see
Section 2.2).

(2) Low level interface: this section contain all the in-
terfaces with the low level world; even this section can
be further decomposed in two sub sections considering
the constant parameters used by the GA separated
from the physical interconnection with the plant.
Constant parameters: contains all the inputs by

which it is possible to give a constant value to char-
acteristic parameters of the GA (e.g. in PackMotion
GA the input PositioningDelayTime by which de-
fine the time interval between the activating instant
for sensor PackPlacedSensor and the instant in
which the pack reaches the marking position, see
Section 2.2).

Plant I/0 link: is the real interface with the plant
and contains as inputs all the links to sensors and

75

as outputs the links to actuators. In this way the
physical connection between the GA and the plant
is completely hidden to the high level control policy.

In Figure 10 the interfaces of the three GAs for the
benchmark system are specialized following the classifi-
cation just described. This I/O structure let to consider
for each GA a virtual terminal board so that the im-
plementation mechanisms are hidden to the policy. For
example in the RamMotion GA the DoWhat command
can assume the values RamGoUP and RamGoDOWN reflect-
ing respectively in physical commands (RamMotorON=1
and RamMotorDirection=1) and (RamMotorON=1 and
RamMotorDirection=0).

The GA should then be designed considering as Reference
Model the event driven evolution in Figure 9(c). In the
depicted automaton it is possible to distinguish the states
in the following described.

Init: this state is the initial one and becomes active as
soon as the GA is activated (usually at the beginning
of operations). It represents the state in which initial-
ization actions are performed; the GA moves out from
this state when a signal EndInit communicates that the
initialization operations are concluded forcing the GA to
move in Ready state.

Ready: in this state the GA is ready to perform the desired
operation and is waiting for the Do or Start command
to move to Busy state.

Busy: after the command issued by the policy the GA
starts performing its required task communicating with
the high level policy information on the accomplishment
of the function (e.g. information on the quality of the
operations). The GA remains into this state until the
task is finished and the signal Done is raised (Do—
Done GA) or until the Stop signal (Start—Stop GA) is
issued by the policy. In these cases the GA moves back
to state Ready.

Fault: from any state a signal Fault (used to commu-
nicate some anomalies) can force the GA to move into
a Fault state in which some counteractions are taken.
Note that the Fault signal can be both due to external
commands (e.g. an alarm issued by an external oper-
ator), to internal diagnostics or to wrong logic oper-
ations. When the alarm situation is concluded (signal
EndFault) the GA returns in the Init state to be
reinitialized.

It is important to stress that each of the states just
described represent a set of states; in this sense the
automaton in Figure 9(c) plays the role of a logic design
pattern similarly to GEMMA diagram (see Moreno and
Peulot [2002]). Going back to Figure 7 the SFC state is
clustered according to the general reference model; note
that fault communications and state are not present, since
this topic has not been considered in the example for the
sake of brevity.

To conclude this Section we briefly summarize the design
procedure based on GAs and introduced in Section 2.2:

(1) Identify basic actions of the process;
(2) Define Do-Done actions;
(3) Define Start-Stop actions;

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Interface to policy
Do Done
DoWhat DoneWhat

State
Standard Interface

Communication

Interface to policy
Start
Stop

StartWhat

Standard Interface

Communication

DoingWhat
State

Low level interface Low level interface

Constant Parameters

Plant I/O link

Constant Parameters

Plant /O link

(a) Do-Done GA interface. (b) Start-Stop GA interface.

Do/Start

Start
Process

EndInit

Done/Stop
Fault

EndFault

(c) State diagram for the GA.

TemperatureControl
Interface to policy

Start
Stop
StartWhat

DoingWhat!
State

Standard Interface

Communication
T

Low level interface
HysteresisUPLevel
HysteresisDOWNLevel

Constant Parameters

Plant /0 link

2—|
2—

ON

1sorPort HeatingONPort — HeatingON

Fig. 9. Interfaces of GAs.
RamMotion PackMotion
Interface to policy Interface to policy
—Do Donef— —Do Donef—
—DoWhat DoneWhat{— — DoWhat DoneWhatf—
| _ _ _ Standardinterface ?a(i% Standard Interface State—
Communicaon ~ ~ ~ | T~ -=-= Communication ~ — — T 7]
TypeDescprition j—
Low level interface Low level interface
T#0.555 —PositioningDelay Time
L _ _ _ ConstantParameters _ _ _ _| onstant Parameters
Planti/Ofink | [T T T 7T Planti/oiink~ — — T 7|
DOWNLiI —DOWNL Port -OnPort On PackP —{PackPlacedSensorPort ONPort
UPLil —{UPLimif rt Por Direction PackT) PackT Port °!
Fig. 10. Interface classification for the PackMotion, RamMotion and TemperatureControl GAs.

(4) Identify the GAs by grouping actions with overlap-
ping sets of sensors or actuators;
(5) Design each GA by:

- Defining its interfaces;

- Designing the actuation logics according to refer-
ence model in Figure 9(c);

- Designing the internal diagnostics and quality
assessment procedures (not considered in this
work);

(6) Design the high-level policies

4. CONCLUSIONS

In this work an effective design procedure for industrial
automation systems has been described. This procedure
exploits the structure of a novel abstract element, called
Generalized Actuator, to guarantee hierarchical manage-
ment of the plant, separating control policies from actua-
tion mechanisms.

Actually the emphases has been put on the improvements
obtained in terms of modularity and reusability, but it
is also important to stress that the proposed procedure,
that reflects into a hierarchical architecture, is the starting
step towards a hierarchical diagnostics systems, in which
mechanisms fault diagnosis is separated from policy safety
verification, and especially towards a hierarchical reconfig-
uration system in which fault counteractions can be taken
separately at mechanisms level and/or at policy level.
The presented results have been developed to obtain a
product that is norm IEC61131-3 compliant, moreover, as
enlightened in the paper, these results are fully integrable
with those regarding other object-oriented approaches to
industrial automation as those in Section 1.

Finally the further developments will regard the following
points:

- including hierarchical diagnostics systems design
steps in the proposed pattern;

- defining quality/safety/tolerance indexes to be taken
into account at different level of the architecture,
designing different reconfiguration strategies;

- move towards formalisms defined in IEC61499.
ACKNOWLEDGMENTS

The authors wish to thank Prof. Claudio Bonivento of
the University of Bologna and Dr. Pierantonio Ragazzini
of IMA (Industria Macchine Automatiche) of Bologna
for several fruitful discussions. The authors gratefully
acknowledge also the contribution of IMA in developing
a prototype test bed and making the lab experiments.

REFERENCES

M. Bonfe and C. Fantuzzi. Application of object-oriented
modeling tools to design the logic control system of a
packaging machine. IEEFE International conference on
Control application Industrial Informatics, pages 506 —
574, 2004.

M. Bonfe, C. Fantuzzi, and C. Secchi. Behavioural in-
heritance in object-oriented models for mechatronic sys-
tems. International Journal of Manufacturing Research,
1(4):421 — 441, 2006.

L. Ferrarini, C. Veber, and V. Schiro. A modular mod-
elling and implementation of automation functions for
flexible manufacturing systems. ANIPLA international
Congress 50 Anniversary 1956-2006, Methodologies for
Emerging Technologies in Auotomation, 2006.

. Moreno and E. Peulot. Le GEMMA: modes de marches
et d’arrest, Grafcet de coordination des taches, Con-
ceptions des Systemes Automatises de Production surs.
Editions Casteillal, 2002.

K. C. Thramboulidis. Model integrated mechatronics-
towards a new paradigm in the development of man-
ufacturing systems. IEEE Transaction on Industrial
Informatics, 1:54 — 61, 2005.

V. Vyatkin and H. M. Hanisch. Formal modeling and
verification in the software engineering framework of iec
61499: a way to self-verifying systems. IEEFE Interna-
tional conference on Emerging Technologies and Factory
Automation, 2(113-118), 2001.

76

