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Abstract: An essential part of mathematical modelling is the accurate and reliable estimation
of model parameters. In biology, the required parameters are particularly difficult to measure
due to either shortcomings of the measurement technology or a lack of direct measurements. In
both cases, parameters must be estimated from indirect measurements, usually in the form of
time-series data. Here, we present a novel approach for parameter estimation that is particularly
tailored to biological models consisting of nonlinear ordinary differential equations. By assuming
specific types of nonlinearities common in biology, resulting from generalised mass action, Hill
kinetics and products thereof, we can take a three step approach: (1) transform the identification
into an observer problem using a suitable model extension that decouples the estimation of non-
measured states from the parameters; (2) reconstruct all extended states using suitable nonlinear
observers; (3) estimate the parameters using the reconstructed states. The actual estimation of
the parameters is based on the intrinsic dependencies of the extended states arising from the
definitions of the extended variables. An important advantage of the proposed method is that
it allows to identify suitable measurements and/or model structures for which the parameters
can be estimated. Furthermore, the proposed identification approach is generally applicable to
models of metabolic networks, signal transduction and gene regulation.

Keywords: parameter estimation, parameter identification, biological systems, biochemical
systems, high-gain observers, observability, observer Lyapunov function.

1. INTRODUCTION

In order to understand the dynamics and function of
biomolecular networks such as metabolic pathways, signal
transduction and gene regulation networks, mathematical
modelling and analysis presents an appropriate tool. The
derived models depend crucially on kinetic parameters,
whose accurate and reliable estimation still presents a bot-
tleneck. However, recent advances in measurement tech-
nologies make their indirect interference from time series
data more and more feasible (Anguelova et al., 2007; Voit
and Almeida, 2004).

The dynamics of cell biological processes are often mod-
elled by systems of biochemical reactions composed of
ordinary differential equations:

dc

dt
= Nr(c, ρ), c(0) = c0 ∈ R

nc

+ , y = h̃(c, ρ) ∈ R
p (1)

Thereby, the reaction rates r as well as the measurements
y are represented by nonlinear functions that depend on
the species concentrations c and kinetic parameters ρ. Here
N ∈ R

nc×nr denotes the stoichiometric matrix and c0 the
initial condition for t = 0.

⋆ Partially supported by the Science Foundation Ireland (SFI) grant
03/RP1/I382.

The aim of parameter estimation seeks to determine the
parameters ρ from experimental data. Naturally cell bi-
ological models (1) are nonlinear, which is why optimal
parameter estimation often uses Monte-Carlo based meth-
ods, evolutionary strategies or other heuristic methods.
These optimisation methods all share a common problem:
The simulations necessary for parameter estimation de-
pend on the parameters, thus creating a circular parameter
dependency. As a consequence, these global search meth-
ods can not guarantee to find the optimal solution and are
computationally expensive (Moles et al., 2003). A method
reducing the computational load is for example multiple
shooting (Peifer and Timmer, 2007). Despite undoubted
usefulness, multiple shooting methods do however not re-
solve the circular dependency. Further, heuristic methods
do not address the question of identifiability, which asks
whether the parameters are theoretically obtainable under
the assumptions of noise free measurements and error free
model (Audoly et al., 2001).

Here we present an approach to resolve the circular param-
eter dependency within the estimation process for kinetics
composed of products of generalised mass action and Hill
terms. A suitable model extension eliminates the kinetic
parameters in the system and establishes a one-to-one
correspondence between parameters and extended states.
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This decouples the parameter and the state estimation,
and further, allows us to address identifiability in terms of
observability. The method assumes continuous measure-
ments, which can be achieved by interpolation of time
course data obtained with sufficiently fine resolution.

The present manuscript is organised as follows. Section 2
presents the parameter estimation method in three steps,
and Section 3 provides a proof of concept, by testing the
method on a simplified model of the circadian rhythm in
Neurospora. Finally Section 4 gives the conclusions and
points to non-resolved issues.

2. METHODS

Generally, the reaction rates in (1) may consist of any non-
linear function. For most biochemical reactions however,
the kinetics possess a particular form. We assume:

Assumption 1. The reaction rates can be written as

ri = r̂i

nc
∏

j=1

c
νi,j

j

K
ηi,j

i,j + c
ηi,j

j

, (2)

where the parameters are the nominal reaction rates r̂i ∈
R+ and the Hill-constants Ki,j ∈ R+, which describe a
regulatory influence of species j on reaction i.

Remark 2. The reactions orders νi,j and the Hill expo-
nents ηi,j are assumed to be known a priori, and are
therefore not considered as parameters.

Remark 3. The description comprises zero order (constant
reaction rates, i.e. νi,j = ηi,j = 0), mass-action kinetics
(νi,j ∈ N0 and ηi,j = 0), generalised mass-action (νi,j ∈
R+ and ηi,j = 0), Michelis-Menten (νi,j = ηi,j = 1) as well
as activating (νi,j = ηi,j ∈ R+) and inhibitory Hill kinetics
(νi,j = 0, ηi,j ∈ R+).

Restricting the nonlinearity in the reaction rates to (2)
allows us to reformulate (1) into a more suitable form for
addressing the identification problem. By introducing new
ordinary differential equations for the reaction rates ri and
their denominators mi,j = K

ηi,j

i,j + c
ηi,j

j , we eliminate the
dependency of the system on the parameters. These are
now hidden in the initial conditions, and can be obtained
by either identifying the correct initial conditions or by
solving the definitions of the extended variables for the
parameters. Thus, the problem of parameter estimation is
transformed into a problem of state estimation, whereupon
appropriate non-linear observers can be used.

The proposed approach can be structured into the follow-
ing three steps:

1) Transform the model into its extended, parameter
independent form.

2) Estimate all (non-measured) states using an appro-
priate (nonlinear) observer.

3) Calculate the parameters from the extended state
estimate.

In the following, details concerning each one of the steps
are presented.

2.1 Model extension

A crucial part of the proposed method is to reformulate the
system in a parameter independent form by introducing
new state variables (Farina et al., 2006).

Assumption 4. The concentrations ci and the parameters
r̂i and Ki,j are strictly positive.

Theorem 5. Under Assumption 4 the reaction kinetic
model (1) and (2) is equivalent to the parameter inde-
pendent system

d

dt
ci =

nr
∑

k=1

Ni,krk, (3a)

d

dt
mi,j = ηi,jc

ηi,j−1
j

nr
∑

k=1

Nj,krk, (3b)

d

dt
ri = ri

nc
∑

j=1

(

(

νi,j

1

cj

−
ηi,jc

ηi,j−1
j

mi,j

)

nr
∑

k=1

Nj,krk

)

,

(3c)

where mi,j is the Hill variable

mi,j = K
ηi,j

i,j + c
ηi,j

j , (4)

which is defined for all nonzero ηi,j .

Proof.

a) Equation (3a) follows directly from (1).
b) The dynamic description of m is obtained by differ-

entiation along the trajectory of (1) and using (3a)

d

dt
mi,j = ηi,jc

ηi,j−1
j ċj = ηi,jc

ηi,j−1
j

nr
∑

k=1

Ni,krk.

c) We multiply both sides of (2) with the denominator
and take the logarithm

∑nc

j=1
log (K

ηi,j

i,j + c
ηi,j

j ) + log (ri)

= log (r̂i) +
∑nc

j=1
νi,j log (cj).

Again taking the time derivative and using (4) yields
nc
∑

j=1

ṁi,j

mi,j

+
ṙi

ri

=

nc
∑

j=1

νi,j

ċj

cj

.

Rearranging yields the differential equations for the
reaction rates

ṙi = ri





nc
∑

j=1

νi,j

ċj

cj

−

nc
∑

j=1

ṁi,j

mi,j



 .

Substituting ċj and ṁi,j using (3a) and (3b) respec-
tively yields in (3c). 2

The advantage of the description (3) is that the right-
hand-side does not depend on the parameters r̂i and Ki,j .

Further, in the context of intracellular signalling and
gene regulation, measurements usually concern protein
and mRNA levels, i.e. species concentrations, whereas for
metabolic pathways usually fluxes are measured (Costeno-
ble et al., 2007). Therefore, we require the following as-
sumption.

Assumption 6. Measurements consist of linear combina-
tions of species concentrations and/or reaction rates.
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Using Assumption 6, the extended system (3) is not only
parameter independent, but also linear in the output. By
defining x = [cT vec(m)T rT ]T , the extended system is of
the form

d

dt
x = f(x), x(0) = x0 ∈ R

n, y = h(x) = C̄x, (5)

where the parameters ρ = [r̂T vec(K)T ]T are hidden in
the initial condition x0 = [cT

0 vec(m(c0, ρ))T r(c0, ρ)T )]T .

The somewhat artificial introduction of additional states
similar to Farina et al. (2006) induces dependencies be-
tween the extended states. From (1) follows that the
trajectories lie on a manifold M of dimension smaller or
equal to nc. The model extension describes the system in
a higher dimensional state-space of dimension n > nc, in-
ducing n−nc dependencies within the extended trajectory.
Section 2.3 uses these dependencies to infer the parameter
values. First however, the extended state trajectory must
be reconstructed from the output measurement.

2.2 Observer design

For the reconstruction of all extended variables from time
course measurements yi, i = 1, · · · , p, nonlinear observers
provide a natural tool. Particularly suited for observer
design is the observability canonical form, based on the
observability map

q(x) =











q1(x)
q2(x)

...
qp(x)











, qi(x) =













L0
fhi(x)

L1
fhi(x)

...
Lni−1

f hi(x)













,

p
∑

i=1

ni = n.

(6)

Assuming that the observability map of the extended
system is smooth with a continuous inverse, z = q(x)
transforms the extended system into observability canon-
ical form (Xia and Zeitz, 1997)

d

dt
z = Az + Bφ(z), z(0) = q(x0), y = Cz ∈ R

p, (7)

where

A =







A1

. . .
Ap






with Ai =







0 1
. . . 1

0






∈ R

ni×ni ,

B =







B1

. . .
Bp






with Bi =







0
...
1






∈ R

ni ,

C =







C1

. . .
Cp






with Ci =

[

0 · · · 1
]

∈ R
ni ,

which is structured into p modules corresponding to
each output component. The characteristic nonlinearity
φ(·)

[

φ1(·), · · · , φp(·)
]

captures all the nonlinearities of the
system.

We consider Luenberger observers of the form

d

dt
z̃ = Az̃ + Bφ(z̃) + L(θ) · [y − Cz̃], (8)

consisting of a simulation term Az̃ + Bφ(z̃) (a copy of the
system) and a correction term that feeds back the error of
measured y and estimated output ỹ = Cz̃ through the gain
matrix L ∈ R

n×p, which depends on a gain-parameter θ
used to tune the convergence of the observer (Gauthier et
al., 1992). In order to ensure that such an observer exists,
trajectory observability is required.

Preliminary 7. The extended system is trajectory observ-
able, i.e. q is smooth with a continuous inverse, and the
system in observability coordinates (7) has only one solu-
tion exhibiting the same output trajectory as the system
in physical coordinates (5).

For simplicity, the correction term L is designed inde-
pendently of the actual states of the system taking a
Lyapunov based approach (Gauthier et al., 1992). Global
convergence can be guaranteed if φ(·) is Lipschitz, whereby
the Lipschitz constant can be interpreted as the maximal
slope of φ(·) according to which the minimal observer
gain has to be chosen. Because the observability canonical
form consists of p semi-independent modules only coupled
through the characteristic nonlinearity, the observer gain
matrix L can be calculated independently for each module,
by solving for each output yi, i = 1, · · · , p the Lyapunov
equation

0 = −θS∞,i − S∞,iAi − AT
i S∞,i + CT

i Ci.

The gain matrix L(θ) is then calculated with the block-
diagonal matrix of all inverse solutions

L(θ) =









S−1
∞,1

. . .

S−1
∞,p









· CT .

Some additional calculations are necessary to obtain the
observed states in the original (physically meaningful)
coordinates. There are basically two possibilities:

1) Transform the differential equations of the observer
back into original coordinates using the inverse of the
observability matrix Q = ∂q

∂x
, Vargas et al. (2003).

Then the observer is given by

d

dt
x̃ = f(x) + Q−1(x) · L(θ) · [y − h(x)]. (9)

The proof is presented in the Appendix.
2) Transform the observed trajectory back into original

coordinates. Then the observer consists of a dynamic
part in observability canonical form and an algebraic
part (Vargas and Moreno, 2005)

d

dt
z̃ = Az̃ + B(z̃) + L(θ) · [y − Cz̃], (10)

x̃ = q−1(z̃).

Remark 8. The calculation of the characteristic nonlinear-
ity φ and the inverse observability matrix q−1 involves
symbolic manipulation and might be infeasible for large
nonlinear systems. Considering the computational effort,
the first observer strategy seems advantageous, since only
the inverse of the observability matrix Q−1 must be cal-
culated, which can even be done point-wise.

Usually, local observability, i.e. det(Q) 6= 0, everywhere
on the manifold is a prerequisite for designing the above
observers. If some points on the trajectory are not locally
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observable, the observers may fail, because Q−1 does not
exist, and φ(·) may not be Lipschitz. However, if the
system is trajectory observable, (10) is an approximative
observer converging into an ǫ-band around the true trajec-
tory (Vargas and Moreno, 2005).

Clearly, the observer (9) fails in the case of a local loss
of observability. However, Vargas et al. (2003) propose
modifications to resolve this issue. Consider an event as the
set of time points along a trajectory where the inversion
of Q is numerically ill conditioned:

TEvent = {t ∈ R :
∣

∣

∣

λmin(Q)

λmax(Q)

∣

∣

∣ < δ}

where λmin(Q) and λmax(Q) are the absolute smallest and
largest eigenvalue of Q(x(t, x0)) respectively, and δ > 0 is
some predefined value. During such an event, Q is close to
singular, the inversion of Q is numerically infeasible and
the correction term in (9) gets very large. A solution that
enables to simulate (9) despite the ill-conditioned Q is to
switch the correction term Q−1(x)L(θ) in (9) to zero for
the time of the event Tevent. Therewith, the event based
observer is given by

d

dt
z̃ = Az̃ + Bφ(z̃) + Qinv(z̃) · L(θ) · [y − h(z̃)],

whereby

Qinv =















Q−1 if
∣

∣

∣

λmin

λmax

∣

∣

∣ ≥ δ,

0 if
∣

∣

∣

λmin

λmax

∣

∣

∣
< δ.

(11)

In the case of local observability on the entire trajectory,
both observers (9) and (10) converge to the true trajectory
x(t, x0), whereby the convergence region depends on the
gain parameter θ. Further, both observers are applicable
even if local observability is lost for some points on the
trajectory. Then, (9) is modified according to (11), and
numerical difficulties in (10) only concern the algebraic
part and do not effect the simulation.

2.3 Inferring the parameters

After the estimation of the extended states, the final step
of the approach is obtaining the parameters. We solve the
definition of the model extensions for the parameters, lead-
ing to the following formulas for the parameter estimate

Ki,j = ηi,j

√

mi,j(t) − cj(t), (12)

r̂i = ri(t)

nc
∏

j

mi,j(t)

cj(t)νi,j
. (13)

Using (12) and (13) with the estimated states x̃(t, x̃0)
instead of the true states x(t, x0) gives estimates of the
parameters, which converge to the true values in the same
way as the observer.

Summarising, the proposed parameter estimation method
presents an observer based approach in three steps. First,
the system is transformed into an extended, parameter
independent form. Second, the extended states are recon-
structed from continuous time course measurement using
an appropriate nonlinear observer. Finally, the parameters
are obtained by applying the inverse transformation of the

model extension. The resulting parameter estimate is time
dependent, but converges to the true values as the observer
converges.

3. EXAMPLE

In order to provide a proof of concept, the presented
approach is tested on a simple gene regulation model of
the circadian rhythm in Neurospora. The model describes
day-night oscillations of the frequency protein (FRQ) by a
nonlinear feedback loop within its gene expression (Leloup
et al., 1999)

Ṁ = r3 − r5 r1 = ksM r3 = vs

K4
1

K4
1 + F 4

n

Ḟc = r1 − r4 − r2 + r2′ r2 = k1Fc r4 = vd

Fc

Kd + Fc

Ḟn = r2 − r2′ r2′ = k2Fn r5 = vm

M

KM + M
.

Here M denotes the concentration of FRQ mRNA, Fc and
Fn the concentration of FRQ protein in the cytosol and
nucleus respectively, r1 denotes the rate of translation,
r2 and r2′ of transport in and out the nucleus, r3 of
transcription, r4 and r5 of degradation. By using the above
reaction rates and defining the Hill variables

m1 = K4
1 + F 4

n , m2 = Kd + Fc, m3 = KM + M,

the model is extended as described in the previous section.

We explore different designs of q(·), i.e. different combi-
nations of outputs and their derivatives, to analyse ob-
servability (Table 1). Thereby it is advisable to limit the
order of the derivatives for two reasons. First, to keep the
observer design simple, and second to minimise numerical
errors. If for a particular choice of q(·) the corresponding

observability matrix Q = ∂q
∂x

has full rank n = 12, the
extended Neurospora model is observable and thus identi-
fiable.

Outputs & their degree ni

M Fc Fn r1 r2 r2′ r3 r4 r5 rank(Q)

3 2 3 - - - - 2 2 12
- 2 3 - - - 3 2 2 11
1 2 3 - - - 2 2 2 12
5 3 4 - - - - - - 11
5 4 3 - - - - - - 12
- 2 3 3 - - - 2 2 11
3 2 - - - 3 - 2 2 12
- 2 - 2 1 3 - 2 2 10

Table 1. Selection of the observability analysis
of the Neurospora model, each row corresponds
to one particular design of q with the entries
being the degree ni as in (6). Observability and
thus identifiability is achieved for full rank of

Q = dq
dx

, i.e. rank(Q) = n = 12.

A biologically feasible output, which also enables a simple
observer design, is for example measuring the species
concentrations (Leloup et al., 1999) and degradation rates
(Shu and Hong-Hui, 2004):

y =
[

M Fc Fn r4 r5

]T
.

A suitable choice of q for this output with invertible
Q = ∂q

∂x
is for instance given by (see Table 1 row 1)
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q =
[

M Ṁ M̈ Fc Ḟc Fn Ḟn F̈n ṙ4 r5 ṙ5

]T

.

Remark 9. Note that the system is also observable if only
the concentrations are measured y = [M Fc Fn] (see
Table 1 row 5).

The observer design has to be performed carefully, because
there is a loss of local observability if one of the following
conditions holds:

r2 = r2′ , r3 = r5, r1 + r2′ = r2 + r4,

Fc(r2 − r2′) = Fn(r1 + r2′ − r2 − r4).

Despite the fact that at these points q−1 is non-Lipschitz,
q−1 is still continuous under the image of q since
q ◦ q−1 = id, thus permitting the observer design.

Both observer structures, (9) and (10), were implemented,
whereby for (9) the modified version of Q−1 as in (11) was
used. A trial and error procedure revealed best results for
a condition number in (11) of δ = 10−4.

In a simulation study with the originally published param-
eters, artificial data was generated, initialising the non-
measured observer states with 100% deviation from the
true initial condition, i.e. x̃i(0) = 2·xi(0) for i = 4, · · · , 10.
For this initial condition, the event based observer (9) fails
(Figure 2a), whereas the ǫ-approximative observer (10)
converges (Figure 2b). There are time intervals where the
observer error increases due to the reduced observability
property of the system (Figure 2 Row 3).

Applying (12) and (13) on the state estimate for each time
point gives the parameter estimate. As Figure 1 shows, this
parameter estimate is time dependent, converging towards
the true values. Spikes occur where local observability and
thus local identifiability is lost. Consequently, a readout
of the parameter values outside of these spiky regions is
preferable to e.g. least squares fitting (Table 2).

ks k1 k2 vs vd vm K1 Kd Km

True 0.5 0.5 0.6 1.6 1.4 0.505 0.5 0.13 0.5
15h 0.50 0.50 0.60 1.63 1.39 0.505 0.55 0.13 0.50
25h 0.50 0.50 0.60 1.62 1.40 0.504 0.53 0.13 0.50

Table 2. True parameters that generated the
simulated data for testing the method, and
readout of the estimated parameters at 15h
and 25h. Units: ki (h−1), vi (nMh−1), Ki (nM).

4. CONCLUSIONS

This paper proposes a novel method for kinetic parameter
estimation that is particularly tailored to biological mod-
els consisting of ordinary differential equations. Basically,
the strength of the presented method lies in the model
extension, which establishes a one-to-one correspondence
between parameters and extended states. Therewith, the
main challenge of the proposed parameter estimation is
the reconstruction of the extended trajectory from the
measurements. Here, we use Lyapunov based observers
and demonstrate that their design is tricky if local observ-
ability is not given on the entire trajectory. The example
shows that ǫ-approximative observers are coping with such
impaired observability.

The method holds the potential of further improvements
dealing with real world biological data. Noise for example
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Fig. 1. As the observer converges, the parameter estimates
based on the ǫ-approximative observer (10) converge
to the true values (dotted, constant).

can be dealt with by borrowing techniques from particle or
Bucy-Kalman filters. Modifications are however necessary
to cope with the possible loss of local observability at
some points on the trajectory. Concerning sampling issues,
hybrid observers composed of a continuous simulation part
updated at discrete time points should be developed. In
addition, all benefits arising from the extended system
representation have probably not yet uncovered.
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Appendix A. (BACK-)TRANSFORMATION FROM
THE OBSERVER INTO ORIGINAL COORDINATES

Consider a continuous observer in observability canonical
form (Birk and Zeitz, 1988)

d

dt
z̃ = Az̃ + Bφ(z̃) + L[y − ỹ],

with a constant gain matrix L. The observer states are
transformed back into the original coordinates by differ-
entiating x̃ = q−1(z̃)

d

dt
x̃ =

∂q

∂z̃

dz̃

dt
=

[

Q−1[Az̃ + Bφ(z̃)] + Q−1L[y − ỹ]
]

z̃=q(x̃)
.

As f = Q−1f̄ ◦ q with f̄(z̃) = Az̃ + Bφ(z̃), it follows that

d

dt
x̃ = f(x̃) + Q−1(x̃)L[y − ỹ].
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