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Abstract: This paper presents a new and effective algorithm to compute a set of flat outputs
for nonlinear implicit systems described in the differential geometric framework of jets of
infinite order. The proposed methodology is based on the necessary and sufficient conditions for
differential flatness introduced in Lévine [2006]. A procedure is set up to manage the degrees of
freedom involved by the polynomial matrix approach. First, a reduced-order basis of the ideal
of differential forms generated by the differentials of all possible Lie-Bäcklund isomorphisms is
obtained by computing reduced order bases of the left nullspace of Ore polynomial matrices
and the weak Popov form over a Weyl algebra. Then, the generalized Cartan moving frame,
including additional structural constraints, is used in order to characterize the strong closedness
of the latter ideal.
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1. INTRODUCTION

When it comes to nonlinear dynamic inversion (NDI)
control methods, the choice of a set of outputs for input-
to-state linearization appears to be a critical phase of the
process. The flatness approach, introduced first by Fliess
et al. [1995], proposes a quite appealing solution to the
above problem: a set of particular outputs (the so-called
flat outputs) such that a NDI based on these outputs
does not yield any nonlinear unobservable subsystem. The
stability analysis of the nonlinear model is reduced to
validate the root locus of the linearized model obtained by
the NDI technique Betts [1985]. Necessary and suffcient
conditions for differential flatness are now well-established
for both linear and nonlinear multidimensional systems.
However, direct application of the flatness necessary and
sufficient conditions may lead to a large number of candi-
date flat outputs. Consequently, the choice of a particular
set of them, well adapted to sensor measurements and/or
endowed with a physical meaning, appears to be a delicate
and so far unsolved problem. The computation of some
tractable flat outputs represents an important challenge
which is partially addressed in this paper. In order to
increase the accessibility of the flatness theory and asso-
ciated tools to the control system designers, a library of
MapleTMformal functions is currently under development.
The library is devoted to check if a nonlinear system is flat,
to propose some flat outputs satisfying a specific criteria
corresponding to some minimality or simplicity objectives
and also to characterize some invariant subgroups asso-
ciated to candidate flat outputs of the system (the most
complex topic).

? This work is funded by the Regional Council of Aquitaine.

The methodology proposed in this paper focuses on a bet-
ter management of the degrees of freedom involved by the
polynomial matrix approach. First, a reduced order basis
of the left nullspace of the variational system described on
the adjoint differential Ore ring is computed Beckermann
et al. [2006]. Then a weak Popov form can be computed
on the original differential ring Cheng and Labahn [2007],
Davies and Cheng [2006] in order to obtain a reduced order
basis of the ideal of differential forms. In addition, the
problematic related to the strong closedness of the ideal
is addressed in this paper. A solution associated to the
system of partial differential equations involved by the
generalized moving frame structure equations is sought in
triangular form.

The paper is organized as follows: the first part recalls the
necessary and sufficient conditions for differential flatness
proposed in Lévine [2006]. A critical point of view related
to a practical implementation of these results is given as an
introduction of the second part. Moreover, an algorithm
based on reduced order bases and the weak Popov form
is proposed to formally compute a basis of the ideal of
differential forms. Next, the integrability conditions are
addressed and a formal solution is proposed based on a
triangular matrix structure. Finally, the proposed method-
ology is illustrated on a numerical example.

2. NECESSARY AND SUFFICIENT CONDITIONS
FOR DIFFERENTIAL FLATNESS

Let X denote a smooth manifold of dimension n, TxX its
tangent space at an arbitrary point x ∈ X and TX =⋃

x∈X TxX its tangent bundle. Let also introduce the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11250 10.3182/20080706-5-KR-1001.3520



manifold of jets of infinite order X, conceptually defined
by the product of X with an infinite number of copies
of Rn such that X

def= X × Rn
∞

def= X × Rn × Rn × . . ..
From a practical point-of-view, the number of copies of
Rn is finite and application-related. Thus, this field will
be denoted as “infinite but countable” in the sequel of
the paper. The manifold X is endowed with the product
topology (the so-called Frechet topology) in which the
open subsets can be written as O × Rn

∞, where O is an
arbitrary open subset defined by the product of X and
a finite (but arbitrary) number of copies of Rn. In this
geometric setting, a nonlinear implicit system is considered
under the following form:

F (x, ẋ) = 0 (1)
where x is defined on the manifold X and F is a C∞

application from TX to Rn−m where the rank of its
Jacobian matrix ∂F

∂ẋ is equal to n−m. The main advantage
of such a representation is to be naturally invariant by
endogeneous dynamic feedback Lévine [2006]. In order to
characterize the Lie-Bäcklund isomorphisms Fliess et al.
[1999], the notion of local flatness must be introduced
to benefit from a linear geometric setting. In this way, a
variational model of the implicit nonlinear system (1) can
be obtained by computing its Frechet derivative, namely
by performing a linearization of a system of jet expressions
along a general trajectory.
Definition 1. The variational system associated to (1)
around a general trajectory t 7→ x(t) of class C∞ on an
interval I of R corresponds to a linear time-varying implicit
system given by:(

∂F

∂x
(x(t), ẋ(t))

)
ξ(t) +

(
∂F

∂ẋ
(x(t), ẋ(t))

)
ξ̇(t) = 0 (2)

with ξ = (t, ξ, ξ̇, . . .) ∈ TX.

The following Theorem gives a local charaterization of
flatness for variational systems under the form (2).
Theorem 2. The implicit system is locally flat at (x0, y0)
with x0 ∈ X0 = {x ∈ X|Lk

τX
F (x) = 0, ∀k ≥ 0} and

y0 ∈ Rm
∞ if and only if there exists a locally smooth

invertible mapping Φ = (ϕ0, ϕ1, . . .) ∈ C∞(Y0;X0) from
Rm
∞ to X0, with smooth inverse, satisfying Φ(y0) = x0,

and such that
Φ∗dFi = 0, i = 1, . . . , n−m. (3)

where each differential dFi ∈ Λ1(X) is given by:

dFi =
n∑

j=1

(
∂Fi

∂xj
dxj +

∂Fi

∂ẋj
dẋj

)
. (4)

Following the polynomial matrix approach adopted in
Lévine [2006] to characterize the flatness property of non-
linear implicit systems, the variational system associated
to (1) can be represented by means of a matrix with
entries in a particular Ore algebra of functional operators.
While Ore algebras provides a general setting to deal with
different classes of linear systems (e.g. differential time-
delay systems, multidimensional discrete systems, ...), we
restrict our study to the particular case of the Weyl algebra
H[Z] = K[t] [Z;σ, δ], where K[t] represents the field of
meromorphic functions from X to R. In this case, the
operators σ and δ takes respectively the values σ = idK[t]

and δ = d
dt = LτX

. Thus, the trivialization Φ is also

restricted to the class of meromorphic functions. Let in-
troduce the following polynomial matrices, whose entries
are skew polynomials belonging to H[Z]:

P (F ) =
∂F

∂x
+

∂F

∂ẋ
Z, P (ϕ0) =

∑
j≥0

∂ϕ0

∂y(j)
Zj (5)

In this case, the condition Φ∗dF = 0 can be rewritten as:
Φ∗dF∣∣y = P (F )∣∣Φ(y)

P (ϕ0)∣∣y dy = 0. (6)

or, by using the Lie-Bäcklund equivalence:
Φ∗dF∣∣Ψ(x)

= P (F )∣∣xP (ϕ0)∣∣Ψ(x)
dy = 0. (7)

So as to characterize P (F ), denote by Mm,n[Z] the module
of m × n matrices over H[Z], and by Um[Z] the set of
unimodular matrices Mm,m[Z] whose inverse still belongs
to Mm,m[Z] (i.e. whose inverse is also a matrix containing
Z-polynomials). Despite the weak algebraic properties of
Mm,n[Z], this module admits some invariant directions.
Thus, by using similarity transformations, it turns out
that the matrices belonging to Mm,n[Z] admit a pseudo-
diagonal structure which is more commonly known as the
Smith normal form (see e.g. Cohn [1985]).
Definition 3. Given a (n × m) polynomial matrix M de-
fined over the non-commutative ring H[Z], there exists
some matrices V ∈ Um[Z] and T ∈ Un[Z] such that:

V MT =


(∆, 0n,m−n) if n < m(

∆
0n−m,m

)
if n > m

(8)

where ∆ is a diagonal p × p matrix with p = min(n, m)
whose diagonal elements, (δ1, . . . , δσ, 0, . . . , 0), are such
that δi is a nonzero Z-polynomial for i = 1, . . . , σ, and
is a divisor of δj for all i ≤ j ≤ σ.

Inherently, this decomposition is not unique, only the
matrix ∆ is uniquely defined. From now on, considering
a Smith decomposition given by (8), the unimodular pre-
and post-multipliers will be denoted by V ∈ L− Smith (M)
and T ∈ R− Smith (M) respectively. When the Smith
decomposition leads to (In, 0m,m−n) for n < m and to
(Im, 0n−m,m)T for m < n, then the matrix M is called
hyper-regular (in the trivial case n = m, the Smith
decomposition leads to Im). In the sequel, it is assumed
that P (F ) ∈ Mn−m,n[Z] is hyper-regular. This property
corresponds roughly to the controlability of the variational
system Lévine [2006]. The following theorem gives some
necessary and sufficient conditions for the system (1) to
be flat at (x0, y0).
Theorem 4. (i) The set of hyper-regular matrices Θ ∈

Mn,m[Z] satisfying P (F )Θdy = 0 is nonempty and
given by

Θ = U

(
0n−m,m

Im

)
W (9)

with U ∈ R− Smith (P (F )) and W ∈ Um[Z] an
arbitrary unimodular matrix.

(ii) There exists a n × n matrix Q ∈ L− Smith
(
Û
)
,

with Û = U

(
0n−m,m

Im

)
and an arbitrary matrix

R ∈ Um[Z] such that

QÛR =
(

Im

0n−m,m

)
(10)
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(iii) A necessary and sufficient condition for the system
(1) to be flat at (x0, y0) is that there exist U ∈
R− Smith (P (F )) and Q ∈ L− Smith

(
Û
)

such that
the H[Z]-ideal Ω generated by the vector of 1-forms
ω = (Im, 0m,n−m) Qdx is strongly closed in a neigh-
borhood X0 of x0 ∈ X0.

The reader can refer to Lévine [2006] to find a detailed
proof of this theorem.

The strong closedness of the H[Z]-ideal Ω generated by
the 1-forms ω = (ω1, . . . , ωm) is ensured iff there exists a
matrix M ∈ Um[Z] that verifies d (Mω) = 0. In Lévine
[2006], the author proposes a characterization of strongly
closed ideals based on a generalization, in the framework
of manifolds of jets of infinite order, of the well-known
moving frame structure equations (see e.g. Chern et al.
[2000]). In this case, the reformulation of the initial prob-
lem leads to a triple of equations which seems to be more
computationally tractable. The following Theorem gives
some conditions for the H[Z]-ideal Ω to be strongly closed.
Theorem 5. The H[Z]-ideal Ω generated by the 1-forms
ω = (ω1, . . . , ωm) is strongly closed in X0 if and only if
there exists a matrix µ whose entries are polynomials of
Z with coefficients in ∆1

n , and a matrix M ∈ Um[Z] such
that 1 :

dω = µ ω (11)

dµ = µ2 (12)

dM =−Mµ (13)

In addition, if (11)-(13) holds, some flat outputs y are
obtained by integrating the system of partial differential
equations given by dy = Mω.

3. AN EFFECTIVE ALGORITHM FOR
ANALYTICAL COMPUTATION OF FLAT OUTPUTS

3.1 Statement of the problem

Obviously, the basis ω of the H[Z]-ideal Ω is highly not
unique. More precisely, considering a group G acting on a
set X, the orbit of a point x ∈ X is defined as the set of
elements of X to which x can be moved by the elements g
of G such that:

Gx = {g · x|g ∈ G} (14)
Given an element y ∈ X, we say that x and y belong to the
same orbit if and only if there exists a left action g̃ (resp. a
right action ĝ) in G such that y = g̃x (resp. y = xĝ). The
set of all orbits of X is written as X/G (resp. X \ G) for
left group actions (resp. right group actions), and is called
the orbit space. In our case, the number of solutions of
P (F )Θdy = 0 is made of a finite number of distinct orbits
OΘ = Card (Mn,m[Z]/Um[Z]) such that:

OΘ =
1
6

(n(n + 1)(n + 5)−m(m + 1)(m + 5)) (15)

and the number of distints orbits OÛ = Card (Un[Z] \ Un[Z])

of L− Smith
(
Û
)

is also finite and given by:

1 ∆1
n denotes the module generated by (dx1, . . . , dxn).

OÛ = OΘ × 1
6 (n(n + 1)(n + 5)− · · ·

(n−m)(n−m + 1)(n−m + 5)) (16)

Consequently, the number of admissible solutions Q is
quite huge and the obtention of a minimal basis ω of the
ideal Ω represents an outstanding challenge that will be
addressed in the next section by using reduced order bases
and the weak Popov form.

On the other hand, the strong closedness property of the
ideal Ω is difficult to verify since the candidate structure
of the matrix M satisfying d (Mω) = 0 is not initially
constrained. The equation (11) is simply a system of
linear non-differential equations and the operator µ ∈
L1 ((Λ(X))m) such that dω = µ ω can be obtained by
componentwise identification. The second equation (12)
confines the solution space of µ to a subspace in which
the relation d (µ) = µ2 is satisfied. It leads to a nonlin-
ear system of PDE whose order is fixed by the general
structure of µ resulting from the first condition. The first
two equations have been thoroughly studied in Avanessoff
[2005] where an attempt is made to characterize the set
of solutions µ by introducing “very” formal series and a
filtration on the system of equations. Finally, the equation
(13) seems to be the more difficult to satisfy. However, by
chosing the matrix M ∈ Um[Z] with a triangular structure,
the condition on the basis ω for which a solution of the
associated system of PDE exists will be given in the next
section.

3.2 Computation of a reduced-order basis of an ideal of
differential forms

In this section, an effective algorithm is proposed in order
to compute a basis of the H[Z]-ideal of differential forms
Ω. The methodology relies on the computation of reduced
order bases and the weak Popov form. These tools have
been introduced in Beckermann et al. [2006], in which the
authors propose a recursive algorithm to compute the rank
and a reduced order basis of the left nullspace of a ma-
trix of Ore polynomials. Roughly speaking, it corresponds
to a particular kind of Gaussian elimination for non-
commutative polynomials including degree constraints to
control coefficient growth during intermediate reductions.
In Cheng and Labahn [2007], Davies and Cheng [2006],
the authors show that the problem of computing the weak
Popov form of Ore polynomial matrices and the associated
unimodular transformation matrix can be reduced to the
problem of computing a reduced order basis of the left
nullspace of such matrices.
Recalling that the computations are performed over the
field of meromorphic functions K[Z], some complex terms
may appear in the coefficients of the Z-polynomials when
performing row (or even column) reductions. Hence, a
reliable management of such terms is of primary interest
when characterizing the left or right nullspaces of Ore
polynomial matrices. More precisely, these terms must be
avoided as such as possible in the rows of the transforma-
tion matrix corresponding to the zero rows of the residual
matrix. In this way, the fraction-free recursion formulas
defined in Beckermann et al. [2006] are modified so as to
shift such complex meromorphic functions in the rows of
the transformation matrix corresponding to the nonzero
rows of the residual R(Z).
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Theorem 6. Consider an order basis M(Z) ∈ Mm,s[Z]
with order ω and degree µ over the Weyl algebra, and
λ ∈ {1, . . . , s} the set of columns indices of M(Z). Denote
by rj = cωλ

(
(M(Z) · F (Z))j,λ

)
the (j, λ) entry of the first

term of the residual R(Z) of M(Z). Finally, set ω̃ = ω+eλ.

(i) If r1 = . . . = rm = 0 then M̃(Z) = M(Z) is an order
basis of degree ν = µ and order ω̃.

(ii) Otherwise, let π be an index such that rπ 6= 0. Then
an order basis M̃(Z) of degree ν = µ + eλ and order
ω̃ with coefficients in K[Z] can be obtained via the
formulas:

M̃(Z)l,k = M(Z)l,k − rl

rπ
M(Z)π,k (17)

for l, k = 1, . . . ,m, l 6= π, and

M̃(Z)π,k =
(
Z − δ(rπ)

rπ

)
M(Z)π,k

−
∑

l 6=π
σ(pl)

rπ
M̃(Z)l,k

(18)

for k = 1, . . . ,m, where pj = cµj+δπ,j−1

(
M(Z)π,j

)
.

(iii) In addition, if M(Z) is a Mahler system with respect
to (µ,ω), then M̃(Z) is also a Mahler system with
respect to (ν, ω̃).

The algorithm associated to Theorem 6 is particularly well
suited for left nullspace computations since the entries of
the polynomial matrix containing the lowest degrees are
eliminated first. However, it can’t be directly adapted to
compute right nullspace bases where the highest degrees of
the polynomials are not frozen. To overcome this difficulty,
it is possible to compute a right nullspace basis on the
adjoint Ore ring H∗[Z]. The following theorem provides a
tractable algorithm for the characterization of an ideal of
differential forms. It constitutes one of the main contribu-
tions of this paper.
Theorem 7. Let P (F ) ∈ Mn−m,n[Z] be the variational
system associated to the regular implicit system F (x, ẋ) =
0.

(i) A reduced order basis Θ̃(Z) ∈ Mn,m[Z] satisfying
P (F )Θ̃(Z) = 0 can be obtained by computing a
reduced order basis Θ̃∗(Z) ∈ Mm,n[Z] of the left
nullspace of P (F )∗ defined on the adjoint Ore ring
H∗[Z] such that 2 :

Θ̃∗(Z)P (F )∗ = 0 (19)

(ii) A reduced order left multiplier Q̃(Z) ∈ Un[Z] can be
obtained by computing a weak Popov form T (Z) ∈
Mn,m of Θ̃(Z) ∈ Mn,m[Z] such that:

Q̃(Z) · Θ̃(Z) = T (Z) (20)
(iii) A reduced order basis ω of the H[Z]-ideal of differen-

tial forms Ω is given by ω = (Im, 0m,n−m) Q̃dx

The proof is ommited here to save place. Theorem 7 pro-
vides a mean to control the growth of the final transforma-
tion matrices by choosing pivots according to row degree
constraints. These additional constraints involve a lower
number of iterations needed to converge to a solution.
In comparison, by using the algorithm based on Smith
decompositions, all the combinations of the pivot elements
2 In the case of the Weyl algebra, the adjoint Ore ring is given by
H∗[Z] = K[t] [Z; σ∗, δ∗] where σ∗ = idK[t] and δ∗ = − d

dt
= −LτX .

must be explored before to make a decision about the
retained transformation matrix. The termination criterion
associated to Theorem 6 is based on an estimation of
the number of cycles that must be performed to obtain a
reduced order basis. Namely, for an input matrix F (Z) ∈
Mm,s[Z], we consider that (mN +1)s is an upper bound to
obtain a system M(Z) of degree µ and order ω, where N
stands for the degree of F (Z), i.e. the largest degree of its
polynomial entries Beckermann et al. [2006]. Applying this
formula to Theorem 7 and noting that N = deg(P (F )) = 1
due to the structure of (5), a right nullspace basis Θ̃(Z) of
P (F ) can be obtained in at most OΘ̃ iterations such that:

OΘ̃ = (n + 1)(n−m) (21)

and a left nullspace basis Q̃(Z) of Θ̃aug can be computed
in OQ̃ iterations such that:

OQ̃ = ((n + m)NΘ̃ + 1) m (22)

where NΘ̃ corresponds to the degree of the matrix Θ̃ previ-
ously obtained. Note that in the case of early convergence
of the process, the termination criterion can be rebounded
downwards. These bounds must be compared to those
associated to the Smith normal forms which are given by
(15) and (16).

3.3 Integrability conditions

Recall that the H[Z]-ideal Ω generated by the 1-forms
ω = (ω1, . . . , ωm) is strongly closed in X0 if and only if
there exists a matrix M ∈ Um[Z] such that d (Mω) = 0.
This condition has been rewritten previously using the
generalized moving frame structure equations, leading to
the triple of equations given by (11)-(13). As previously
stated, the equation (13) is the more difficult to verify.
Namely, it is not easy to define a generic structure of the
matrices M ∈ Um[Z] (and therefore the less conservative)
whose inverses still belong to Um[Z]. However, if the solu-
tion space is restricted to the subset U∆m[Z] of the m×m
matrices M having a triangular structure, these matrices
can be chosen to be unimodular by construction. In the
sequel, a computationally tractable algorithm is proposed
in order to integrate the basis ω whose solutions belong to
U∆m[Z].

µ =


∑J

j=0 µj
1,1Z

j . . .
∑J

j=0 µj
1,mZj

...
...∑J

j=0 µj
m,1Z

j . . .
∑J

j=0 µj
m,mZj

 (23)

where J represents the greatest exponent in Z = d
dt of the

elements of µ, and µj
p,q are arbitrary 1-forms in Λ1(X).

By factorizing each form of the matrix µ in the basis
ω = (ω1, . . . , ωm), we obtain for all (p, q) ∈ {1, . . . ,m}2

and j ∈ {0, . . . , J}:

µj
p,q =

m∑
i=1

K∑
k=0

aj
p,q,i,kωk

i (24)

with aj
p,q,i,k ∈ K[t] for all p, q, j, i and k. Since the values

of the integers J and K are not initially known, (11)-
(12) corresponds to a system of PDE where neither the
order nor the number of unknown functions are bounded
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by advance. However, if the integers J and K are arbitrary
fixed, it is normally possible to determine if the system
(11)-(12) admits a set of solutions. More particularly, when
the solution space is restricted to U∆m[Z], the ideal Ω is
strongly closed if there exists a set of m independent 1-
forms π1, . . . , πm generating Ω with a triangular structure,
such that dπi =

∑m
j=i+1

∑si,j

k=0 τk
i,j∧π

(k)
j for i = 1, . . . ,m−

1 and dπm = 0. In this case, the desired matrix M may be
sought in triangular form such as:

M =


1 M11 . . . M1,m

0 1 . . . M2,m

...
. . .

...
0 0 1 Mm−1,m

0 0 . . . 0 1

 (25)

Then M−1, dM , M−1dM are also triangular and therefore
M−1dM ∧π has the required structure. Indeed, the strong
closedness property is satisfied if the identification

M−1dM =


0
∑

k≥0 τk
1,2Z

k . . .
∑

k≥0 τk
1,mZk

0 0 . . .
∑

k≥0 τk
2,mZk

...
. . .

...
0 0 0

∑
k≥0 τk

m−1,mZk

0 0 . . . 0 0


(26)

is possible, where the functions τk
i,j represent general 1-

forms such that τk
i,j =

∑m
p=1 ak

i,j,pdxp with ak
i,j,p ∈ K[t]

for all i, j, p, k and where dx = (dx1, . . . , dxn) is a basis of
the tangent space of TxX. Obviously, this construction is
strongly related to the choice of the triangularly generating
vector π and the previous identification may fail in some
cases. However, the main interest of this structure is that
the matrix M is unimodular by construction (namely
det(M) = 1) and its entries can be more easily computed.
Clearly, the general structure of the matrix µ can be
written with respect to the entries of M . Let Mi,j and Np,q

be two sets of integers such that Mi,j = {i, . . . , j|i < j}
and Np,q = {p, . . . , q|p < q}. let MMi,jNp,q

4
= {Mxy|∀x ∈

Mi,j ,∀y ∈ Np,q, x < y, (x; y) 6= (i; q)} where the Mxy

are arbitrary Z-polynomials with meromorphic functions
coefficients. If M satisfies the equation (25), then the
general structure of the matrix µ = M−1dM is given
by the equation (27). Moreover, the additionnal contraint
dµ = µ∧µ must be verified, as stated in Theorem 5. In the
case of a triangular matrix M , the set of contraints given
by (28) must be met. dµij =

j−1∑
k=i+1

µik ∧ µkj if j > i + 1

dµij = 0 if j = i + 1

(28)

where i ∈ {1, . . . ,m− 1} and j ∈ {1, . . . ,m}.
Therefore, the terms dMij can be computed and integrated
to find the desired matrix M , providing that the identifi-
cation M−1dM = dω is possible and that the constraints

given by (28) are met. In order to derive the conditions on
the basis ω for which the identification M−1dM = dω is
made possible, some notations are introduced first.

Let x = (x1, . . . , xn) be the states of the nonlinear implicit
system (1) and x = (x1, . . . , xn, ẋ1, . . . , ẋn, . . .) the set of
global coordinates of X. In addition, denote by ρ the set of
integers defined by ρ = {max

α
dx

(α)
i 6= 0,∀i ∈ {1, . . . , n}}.

Let J be the finite set of integers such that:

J = {i|fi,k,m

(
x

(k)
i

)
= 0,∀k ∈ {0, . . . , ν},∀i ∈ {1, . . . , n}}

(29)
and cJ its complement. Let J̃ be the finite set of integers
defined by:

J̃ = {i|fi,k,m

(
x

(k)
i

)
= 0, k = 0,∀i ∈ {1, . . . , n}} (30)

and cJ̃ its complement. Finally, denote by Ĵ the finite set
of integers such that Ĵ = J̃\J and cĴ its complement given
by cĴ = cJ̃∪J. The terms δp,q with p ∈ {1, . . . ,m−1} and
q ∈ {2, . . . ,m} represent arbitrary integers. The following
Theorem gives a necessary and sufficient condition for the
ideal Ω to be strongly closed in a neighborhood X0 of
x0 ∈ X0.
Theorem 8. A necessary and sufficient condition for the
H[Z]-ideal Ω to be strongly closed in a neighborhood X0 of
x0 ∈ X0 is that the two following propositions are satisfied:

(i) There exists a generating vector of 1-forms ω =
(ω1, . . . , ωm) satisfying the equation (31).

(ii) The system of partial differential equations involved
by (27) and (28) admits a solution.

To save place, the proof of the previous Theorem is om-
mited here. If the identification M−1dM = dω fails, this
technique is no longer applicable and the problem of strong
closedness of the ideal is far more complex since the matrix
M may have an arbitrary structure and the unimodularity
property must be additionally ensured.

The overall procedure described in the previous sections
is implemented as a library of formal functions under
MapleTMsoftware. In the following section, we illustrate
step by step the proposed methodology on a 3-tank pro-
cess.

3.4 Application to a 3-tank process

In order to illustrate the proposed methodology, we con-
sider the nonlinear model of an hydraulic system. It con-
sists of three vertical tanks T1, T2 and T3 with cross-section
Sc, a storage tank T0 and two pumps P1 and P2. Each
vertical tank is connected to the storage tank by means
of a duct of section Sn whose flow may be modulated by
means of a manual gate. In addition, two ducts with the
same section Sn, whose flow can also be modulated by

µ =


0 dM12 f13(dM13,MM1,2N2,3 , dMM1,2N2,3) . . . f1m(dM1m,MM1,m−1N2,m

, dMM1,m−1N2,m
)

0 0 dM23 . . . f2m(dM2m,MM2,m−1N3,m , dMM2,m−1N3,m)
...

...
...

0 . . . . . . dMm−1,m

0 . . . . . . 0

 (27)
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

ωm =
Card(cJ̃)∑

i=1

fi,m

(
xcJ̃i

)
dxcJ̃i

+
Card(Ĵ)∑

j=1

gj,m

(
x

(ρĴj
)

Ĵj

)
dx

(ρĴj
)

Ĵj

ωm−1 =
Card(J̃)∑

k=1

fk,m−1

(
xJ̃k

, x
(ρcJ,...,ρcJ+δm−1,m)
cJ

)
dxJ̃k

+
Card(cJ̃)∑

p=1

gp,m−1

(
xcJ̃, x

(ρcJ,...,ρcJ+δm−1,m)
cJ

)
dxcJ̃p

+
Card(Ĵ)∑

k=1

ρĴk
+δm−1,m∑
s=ρĴk

hk,s,m−1

(
x

(s)

Ĵk
, x
)

dx
(s)

Ĵk
+

Card(cJ̃)∑
k=1

δm−1,m∑
s=1

ek,s,m−1

(
x

(s)
cJ̃k

, x
)

dx
(s)
cJ̃k

...
...

ωm−i =
n∑

k=1

fk,m−i

(
x

(0,...,
∑m−1

p=m−i+1
δm−i,p)

, x
(ρĴ,...,ρĴ+

∑m

q=m−i+1
δm−i,q)

Ĵ
, x

(0,...,
∑m

q=m−i+1
δm−i,q)

cJ̃

)
dxk

+
n∑

k=1

∑m−1

p=m−i+1
δm−i,p∑

s=0

gk,s,m−i

(
x

(s)
k , x

)
dx

(s)
k +

Card(Ĵ)∑
k=1

ρĴk
+
∑m

q=m−i+1
δm−i,q∑

s=ρĴk

hk,s,m−i

(
x

(s)

Ĵk
, x
)

dx
(s)

Ĵk

+
Card(cJ̃)∑

k=1

∑m

q=m−i+1
δm−i,q∑

s=0

ek,s,m−i

(
x

(s)
cJ̃k

, x
)

dx
(s)
cJ̃k

(31)

where xJ is defined by xJ = (xJ1 , . . . , xJend
) and also x

(ρJ,...,ρJ+δm−1 )

J = x
(ρJ1 ,...,ρJ1+δm−1 )

J1
, . . . , x

(ρJend
,...,ρJend+δm−1 )

Jend
and

so on.

some gates, are used to connect the tanks T1 and T3 in
the one hand, and the tanks T2 and T3 in the other hand.
The control inputs of the process are the flows Q1 and Q2

of the pumps P1 and P2. Each azij term refer to the flow
of the duct from the element i to the element j through
the gate Vij . Moreover, we consider that h1 > h3 > h2,
that the gates V13, V32 and V20 are open and all the other
closed. Under these assumptions, a nonlinear model of the
3-tank process is given by:


Sc

dh1
dt = −az10Sn

√
2gh1 − az13Sn

√
2g (h1 − h3) + Q1

Sc
dh2
dt = −az20Sn

√
2gh2 + az32Sn

√
2g (h3 − h2) + Q2

Sc
dh3
dt = −az30Sn

√
2gh3 − az32Sn

√
2g (h3 − h2)

+az13Sn

√
2g (h1 − h3)

(32)

Under these assumptions, the model (32) can be put into
an implicit form such that:

dh3

dt
−K1

√
h1 − h3 + K2

√
h3 − h2 = 0 (33)

where K1 = az13Sn

Sc

√
2g and K2 = az32Sn

Sc

√
2g. By using

equation (5), the variational system associated to (33) is
given by:

P (F ) =

 − 1
2

K1√
h1−h3

− 1
2

K2√
h3−h2

1
2

K1√
h1−h3

+ 1
2

K2√
h3−h2

+ Z


T

(34)

The first step of the algorithm consists in computing a
basis of the H[Z]-ideal Ω corresponding to the variational
system P (F ). The equation (15) indicates that there is
OΘ = 9 possible Smith decompositions of P (F ). Using
Theorem 7, we can obtain a basis of the ideal Ω in two
iterations. We begin by computing the adjoint Ore matrix
P (F )∗ of P (F ) on H[Z] such as:

P (F )∗ =

 − 1
2

K1√
h1−h3

− 1
2

K2√
h3−h2

1
2

K2(h1−h3)+K1
√

h3−h2
√

h1−h3

(h1−h3)
√

h3−h2
− Z

 (35)

Then, by using Theorem 6, a basis of the left nullspace of
P (F )∗ can be obtained. Next, p = − 1

2
K1√

h1−h3
is chosen

twice as the pivoting element during the row reduction
process and, by taking the adjoint of the resulting trans-
formation matrix on the adjoint Ore ring H∗[Z], we obtain
a reduced order basis Θ̃(Z) of the right nullspace of P (F )
such as:

Θ̃(Z) =

−K2
K1

√
h1−h3
h3−h2

1 + K2
K1

√
h1−h3
h3−h2

+ 2
√

h1−h3
K1

Z

1 0
0 1


(36)

Recall that the formula given by (21) is only an upper
bound of the number of iterations required to obtain the
desired structure and may not be reached in all the cases.
Indeed, two iterations are sufficient in this study case while
the formula gives OQ̃ = 4 iterations. In order to compute
a weak Popov form T (Z) of Θ̃(Z), a left nullspace basis of
the augmented matrix Θ̃aug is computed, where

Θ̃aug =
(

Θ̃(Z)
−I2

)
(37)

A straightforward application of Theorem 6 leads to a form
M̃augΘ̃aug = Raug after four iterations of the algorithm,
where

M̃aug =


1 K2

K1

√
h1−h3
h3−h2

M̃aug13 0 0
0 Z2 0 0 0
0 0 Z2 0 0
0 1 0 1 0
0 0 1 0 1

 (38)
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and with M̃aug13 = −1 − K2
K1

√
h1−h3
h3−h2

− 2
√

h1−h3
K1

Z. More-
over, the matrix of residuals is given by:

Raug =
(

0 1 0 0 0
0 0 1 0 0

)T

(39)

To compare with the Smith decomposition algorithm,
the formula (16) gives OÛ = 126 candidate solutions
while equation (22) estimates as OQ̃ = 12 the number
of iterations needed to obtain a reduced order basis, with
NΘ̃ = 1. Once again, this number is not reached here since
the algorithm terminates after four iterations only. Finally,
by taking the rows of M̃aug corresponding to the n zero
rows of Raug, the following matrix is obtained: 1 K2

K1

√
h1−h3
h3−h2

−1− K2
K1

√
h1−h3
h3−h2

− 2
√

h1−h3
K1

Z 0 0
0 1 0 1 0
0 0 1 0 1


(40)

which may be partitionned such as(
Q̃(Z) T (Z)

)
·
(

Θ̃(Z)
−Im

)
= 0n,m (41)

where the requested unimodular matrix satisfying Q̃(Z) ·
Θ̃(Z) = T (Z) is given by

Q̃(Z) =

 1 K2
K1

√
h1−h3
h3−h2

−1− K2
K1

√
h1−h3
h3−h2

− 2
√

h1−h3
K1

Z

0 1 0
0 0 1


(42)

and

T (Z) =
(

0 1 0
0 0 1

)T

(43)

Since the matrix Θ̃(Z) is hyper-regular, the weak Popov
form T (Z) satisfies the equation (20) and comprises
min(m,n) = 2 nonzero rows. Then, a reduced order basis ω

can be obtained by taking the rows of Q̃(Z) corresponding
to the nonzero rows of T (Z) and by multiplying it with the
basis of the cotangent space T∗xX:

ω =
(

0 1 0
0 0 1

)( dh1

dh2

dh3

)
(44)

The integrability conditions are trivially satisfied here
since ω1 = dh2 and ω2 = dh3. By choosing M as the
identity matrix, it leads to dy1 = dh2 and dy2 = dh3, and
the flat outputs are then given by:{

y1 = h2 + C1

y2 = h3 + C2
(45)

where C1 and C2 are arbitrary constants. It is straight-
forward to check that h2 and h3 are flat outputs of the
3-tank process. Clearly, all the states and inputs of (32)
can be rewritten as functions of these outputs and of a
finite number of their time derivatives.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, a computationally tractable algorithm is
proposed with a view to the development of a formal
library under MapleTMdevoted to nonlinear flat systems.
The first part of the algorithm deals with the determi-
nation of a reduced-order basis of an ideal of differential

forms. Especially, it has been shown that the use of re-
duced order bases leads to a better management of the
degrees of freedom involved by the Smith decompositions.
In the sesond part of the paper, the condition for which
the ideal of differential forms is strongly closed is given
in the case of a triangular generating structure. Then,
a subspace of reduced-order solutions of the system of
PDE involved by the generalized moving frame structure
equations is sought in triangular form. So as to improve the
robustness property of flatness-based control designs, an
on-going research effort focusses on the characterization of
some invariant subgroups of flat outputs under parameters
variations.
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