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Abstract: The main objective of this paper is twofold. First, we devise a stability test for
determining whether a linear retarded fractional delay differential system has no characteristic
roots in a specified right half of the complex plane. Second, we develop a practical method for
computing the abscissa of stability (defined as the largest of the real parts of the characteristic
roots) for this type of system. The method is based on a known technique which makes repeated
use of a stability test, thereby avoiding the calculation of all the roots. The stability test and the
method for computing the abscissa of stability provide useful computational tools for the design
of fractional differential systems using the method of inequalities as well as other numerical
optimization approaches. Numerical examples are also given.
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1. INTRODUCTION

In recent years, a lot of research interest has been given
to fractional systems. Many physical systems have their
mathematical models described by fractional differential
equations [see, e.g., Podlubny, 1999a,b, and the references
therein].

In the design of dynamical and control systems by the
method of inequalities [Zakian and Al-Naib, 1973, Zakian,
1979a, 1987, 2005], as well as parameter optimization
methods [e.g., Fleming, 1985, Kuhn and Schmidt, 1987,
Burke et al., 2006], one usually needs a computational
tool for checking the system’s stability and determining
a design parameter that stabilizes the system. This is
because numerical search algorithms are in general able
to seek a design solution only if they start from a stability
point (i.e., a point for which all the associated performance
measures are finite or defined). Once such a point is
obtained, the algorithms search for a solution inside the
space of all stability points.

Consider a linear retarded fractional delay differential
system (RFDDS) whose characteristic function f(s) is
described by

f(s) �= P0(s) +
n∑

k=1

Pk(s)e−γks +
ñ∑

k=1

P̃k(s)e−uk(s), (1)

where 0 < γ1 < γ2 < . . . < γn, the polynomials Pk(s)
and P̃k(s) are of the form

∑lk
j=0 ajs

αj with αj ≥ 0 and
deg P0 > deg Pk for all k, uk(s) are of the form

∑mk

j=1 bjs
δj

with 0 < δj ≤ 1 and bj ≥ 0, and none of uk assumes
the form αs. Obviously, f(s) in (1) is very general. The
� This work was supported by the AUN/SEED-Net collaborative
research program.
1 Corresponding author, Tel: +662 2186503; fax: +662 2518991.

characteristic functions of a rational system (which is
a polynomial) and a retarded delay differential system
(which is a quasipolynomial) are special cases of (1).

Bonnet and Partington [2000, 2001] have shown that a lin-
ear RFDDS is BIBO stable if and only if its characteristic
function f(s) has all the zeros with negative real parts. In
this connection, Hwang and Cheng [2006] develop a nu-
merical stability test for determining whether all the zeros
of f(s) have negative real parts. In conjunction with the
method of inequalities, Hwang and Cheng’s test provides
a useful tool for checking the stability of the RFDDS. So
far, however, none has considered developing a numerical
procedure for stabilizing the RFDDS. This is the main
subject to be investigated in this paper.

Let α denote the abscissa of stability of the characteristic
function f(s), which is defined by

α
�= max{Re(s) : f(s) = 0}. (2)

Evidently, the RFDDS is BIBO stable if and only if
α < 0. (3)

Following the method of inequalities, it is readily appreci-
ated that inequality (3) is a useful criterion for stabilizing
the RFDDS.

Once a practical method for evaluating α is available,
the problem of finding a stability point in the design
process can be solved in a straightforward manner by
iterative numerical methods. This approach has been used
successfully by many people [e.g., Arunsawatwong, 1996,
Burke et al., 2006, Zakian and Al-Naib, 1973, Zakian,
1979a, 1987, 2005, and the references therein].

This paper has two objectives. First, we devise a stability
test for checking whether f(s) has no zeros in a specified
right half of the complex plane by extending the procedure
in Hwang and Cheng [2006]. (See Section 2 for the defin-
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ition of stability used in this paper.) Second, we devise a
practical method for computing the abscissa of stability of
f(s) in (1). The method is based on a known technique by
Zakian [1979b], which makes repeated use of the stability
test.

The problem of computing the abscissa of stability was
first considered by Zakian [1979b] in connection with
rational systems. Zakian [1979b]’s technique exploits the
fact that the abscissa of stability only involves the zero
furthest to the right in the complex plane. The idea is
useful especially when f(s) has infinitely many zeros, be-
cause it is impossible to compute all of them. Moreover, by
modifying this technique, Arunsawatwong [1996] devised
a method for computing the abscissa of stability of a
quasipolynomial.

The structure of the paper is as follows. In Section 2,
we develop a new stability test for checking whether f(s)
has no zeros in a given right half of the complex plane.
Section 3 establishes the practical method for computing
the abscissa of stability of f(s). In Section 4, numerical
examples are given so as to show the effectiveness of the
methods developed in this paper and to demonstrate the
use of the abscissa of stability in stabilizing an RFDDS by
the method of inequalities. In Section 5, the conclusions
are given.

2. STABILITY TEST

This section develops a numerical procedure for checking
whether the characteristic function f(s) in (1) has no zeros
in a specified right half of the complex plane.

To this end, the following definition is useful. Let H(ρ)
denote the right half plane given by

H(ρ) �= {s ∈ C : Re(s) ≥ ρ},
where ρ ∈ R is given. The function f(s) is said to be
stable with respect to H(ρ) (or H(ρ)-stable) if none of its
zeros lies in H(ρ). Following this, it is readily appreciated
that a linear RFDDS is BIBO stable if and only if f(s) is
H(0)-stable. Clearly, Hwang and Cheng [2006]’s procedure
is used only for testing the H(0)-stability of f(s).

In developing the stability tests in this work and in Hwang
and Cheng [2006], the key idea used is the well-known
Cauchy’s residue theorem [see, e.g., Brown and Churchill,
2003], which states as follows.

Cauchy’s Residue Theorem Let F (s) be analytic within
and on a simple closed contour Γ except for finitely many
points s1, s2, . . . , sn lying in the interior of Γ. Then∫

Γ

F (s) ds = i2π

n∑
i=1

Res(si),

where the integral is taken in the positive direction and
Res(si) denotes the residue of F (s) at the points si.

By defining
F (s) �= 1/f(s), (4)

we can see that f(s), in general, has no zeros within Γ if
and only if the integral

∫
Γ

F (s) ds = 0. However, it may
happen that the sum of the residues of F (s) at all poles
is equal to zero. For this reason, Hwang and Cheng [2006]

�

�

�

Im(s)

Re(s)
ρ

0

Γr

Γ2ρ

Γ1ρ

�
���

�
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�

�

Fig. 1. The contour Γρ for ρ ≤ 0.

suggest replacing the contour integral
∫
Γ

F (s) ds with the
following integral:

J
�=

∫
Γ

F (s)

(s + h1 + ih2)
k
F (ih2)

ds (5)

where k ≥ 1 is a specified integer, and h1 and h2 are
randomly chosen parameters so that the point (−h1− ih2)
must lie outside Γ. Accordingly, we can see that f(s) has
no zeros within Γ if and only if J = 0 for any (−h1 − ih2)
outside Γ.

The term (s + h1 + ih2)
k in the integral (5) prevents the

sum of the residues from being zero when the function f(s)
has zeros inside Γ. Note in passing that the idea of using
the term (s + h1 + ih2)

k is due to Tuan and Duc [2000].
See more discussion on the important roles of k, h1 and
h2 in Section 2.1.

Since the branch cut of the function f(s) in (1) consists of
the negative real axis including the origin, we divide the
stability test into two cases: (i) ρ ≤ 0 and (ii) ρ > 0. Each
case uses a different contour so that the integration path
does not cross the branch cut.

Now we are ready to consider the stability test.

2.1 Case I: ρ ≤ 0

For ρ ≤ 0, we define the integration contour Γρ as follows.

Γρ
�= ΓIρ ∪ ΓRρ ∪ Γ1ρ ∪ Γ2ρ ∪ Γr,

ΓIρ = {s = ρ + iω : ω ∈ [−R,−a] ∪ [a, R]} ,

ΓRρ =
{
s = ρ + R eiθ : −π/2 ≤ θ ≤ π/2

}
,

Γ1ρ =
{
s = x − ia : ρ ≤ x ≤ −

√
r2 − a2

}
,

Γ2ρ =
{
s = x + ia : ρ ≤ x ≤ −

√
r2 − a2

}
,

Γr =
{
s = r eiθ : 0 ≤ |θ| ≤ π − arcsin(a/r)

}
,

(6)

where R → ∞, r > a > 0 and r → 0. See Fig. 1. Next
define the contour integral

J(ρ) =
∫

Γρ

F (s)

(s + h1 + ih2)
k
F (ρ + ih2)

ds. (7)

We can easily deduce that, for ρ < 0, f(s) is H(ρ)-stable
if and only if f(s) has no zero in the real interval [ρ, 0] and
J(ρ) = 0 for any (−h1 − ih2) outside Γ.

The procedure for implementing the stability test is as
follows. First, check whether f(s) has no zero in [ρ, 0],
which can be done conveniently and speedily by efficient
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numerical search algorithms. If no zero is found, we then
compute J(ρ) defined in (7). If J(ρ) is sufficiently close to
zero, we conclude that f(s) is H(ρ)-stable.

Now it remains only to explain how to compute the integral
J(ρ). It is easy to show that, with the term (s + h1 + ih2)

k,
the integral along the path ΓRρ converges to zero as
R → ∞. Since f(s) has no zero at the origin (otherwise,
it would be detected earlier), we can also show that the
integral along Γr converges to zero as r → 0.

Hence, it follows from the above and from (7) that
J(ρ) = JIρ + J1ρ + J2ρ (8)

where JIρ, J1ρ and J2ρ denote the contour integrals over
the paths ΓIρ, Γ1ρ and Γ2ρ, respectively.

Now consider JIρ. As r → 0 and R → ∞, we obtain

JIρ =
∫ ρ+i∞

ρ−i∞

F (s)

(s + h1 + ih2)
k
F (ρ + ih2)

ds. (9)

Because JIρ in (9) is an improper integral, after the change
of variable s = ρ + iω = ρ + i tan x

2 , it follows that

JIρ =
∫ π

−π

F (ρ + i tan x
2 )[

h1 + ρ + i
(
h2 + tan x

2

)]k
F (ρ + i h2)

i dx

(2 cos2 x
2 )

.

(10)
By defining Gρ(x) as the integrand in (10), we arrive at
the following initial value problem⎧⎪⎪⎨

⎪⎪⎩

dyrρ(x)
dx

= Re {Gρ(x)} , yrρ(−π) = 0,

dyiρ(x)
dx

= Im {Gρ(x)} , yiρ(−π) = 0,

(11)

with JIρ = yrρ(π) + i yiρ(π).

The remaining task is to compute J1ρ and J2ρ. As r → 0,
we obtain

J1ρ =
∫ 0

ρ

F (−x e−iπ) dx

(−x e−iπ + h1 + ih2)
k
F (ρ + i h2)

, (12)

J2ρ =
∫ 0

ρ

−F (−x eiπ) dx

(−x eiπ + h1 + ih2)
k
F (ρ + i h2)

. (13)

Following the approach used in computing JIρ, we easily
deduce that J1ρ and J2ρ can be obtained by solving the
following initial value problems.⎧⎪⎪⎨

⎪⎪⎩

dyrj(x)
dx

= Re {Gj(x)} , yrj(ρ) = 0,

dyij(x)
dx

= Im {Gj(x)} , yij(ρ) = 0,

(14)

and
Jjρ = yrj(0) + i yij(0), for j = 1, 2, (15)

where Gj(x) denote the integrands in (12) and (13).

2.2 Case II: ρ > 0

For ρ > 0, we define the contour as follows.

Γρ
�= ΓIρ ∪ ΓRρ,

ΓIρ = {s = ρ + iω : ω ∈ [−R, R]} ,

ΓRρ =
{
s = ρ + R eiθ : −π/2 ≤ θ ≤ π/2

}
,

(16)

where R → ∞. See Fig. 2. Define

J(ρ) �=
∫

Γρ

F (s)

(s + h1 + ih2)
k
F (ρ + ih2)

ds. (17)

�

�

�
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�

�

Fig. 2. The contour Γρ for ρ > 0.

Then, we can easily deduce that f(s) is H(ρ)-stable if and
only if J(ρ) = 0 for any (−h1 − ih2) outside Γ.

In the following, how to compute J(ρ) is described. It is
easy to see that as R → ∞, the integral along the contour
ΓRρ vanishes. Hence,

J(ρ) =
∫

ΓIρ

F (s)

(s + h1 + ih2)
k F (ρ + ih2)

ds

=
∫ ρ+i∞

ρ−i∞

F (s)

(s + h1 + ih2)
k
F (ρ + ih2)

ds.

(18)

Again, by the change of variable s = ρ + iω = ρ + i tan x
2 ,

we have

J(ρ) =
∫ π

−π

F (ρ + i tan x
2 )[

h1 + ρ + i
(
h2 + tan x

2

)]k
F (ρ + i h2)

i dx

(2 cos2 x
2 )

.

(19)
By defining Gρ(x) as the integrand in (19), we obtain the
following initial value problem.⎧⎪⎪⎨

⎪⎪⎩

dyrρ(x)
dx

= Re {Gρ(x)}, yrρ(−π) = 0,

dyiρ(x)
dx

= Im {Gρ(x)}, yiρ(−π) = 0,

(20)

and J(ρ) = yrρ(π) + i yiρ(π).

It is found that sometimes the initial value problems (11)
and (20) can be stiff, especially when the path ΓIρ gets
very close to the right-most pole of F (s), whose real
part is the abscissa of stability. This frequently happens
when the stability test is used repeatedly in computing
the abscissa of stability (see Section 3). Therefore, it is
advisable to solve the initial value problems (11) and (20)
using stiff ODE solvers, for example, Radau5 code [Hairer
and Wanner, 1996]. See more discussion on computational
issues in Section 4.

3. COMPUTING THE ABSCISSA OF STABILITY

In this section, the method for computing the abscissa of
stability of f(s) in (1) is described. It is based on Zakian
[1979b]’s iteration, which makes repeated use of a stability
test. Here, the Routh test of the shifted polynomial in
Zakian [1979b] is replaced by the H(ρ)-stability test of
f(s) developed in Section 2.

The essentials of the iteration are as follows. First, de-
termine an interval (a0, b0) that contains α; i.e., f(s) is
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H(b0)-stable but H(a0)-unstable. Then, let x1 = (a0 +
b0)/2 and determine whether f(s) is H(x1)-stable. If so,
then α ∈ (a0, x1); otherwise, α ∈ (x1, b0). The procedure
is repeated until α is located within a sufficiently small
interval.

More explicitly, the iteration is expressed as follows. Let
n = 0, 1, 2, . . . and let {xn} be a sequence of real numbers
generated by

xn+1 = xn + hn+1,

hn+1 =
{ |hn|/2 if f(s) is H(xn)-unstable
−|hn|/2 if f(s) is H(xn)-stable

(21)

where
h0 = b0 − a0 and x0 = a0.

It can be shown [Zakian, 1979b] that the infinite sequence
{xn} in (21) converges to the abscissa of stability, α, with
the property

|α − xn+1| ≤ |h0|
2n+1

. (22)

The iteration (21) has the following noteworthy feature
[Zakian, 1979b]. It always converges with the rate of
convergence given by (22). The convergence is disrupted,
but not catastrophically, if failure to obtain the correct
result of the H(xn)-stability test of f(s) occurs in the
iteration. The error |α − xn| achieves its minimal value
just prior to the first failure to obtain the correct result in
the H(xn)-stability test, and thereafter the error always
remains less than twice the minimal value, irrespective of
further miscalculation. See Section 4.3 for examples.

It now remains to explain how to determine a0 and b0.
Given a < 0 and b > 0, set a0 = a and b0 = b. There
are only three possibilities. (I) If f(s) is H(a0)-unstable
and is H(b0)-stable, then a0 = a and b0 = b. (II) If f(s)
is H(a0)-stable, we keep setting a0 = 2a0 until f(s) is
H(a0)-unstable and then set b0 = a0/2. (III) If f(s) is
H(b0)-unstable, we keep setting b0 = 2b0 until f(s) is
H(b0)-stable and then set a0 = b0/2.

Following is the pseudo-code of the algorithm.

input: permissible error ε > 0, a < 0, b > 0,
output: the abscissa of stability α

begin
n = 0; an = a; bn = b;
% First, find an initial interval containing α
if f(s) is H(an)-stable,

while f(s) is H(an)-stable,
an = 2 ∗ an;

end
bn = an/2;

elseif f(s) is H(bn)-unstable,
while f(s) is H(bn)-unstable,

bn = 2 ∗ bn;
end
an = bn/2;

end
c = (an + bn)/2;
% Now, start doing bisection
while |an − bn| > ε,

n = n + 1;
if f(s) is H(c)-stable,

an = an−1; bn = c;
else

an = c; bn = bn−1;

end
c = (an + bn)/2;

end
α = c;

end

4. NUMERICAL EXAMPLES

In this section, numerical examples are given to show the
results of the application of the methods developed in this
paper, and to demonstrate how to stabilize an RFDDS by
numerical methods. In solving the initial value problems,
we use the FORTRAN code Radau5 [Hairer and Wanner,
1996].

4.1 Example 1

Consider the following characteristic function [Ozturk and
Uraz, 1985, Hwang and Cheng, 2006].
f(s) = (

√
s)3 − 1.5(

√
s)2 − 1.5(

√
s)2e−τ s +4

√
s +8. (23)

It is shown [Ozturk and Uraz, 1985] that for τ ∈
(0.99830, 1.57079), the system is BIBO stable. Therefore,
f(s) is H(0)-unstable for τ = 0.99 and H(0)-stable for
τ = 1.

k h1 h2 J Nc

τ = 0.99

1 3.9204572 −2.1184570 0.1425918 + i 0.7859342 21374

2 2.2235993 1.0918359 −0.0405419 + i 0.1515234 7472

3 5.4785590 −8.8245291 −0.0531885 + i 0.0381619 4107

k h1 h2 J × 108 Nc

τ = 1.00

1 3.0051836 −2.4528789 −2.1067 − i 3.6143 23891

2 0.4782589 1.5748952 −0.3593 − i 0.2598 9039

3 1.2774739 4.7541852 −0.4067 + i 3.0108 6186

Table 1. Stability test for Example 1, where Nc

is the number of function calls.

We perform the H(0)-stability test of f(s) in (23) the
result of which is given in Table 1. Furthermore, we verify
the stability result by computing the abscissa of stability
of f(s) for the various values of τ with the permissible
error ε = 10−8. The computed abscissae of stability
(αcomp), which are close to zero, are shown in Table 2. This
demonstrates the effectiveness of the proposed method.

τ 0.99830 0.99840 1.57078 1.57080

αcomp 0.74 × 10−5 −0.14 × 10−4 −0.17 × 10−5 0.38 × 10−6

Table 2. The computed α for Example 1.

4.2 Example 2

In this example, we consider the characteristic function
of a temperature control system, where the process is
described by a heat equation (see the Appendix for the
detail.) The characteristic function f1(s) is

f1(s) = σA
√

λs(1 − e−2L
√

λs) + 2p e−L
√

λs, (24)
where p is the adjustable controller gain and

A = 2, L = 1, σ = 0.5, λ = 1.

By using the graphical stability test proposed by Callier
and Desoer [1972], Lertsatienchai [2003] shows that the
system is stable for p < 17.7985 and unstable for p >
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p h1 h2 J(0)

15 6.0818 −0.9552 (−0.04 − i 0.54) × 10−8

4.2558 −2.3985 (0.04 + i 3.41) × 10−9

17.798 10.9483 7.3350 (−0.16 − i 0.27) × 10−8

5.8581 8.0661 (0.20 − i 0.37) × 10−8

17.799 1.2031 2.7357 1.7967 + i 0.5787

10.4406 −9.1844 0.1107 + i 0.0043

18.5 2.7785 3.8160 1.3455 − i 0.3424

3.6394 −0.8452 −1.3771 + i 1.3702

Table 3. Stability test results with k = 2.

17.7985. Hence, p = 17.7985 is the critical gain of the
closed loop system.

We perform the H(0)-stability test of f1(s) in (24) for
various values of the gain p using the method in Section 2.
The values of J(0) are shown in Table 3. The results show
that for all stable cases J(0) ≈ 0, and that the critical gain
must be in the interval (17.798, 17.799). This agrees well
with Lertsatienchai [2003]’s result.

4.3 Example 3

Consider the functions f2(s) and f3(s) given by

f2(s)
�= (s + 1)nf1(s),

f3(s)
�= (s2 − 2s + 5)nf1(s),

(25)

where f1(s) is given by (24) with p = 10 and n ≥ 1 is an
integer. It readily follows from (25) that

f2(s) =
√

s(s + 1)n + 20(s + 1)ne−
√

s

−√
s(s + 1)ne−2

√
s,

f3(s) =
√

s(s2 − 2s + 5)n + 20(s2 − 2s + 5)ne−
√

s

−√
s(s2 − 2s + 5)ne−2

√
s.

(26)

It should be noted that the abscissa of stability of f1(s)
with p = 10 is equal to −1.61. Hence, from the definition
of f2(s) and f3(s) in (25), it is clear that the abscissae of
stability of f2(s) and f3(s) are respectively equal to −1
and 1 for all n ≥ 1. Notice that when n > 1, the right-
most roots are repeated and thus we expect severe effect
of roundoff errors during computation.

The method developed in Section 3 is applied to the
computation of the abscissae of stability of f2(s) and f3(s)
expressed in (26) for n = 1, 2, 3, 4. Computational results
are shown in Tables 4 and 5, where

actual error =
{ |αcomp + 1| for f2(s)
|αcomp − 1| for f3(s)

.

From Tables 4 and 5, we can see that the actual errors are
greater than the permissible errors in most of the cases
where n > 1. This indicates that, for those difficult cases,
the iteration (21) fails to converge to the correct value
of α owing to the wrong determination of H(ρ)-stability
effected by the roundoff errors. However, it should be noted
that such cases hardly happen in practice. As shown in this
example, even if they happen, the iteration (21) is still
able to produce results with reasonable accuracy of 2–3
decimal digits. Note that in practice, this level of accuracy
is adequate for many applications.

n permissible error actual error αcomp

1 1 × 10−4 0.42 × 10−4 −0.9999581333

1 × 10−5 0.25 × 10−5 −0.9999975049

1 × 10−6 0.34 × 10−6 −1.0000003377

2 1 × 10−4 0.21 × 10−3 −0.9997943714

1 × 10−5 0.13 × 10−3 −0.9998723965

1 × 10−6 0.35 × 10−3 −0.9996510458

3 1 × 10−4 0.11 × 10−1 −0.9891804825

1 × 10−5 0.16 × 10−1 −0.9844916687

1 × 10−6 0.15 × 10−1 −0.9847371004

4 1 × 10−4 0.67 × 10−1 −0.9328956603

1 × 10−5 0.42 × 10−1 −0.9584787572

1 × 10−6 0.69 × 10−1 −0.9308129399

Table 4. The abscissae of stability of f2(s).

n permissible error actual error αcomp

1 1 × 10−4 0.24 × 10−4 1.0000242478

1 × 10−5 0.29 × 10−5 1.0000028711

1 × 10−6 0.31 × 10−6 1.0000003056

2 1 × 10−4 0.16 × 10−4 1.0000159501

1 × 10−5 0.45 × 10−4 1.0000449319

1 × 10−6 0.37 × 10−4 1.0000372677

3 1 × 10−4 0.12 × 10−2 1.0011814091

1 × 10−5 0.16 × 10−2 1.0015600809

1 × 10−6 0.14 × 10−2 1.0014076181

4 1 × 10−4 0.30 × 10−2 1.0029858523

1 × 10−5 0.62 × 10−2 1.0061657232

1 × 10−6 0.47 × 10−2 1.0046522891

Table 5. The abscissae of stability of f3(s).

4.4 Example 4

Consider a unity feedback control system shown in Fig. 3,
where the plant transfer function G(s) is given by

G(s) =
e−

√
s

s(s − 1)
. (27)

Obviously, the plant is unstable.

� K(s) G(s)� � ��

�

r(t)

+

e(t)

−

u(t) y(t)

Fig. 3. A unity feedback control system.

The problem is to stabilize the control system using a PD
controller

K(s) = p1 + p2s where p1, p2 > 0.

The characteristic function of the closed loop system is

f(s) = s(s − 1) + (p1 + p2s)e−
√

s. (28)

In conjunction with the method of inequalities, a stabiliz-
ing controller is obtained by solving the inequality

α(p) ≤ ε, ε = −0.001. (29)
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p0 (3, 2) (1, 4) (1.5, 20)

αcomp 0.5657 0.0709 0.3602

p (0.7162, 4.3345) (0.6850, 4.3220) (0.8760, 7.0325)

αcomp −0.0119 −0.0172 −0.0612

Table 6. Stabilization of an unstable RFDDS.

For the details on this, see Arunsawatwong [1996]. By
using the moving boundaries process algorithm [see Zakian
and Al-Naib, 1973 and also Zakian, 2005], the solutions of
(29) are located. The stabilizing controllers are obtained
from three different starting points. The results are shown
in Table 6.

This example demonstrates that the stabilization problem
for RFDDSs can be solved easily by iterative numerical
methods once a practical method of computing the ab-
scissa of stability is available.

5. CONCLUSIONS

This paper has developed computational tools for solving
stability problems associated with the design of linear
RFDDS by using the method of inequalities and other
numerical optimization approaches. The new stability test
is extended from Hwang and Cheng [2006]’s test. By
modifying Zakian [1979b]’s technique, a practical method
for computing the abscissa of stability is established. The
numerical results show that the method developed here is
effective, even when the iteration is disrupted by serious
round-off error during computation. Also, the numerical
example shows that the stabilization problem of RFDDS
can be easily solved by numerical methods once a method
of computing the abscissa of stability is available.
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Appendix A. MODEL OF TEMPERATURE CONTROL
SYSTEM

The heat conduction plant is shown in Fig. A.1. The rod has length
L, cross-sectional area A and is made of a material with density ρ,
heat capacity C and thermal conductivity σ.

�
� �u(t) θ(L, t)

0 L
x

Fig. A.1. The heating metallic rod.

The control signal u(t) is the heat flow injected at x = 0. The output
y(t) = θ(L, t) is the temperature measured at x = L.

Schwarz and Friedland [1965] show that with appropriate boundary
conditions, the transfer function

G(s)
�
=

Y (s)

U(s)
=

1

σA
√

λs. sinh(
√

λs L)
, (A.1)

where the parameter λ
�
= Cρ/σ.

The heat conduction process is controlled by a heat flow at x = 0
so that the temperature at x = L is kept as close as possible to a
reference signal. With the control structure in Fig. 3 and K(s) = p,
the characteristic function of the closed-loop system is

f1(s) = σA
√

λs(1 − e−2L
√

λs) + 2pe−L
√

λs. (A.2)
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