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Abstract: Considering the dynamic model of an omnidirectional mobile robot (also known of a
type (3,0)), in this work is addressed the Path-tracking control problem of this class of systems.
The solution of the problem is obtained by considering some suitable modifications of the well
known computed-torque control strategy usually used on the field of robot manipulators. The
modifications considered in this work are due to the structural differences between a mobile
robot and a classical rigid robot manipulator. It is formally proved that the proposed control
strategy allows the convergence of the tracking errors and assures the closed loop stability of the
system. The tracking strategy is evaluated by simulation, showing an acceptable performance.

1. INTRODUCTION

The classical control problems of regulation and path-
tracking have been widely studied in the field of mobile
robotics. There has been a deeply analysis for the case of
two classes of configuration, the so called differential and
omnidirectional mobile robots, also known as been of the
type (2,0) and (3,0) respectively (Bétourné and Campion
[1996], Kalmár-nagy et al. [2004]).

From a kinematics perspective, the control problem of a
mobile robot has been aboard from different perspectives,
in this sense, in (Canudas et al. [1996]) and (Campion
et al. [1996]) are presented the developments of kinematics
models for different types of robots.

A popular class of mobile robot, the (2,0)-type has been
subject to several studies considering mainly its kinematics
model. For example, in (D’Andrea-Novel et al. [1992]) a
dynamic feedback linearization approach is used to solve
the path tracking problem, while in (Oriolo et al. [2002])
the same problem is solved and real time implemented. A
discrete time approach is considered in (no Suárez et al.
[2006]) where a sliding mode control is presented.

For the case of the omnidirectional mobile robot (3,0),
the regulation and path-tracking problem has deserved
important attention. Considering its kinematics model, in
(Watanabe [1998]), several control strategy are proposed.
From a different perspective, in (Liu et al. [2003]) it is
designed a nonlinear controller based on a Trajectory
Linearization strategy and in (Velasco-Villa et al. [2007a]),
the remote control of this class of systems is presented
by considering a discrete-time strategy assuming a time-
lag model of the robot. In (Velasco-Villa et al. [2007b])
the same problem is considered by means of an estimation
strategy that predicts the future values of the system based
on the exact nonlinear discrete time model of the robot.

A more reduced number of contributions have been focus
on the case of an omnidirectional mobile robot based on
its dynamic model. For example, in Carter et al. [2001],
it is described the mechanical design of a (3,0) robot
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and based on its dynamic model it is proposed a PID
control for each robot wheel independent of the nonlinear
model of the vehicle. In (Bétourné and Campion [1996])
the authors consider an Euler-Lagrange formulation and
present an output feedback that solves the path-tracking
problem. In the same way, in (Williams et al. [2002]) the
dynamic model of the robot is considered in order to study
the slipping effects between the wheels of the vehicle and
the working surface; in (J. H. Chung et al. [2003]) the
mobile robot is analyzed in the case of a vehicle supporting
castor wheels. In (Kalmár-nagy et al. [2004]) the time-
optimization problem of a desired trajectory is considered
for a mobile robot subject to structural considerations and
admissible inputs in order to obtain feedback laws that are
based on the kinematics and dynamic models.

The analysis and control of Euler-Lagrange systems has
produced several feedback strategies that has been devel-
oped mainly in the area of robot manipulators; for exam-
ple, passivity based strategies as the PD+ control (Paden
and Panja [1998]) or the adaptive controller developed in
(Slotine and Weiping [1988]) have been used to solve the
path-tracking problem for rigid robots manipulators. The
well known computed torque control strategy has been
considered in (Wen and Bayard [1988]), (Ortega et al.
[1998]) to tackle the regulation and path tracking problems
of rigid and flexible manipulators. In (Loria [1996]) it
is presented a computed-torque based controller plus a
Nonlinear PD to solve the path-tracking problem with
output feedback of one degree of freedom.

In this work it is considered the analysis of an omnidirec-
tional mobile robot, that contrary to the differential case it
is not affected by non-holonomics restrictions but, instead
of this, the slipping effects between the wheels and the
working surface are accentuated due to its special wheel
configuration. Following the same ideas developed in the
field of robot manipulators, it is considered a computer
torque control strategy (Loria and Ortega [1995]) to solve
the path-tracking control of an omnidirectional mobile
robot. As in the case of robot manipulators it will be
considered the dynamic model of the vehicle.

This work is organized as follows: Section 2 presents the
kinematics and dynamic model of the omnidirectional
mobile robot where an Euler-Lagrange formulation is used
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to derive the dynamic model and pointing out some of
the structural properties of the model. Immediately, In
Section 3 the path-tracking control problem is stated and
the proposed solution is derived showing the closed loop
stability of the scheme and the appropriate convergence
of the tracking errors. In Section 4, the performance of
the proposed strategy is evaluated by means of numerical
simulation showing its adequate performance and finally,
in Section 5, some conclusions are presented.

2. OMNIDIRECTIONAL MOBILE ROBOT

Considering wheeled mobile robots, a widely used classi-
fication of this type of vehicles is based on the degrees
of mobility δm and steerability δs (Canudas et al. [1996]).
The mobile robot considered in this work is of the type
(δm, δs) = (3, 0). It means that, it has three degrees of
mobility and zero degrees of steerability that allows the
displacements of the vehicle in all directions instanta-
neously. This fact represents the main characteristic of this
type of vehicles producing a significant advantage over the
rest of the wheeled mobile robots.

A top view of the configuration of the robot considered in
this work is depicted in Figure 1 where it is possible to
see the moving reference frame Xm − Ym located at the
center of the vehicle with the Xm axis aligned with respect
to the wheel 3. Wheels 1 and 2 are placed symmetrically
with an angle δ = 30◦ with respect to the Ym axis. In
the same way, in Figure 1, it is shown the fixed reference
frame X − Y which provides the absolute localization of
the vehicle on the workspace.

N

rS% 1

rS% 2

rS% 3

d

L

L

L

x

y

X

Y

Xm

Ym

u1

u2

u3

G
Xm

v

Ym
v

Fig. 1. Robot móvil omnidireccional

The kinematics model of an omnidirectional mobile robot
can be easily obtained by considering the geometric re-
lations given in figure 1. The velocity components with
respect to the axis X − Y are obtained (Campion et al.
[1996]) as,

ẋ = u1 cos φ − u2 sin φ
ẏ = u1 sin φ + u2 cos φ

φ̇ = u3.
(1)

where point (x, y) is the position of the center of the robot
on the plane X − Y and φ in the angular position with

respect to the X-axis. The input signals are given by
u1, u2 and u3, with u1, u2 two orthogonal vectors and
where u1 is aligned with respect to the reference axis of
the robot and u3 is the rotational velocity of the robot.
Considering also the velocity relations depicted on Figure
1 it is possible to obtain the inverse kinematics relations
of the omnidirectional robot with respect to the wheels
angular velocity as,




θ̇1

θ̇2

θ̇3


 =

1

r

[
− sin(δ + φ) cos(δ + φ) L
− sin(δ − φ) − cos(δ − φ) L

cos(φ) sin(φ) L

] [
ẋ
ẏ

φ̇

]
(2)

where θ1, θ2, θ3 represent the angular displacements of
wheels one, two and three, respectively; δ is the orientation
of the i-wheel with respect to its longitudinal axis; L is
the distance between the center of each wheel and the
center of the vehicle and r is the radius of each wheel.
The kinematics model is obtained as the inverse map of
(2).

2.1 Dynamic model

The dynamics of an omnidirectional mobile robot has
been analyzed in (Balakrishna and Ghosal [1995]) where
the model is derived by the use of the Euler Lagrange
formalism and in (Watanabe [1998]) where the dynamic
model is obtained by considering a Newton-Euler strategy.

Following (Balakrishna and Ghosal [1995]), the kinetic
energy of the robot is given by the wheel rotational energy
and the translational and rotational energy of the robot.
Therefore, the Lagrangian of the system is obtained as,

L =
1

2
[Mp(V

2
Gx + V 2

Gy) + Ipφ̇
2] +

1

2

3∑

i=1

Iriθ̇i

2
(3)

where VGx, VGy are the velocity along the axis Xm, Ym

respectively. Mp is the mass and Ip the moment of inertia
about the Z axis of the vehicle, Iri

the moment of inertia
of each wheel about its axis.

Considering that the kinematics restrictions (2) are sat-
isfied for all t, it is possible to neglect the friction and
slip effects between the wheels and the working surface.
Assuming also that the inertia at each wheel Iri

are equal,
the dynamic model of the system can be obtained as,

Dq̈m + C(q̇m)q̇m = Bτ (4)

where,

q =

[
xm

ym

φ

]
, τ =

[
τ1
τ2
τ3

]
,

D =




3Ir

2r2
+ Mp 0 0

0
3Ir

2r2
+ Mp 0

0 0 Ip +
3L2Ir

r2




,

C(q̇m) =




0 −Mpφ̇ 0
Mpφ̇ 0 0

0 0 0


 ,

B =
1

r

[
− sin(δ) − sin(δ) 1
cos(δ) − cos(δ) 0

L L L

]
.
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Dynamic model (4) provides the representation of the
omnidirectional mobile robot on the moving axes Xm−Ym.
To obtain the absolute localization of the mobile robot on
the fixed reference frame, consider now the non singular
transformation q̇m = T (φ)q̇,

T = T (φ) =

[
cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

]
. (5)

that allows rewriting model (4) in the form,

DT q̈ + [DṪ + C(q̇)T ]q̇ = Bτ. (6)

where

q = [x, y, φ]T .

It easy to verify that the inertia matrix DT of the system
it is not symmetric not positive definite,

DT =
1

2rb1




cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0
2Lb1

b2


 ,

b1 =
r

3Ir + 2r2Mp

, b2 =
Lr

3L2Ir + r2Ip

.

In order to obtain the solution of the path tracking
problem by means of a computed-torque strategy consider
the new representation of system (6) in the form,

Dq̈ + C(q̇)q̇ = Bτ (7)

where,

D = T−1DT =




Mp +
3Ir

2r2
0 0

0 Mp +
3Ir

2r2
0

0 0 Ip +
3IrL

2

r2




C(q̇) = T−1DṪ + T−1C(q̇)T =
3Ir

2r2




0 −φ̇ 0
φ̇ 0 0
0 0 0




B = T−1B =
1

r

[
− sin (δ + φ) − sin (δ − φ) cos φ
cos (δ + φ) − cos (δ − φ) sinφ

L L L

]
.

2.2 Structural properties

Before presenting the control strategy, some remarks are
pointed out and some structural properties of the dynamic
model of the omnidirectional mobile robot (7) are stated.
These properties will be necessary to get a control strategy
based on a computed-torque methodology equivalent to
the one use in the case of robot manipulators.

Remark 1. Since matrix D in the model (7) is diagonal
with positive elements, then it is symmetric positive defi-
nite.

Remark 2. Since matrix D is constant, the classic skew
symmetric property on robot manipulators N(q, q̇) = Ḋ −
2C(q̇) it is trivially satisfied.

Property 3. Notice that C(q̇)q̇ as is usual, does not possess
a unique representation, in particular,

C(q̇)q̇ =
3Ir

2r2




0 −φ̇ 0
φ̇ 0 0
0 0 0


 q̇

=
3Ir

4r2




0 φ̇ ẏ

−φ̇ 0 −ẋ
−ẏ ẋ 0


 q̇

= Ca(q̇)q̇

that allows to get a new representation that satisfies the
skew symmetric property.

Property 4. Considering matrix Ca(q̇) it is possible to
establish that for any vector z ∈ Rn,

Ca(q̇)z =
3Ir

4r2




0 φ̇ ẏ

−φ̇ 0 −ẋ
−ẏ ẋ 0




[
z1
z2
z3

]

=
3Ir

4r2




φ̇z2 + z3ẏ

−φ̇z1 − z3ẋ
z2ẋ − z1ẏ




=
3Ir

4r2

[
0 z3 z2

−z3 0 −z1
−z2 z1 0

][
ẋ
ẏ

φ̇

]

+
3Ir

4r2

[
0 0 0
0 0 0

2z2 −2z1 0

][
ẋ
ẏ

φ̇

]

(8)

this is,
Ca(q̇)z = Ca(z)q̇ + Cr(z)q̇. (9)

Property 5. From the new structure of matrix Ca(q̇) and
the definition of Cr(q̇) it is possible to show that they are
bounded in the form,

||Ca(q̇)|| ≤ kc||q̇||, ||Cr(q̇)|| ≤ kr||q̇||, (10)

where it is easy to show that kc and kr can be chosen as,

kc =
3Ir

4r2
and kr =

3Ir

2r2
.

3. PATH-TRACKING PROBLEM

In this work it is considered the classical path-tracking
control problem for omnidirectional mobile robot. This is,
it is required that the output of system (7) follows a desired
trajectory qd(t) by means of a feedback law of the form,

τ(t) = α(q(i)(t), q
(i)
d (t)),

such that, in closed loop with the mobile robot (7) the
tracking error q̃ = q − qd converges to zero,

lim
t→∞

[q(t) − qd(t)] = 0.

To tackle the tracking problem described above, consider
the feedback,

Bτ = Dq̈d + C(q̇d)q̇d − Kpq̃ − Kd
˙̃q + Cr(q̇d)q̇, (11)

or equivalently,

τ = B−1
[
Dq̈d + C(q̇d)q̇d − Kpq̃ − Kd

˙̃q + Cr(q̇d)q̇
]
.
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As mentioned earlier, qd correspond to the desired trajec-
tory and the tracking error is given by q̃ = q − qd. Kp and
Kd are matrices of proportional and derivative gains that
additionally are diagonal and positive definite; the matrix
Cr(q̇d) is defined in (8).

Consider now the model of the mobile robot (7) in closed
loop the feedback (11), under these conditions, it is ob-
tained the system,

D ¨̃q + C(q̇)q̇ − C(q̇d)q̇d + Kpq̃ + Kd
˙̃q − Cr(q̇d)q̇ = 0. (12)

With the aim to obtain an expression in terms of the
tracking error, notice that taking into account the property
given in (9) it is possible to show that,

C(q̇)q̇ − C(q̇d)q̇d = C(q̇)q̇ − C(q̇d)q̇d ± C(q̇)q̇d

= C(q̇) ˙̃q − C(q̇d)q̇d + C(q̇d)q̇ + Cr(q̇d)q̇

= [C(q̇) + C(q̇d)] ˙̃q + Cr(q̇d)q̇

From the above developments, equation (12) can now be
rewritten as,

D ¨̃q + [C(q̇) + C(q̇d)] ˙̃q + Kd
˙̃q + Kpq̃ = 0. (13)

that describes the dynamics of the tracking error.

With the intention to simplify the later developments, and
where no confusion arise, in the rest of the paper it will
be considered the notation C = C(q̇), Cd = C(q̇d) and

C̃ = C( ˙̃q).

3.1 Closed loop stability

The dynamics of the omnidirectional mobile robot (7) in
closed loop with the feedback (11) can be analyzed by
mean of the tracking error equation (13). First of all,

notice that (q̃, ˙̃q) = (0, 0) is an equilibrium point of the
error system (13), for this reason, the stability of the
error system can be analyzed by considering the candidate
Lyapunov function,

V (q̃, ˙̃q) =
1

2
˙̃qTD ˙̃q +

1

2
q̃T Kpq̃ + ǫq̃TD ˙̃q +

1

2
ǫq̃T Kdq̃ (14)

where D is defined in (7) and matrices Kp, Kd are given

in (11). It is an easy task to verify that function V (q̃, ˙̃q)
defined in (14) is positive definite for all ǫ > 0 sufficiently
small.

Considering now the time derivative of V , it is obtained,

V̇ = ˙̃qTD ¨̃q + q̃T Kp
˙̃q + ǫq̃TD ¨̃q + ǫ ˙̃qTD ˙̃q + ǫq̃T Kd

˙̃q,

this is,

V̇ = − ˙̃qT [C+Cd+Kd−ǫD] ˙̃q−ǫq̃T Kpq̃−ǫq̃T (C+Cd) ˙̃q. (15)

From the fact, that matrices C, Cd are skew symmetric,
equation (15) can be rewritten as,

V̇ = − ˙̃qT [Kd − ǫD] ˙̃q − ǫq̃T Kpq̃ − ǫq̃T (C + Cd) ˙̃q. (16)

Now from matrix C it is possible to see that,

C(q̇) + C(q̇d) = C( ˙̃q + q̇d + q̇d)
= C( ˙̃q) + C(2q̇d)
= C̃+2Cd,

(17)

that allow to rewrite equation (16) as,

V̇ = − ˙̃qT Kd
˙̃q +T ǫ ˙̃qD ˙̃q− ǫq̃T Kpq̃− ǫq̃TC( ˙̃q) ˙̃q− 2ǫq̃TC(q̇d) ˙̃q.

(18)

Noting that the terms in the preceding equation can be
bounded as,

− ˙̃qT Kd
˙̃q ≤ −λ(Kd)|| ˙̃q||

2

ǫ ˙̃qD ˙̃q ≤ ǫλ̄(D)|| ˙̃q||2

−ǫq̃T Kpq̃ ≤ −ǫλ(Kp)||q̃||
2

−ǫq̃TC( ˙̃q) ˙̃q ≤ ǫkc||q̃|||| ˙̃q||
2

−2ǫq̃TC(q̇d) ˙̃q ≤ 2ǫkc||q̇d||||q̃|||| ˙̃q||

where λ(A) and λ̄(A) represent the smallest and largest
eigenvalue of a given matrix A respectively and kc is given
in (10). The above properties, allows to rewrite (18) in the
form,

V̇ ≤ −λ(Kd)|| ˙̃q||
2 + ǫλ̄(D)|| ˙̃q||2 − ǫλ(Kp)||q̃||

2

+ǫkc||q̃|||| ˙̃q||
2 + 2ǫkc||q̇d||||q̃|||| ˙̃q||.

(19)

In order to find the stability conditions of the closed loop
systems, notice that equation (19) is equivalent to,

V̇ ≤ −
[
||q̃|| || ˙̃q||

]
P

[
||q̃||
|| ˙̃q||

]
(20)

where,

P =

[
ǫλ(Kp) −ǫkc||q̇d||

−ǫkc||q̇d|| λ(Kd) − ǫλ̄(D) − ǫkc||q̃||

]
.

It is clear, from the preceding developments, that the error
system (13) will be stable if the matrix P is positive
definite. This latter condition is satisfied by means of,

i) ǫλ(Kp) > 0
ii) det{P} > 0.

Condition i) is trivially satisfied since matrix Kp is sym-
metric positive definite. Condition ii) can also be written
as,

ǫλ(Kp)
[
λ(Kd) − ǫλ̄(D) − ǫkc||q̃||

]
− ǫ2k2

c ||q̇d||
2 > 0,

that is equivalent to:

λ(Kp)λ(Kd)

k2
c ||q̇||

2 + λ(Kp)[λ̄(D) + kc||q̃||]
> ǫ,

that can be always satisfied for a sufficiently small ǫ.
Therefore, the asymptotic stability of the system is es-
tablished.
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4. SIMULATION RESULTS

The control strategy proposed in this work is evaluated
in this section by means of simulation experiments. It is
considered a circular path as a desired trajectory. The
experiments are carried out by the use of a MATLAB-
Simulink platform.

The desired trajectory is obtained by means of the equa-
tions,

xd(t) = rw sin(tp(t))
yd(t) = −rw cos(tp(t))

(21)

where rw is the radius of the generated circle and tp
describes the angle of the point (xd, yd) on the plane X−Y
with respect to the X axis. The dependence over the time
variable is obtained by considering the parameterization
of tp(t) by the time polynomial,

tp(t) = 20dm(
t

tf
)3 − 30dm(

t

tf
)4 + 12dm(

t

tf
)5 (22)

where tf is the final execution time and 2dm it is a constant
value providing its final magnitude. The polynomial (21)

satisfies the initial conditions tp(0) = 0,
dtp

dt
(0) = 0,

tp(tf ) = 2dm,
dtp

dt
(tf ) = 0.

Finally, the desired orientation angle φd of the mobile
robot is obtained independently of the trajectory described
in the plane (21), by means of a sinusoidal signal of the
form

φd(t) = φmax sin(ft) (23)

where φmax is the magnitude of the desired orientation
angle and f is a desired orientation frequency.

The control scheme considered in this work is showed in
the Figure 2 where the main elements of the proposed
structure are described.

REFERENCE CONTROLLER MOBILE ROBOT

Proportional and
derivatives gains

Kp  , Kd

tracking
error

POSITION
&

VELOCITY
B?1

Fig. 2. General control scheme

All simulations experiments were carried out by consider-
ing a set of physical parameters for the dynamic model (7)
given by,

Mp = 9.58 Kg, Ir = 0.52 Kgm2, Ip = 0.17 Kgm2

L = 0.205 m, r = 0.03965 m.

The design parameters involved in the feedback control
law (11), were considered as,

Kp1 = 600, Kp2 = 450, Kp3 = 100
Kd1 = 700, Kd2 = 650, Kd3 = 200

It is considered for the desired trajectory a radius r = 0.5
m. with initial conditions for the mobile robot given as
(x, y, φ, ẋ, ẏ, φ̇) = (0.1,−0.4, 0, 0, 0, 0) and a total execu-
tion time of tf = 40 sec. In Figure 3 is shown the input

torque applied to each wheel of the omnidirectional robot,
while in Figure 4, the tracking errors ex = x−xd, ey = y−
yd and eφ = φ − φd are depicted. The convergence of the
velocity errors are presented in Figure 5 and finally, in
Figure 6 it is shown the evolution of the robot over the
X − Y plane.
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5. CONCLUSIONS

In this work it is presented an extension of the well known
computed torque control commonly used in the field of
robot manipulators to the case of an omnidirectional
mobile robot. With this purpose, the dynamic model of
the omnidirectional mobile robot it is rewritten in order
to obtain a constant positive definite inertia matrix. This
fact allows a clear and simple extension of the computed
torque control strategy to the case of a (3,0) robot. The use
of the dynamic model allows the consideration of several
physics effects that are not contemplated by a kinematics
based control perspective. Although in this work, the
friction and slipping effects between the wheels and the
working surface are neglected, the obtained results show
an acceptable performance. The closed loop stability of the
system is formally analyzed stating the appropriate error
convergence.
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tural properties and clasification of kinematics and dy-
namics models of wheeled mobile robots. IEEE Trans-
actions on Robotics and Automation, 12(1):47–61, 1996.

C. Canudas, B. Siciliano, G. Bastin, B. Brogliato, G. Cam-
pion, B. D’Andrea-Novel, A. De Luca, W. Khalil,
R. Lozano, R. Ortega, C. Samson, and P. Tomei. Theory
of Robot Control. Springer-Verlag, London, 1996.

B. Carter, M. Good, M. Dorohoff, J. Lew, R. L. Williams
II, and P. Gallina. Mechanical design and modeling
of an omni-directional robocup player. In Proceedings

RoboCup 2001 International Symposium, Seattle, WA,
USA, 2001.

B. D’Andrea-Novel, G. Bastin, and G. Campion. Dynamic
feedback linearization of nonholonomic wheeled mobile
robots. In Proceedings of the IEEE International Con-
ference on Robotic and Automation, pages 2527–2532,
Nice, France, 1992.

B. J. Yi J. H. Chung, W. K. Kim, and H. Lee. The
dynamic modeling and analysis for an omnidirectional
mobile robot with three caster wheels. In Proceedings
of the 2003 IEEE Int. Conference on Robotics and
Automation, pages 521–527, Taipei, Taiwan, 2003.

T. Kalmár-nagy, R. D’Andrea, and P. Ganguly. Near-
optimal dynamic trajectory and control of an omnidi-
rectional vehicle. Robotics and Autonomous Systems,
46:47–64, 2004.

Y. Liu, X. Wu, J. Zhu, and J. Lew. Omni-directional mo-
bile robot controller design by trajectory linearization.
In Proceedings of the American Control Conference, vol-
ume 4, pages 3423–3428, Denver, Colorado, USA, 2003.

A. Loria. Global tracking control of one degree of freedom
euler-lagrange systems without velocity measurements.
European Journal of Control, 2:144–151, 1996.

A. Loria and R. Ortega. On tracking control of rigid and
flexible joints robot. Appl. Math. and Comp. Sci., 5(2):
101–113, 1995.
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