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Abstract: This paper deals with the problem of diagnosing systems that exhibit both continuous and
discrete event dynamics. The proposed approach combines techniques from both continuous and discrete
event diagnosis fields. On the on hand, an extension of the parity space approach is used to associate
signatures to every operational mode of the system. On the other hand, signature switches arising from
the transition from one mode to another are abstracted in the form of a set of events that capture the
continuous dynamics. These events are merged into the original discrete dynamic model of the system,
allowing us to apply the well-known discrete-event-systems diagnoser approach. This is illustrated on
an example that shows the diagnosability improvement of the hybrid approach.

1. INTRODUCTION

In complex dynamical systems, the overall physical plant is
inherently continuous, but control is often performed by a
supervisory controller that imposes discrete switching behav-
ior between several operating modes (like in McIlraith et al.
[2000]). In such cases, diagnosis is often performed separately
on the continuous dynamics and on the discrete dynamics.
However, this approach misses the interaction between both
dynamics, resulting in poor diagnosability. We show that model
based diagnosis techniques can be combined if the system is
represented by a hybrid model as mentioned in Hofbaur and
Williams [2004].
The hybrid behavior is seen as the result of the underlying
discrete event and continuous systems behaviors. The under-
lying continuous system (also called the multimode system)
can be diagnosed by extending the parity space approach. The
resulting residuals are linked with every operating mode, and
allow us to check the consistency between observable behav-
ior and the system model in each mode like in Cocquempot
et al. [2004]. Every operating mode is indeed characterized by
a mode signature. We then propose to abstract the signature
switches in the form of discrete events typifying continuous dy-
namics. These events are then merged with pure discrete events
in the discrete event model of the system. The resulting model
allows us to build a hybrid diagnoser that takes as input all ob-
servable events. The hybrid diagnoser is used to support an on-
line state tracking algorithm that achieves better diagnosability
(mode discriminability) defined in Bayoudh et al. [2007] than a
diagnosis approach based on the multimode system model or a
diagnosis approach based on the original discrete event model.
Our paper shows the advantage of hybrid diagnosis and uses
an illustrative example that achieves diagnosability although
neither the underlying continuous system nor the underlying
discrete event system are diagnosable.
The paper is organized as follows: in section 2 we propose the
theoretical framework to hybrid system modeling. In section 3
we propose an approach to diagnose the underlying continuous
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system. Section 4 provide the classical framework for discrete
event system diagnosis. Then, in section 5 we present our ap-
proach proposed to hybrid system diagnosis by coupling both
continuous and discrete event techniques.

2. HYBRID MODELING FRAMEWORK

As mentioned in Henzinger [1996] and Hofbaur and Williams
[2004], a hybrid system may be described by a hybrid automa-
ton defined as a tuple S = (ζ, Q, Σ, T, C, (q0, ζ0)).
Where:

• ζ is the set of continuous variables, which include observ-
able and non observable variables. The set of observable
variables is denoted by ζOBS .

• Q is the set of discrete system states. Each state qi ∈ Q
represents a functional mode of the system. It includes
nominal and anticipated fault modes.

• Σ is the set of events. Events correspond to command
value switches, spontaneous mode changes and fault
events.

• Σo ⊆ Σ is the set of observable events. Without loss of
generality, we assume that fault events are unobservable.

• T is the transition function, T: Q× Σ→ Q.
• C is the set of system constraints linking continuous vari-

ables. It represents the set of differential and algebraic
equations modeling the continuous behavior of the sys-
tem.

• (ζ0, q0) ∈ ζ ×Q, is the initial condition.

2.1 The Underlying Discrete Event System (DES)

The discrete part of the hybrid automaton, given by M =
(Q,Σ, T, q0), is a discrete automaton that describes the discrete
dynamics of the system, i.e. the possible evolutions between
operating modes of Q. Modes include nominal and fault modes
as well as an unknown mode, which stands for all the non an-
ticipated faulty situations. The unknown mode has no specified
behavior and hence no associated constraints.
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2.2 The Underlying Continuous System (CS)

In this paper, we deal with linear systems, modeled in the state
space by the evolution and the observation equations. Under
this assumption, the continuous part of the hybrid automaton is
given by the continuous models associated to each mode qi in
the following form:{

Xi(n + 1) = AiXi(n) + BiU(n)
Y (n) = CiXi(n) + DiU(n)

with:

• Xi(n): the state vector at time step nTs.
• U(n): the input vector at time step nTs.
• Y (n): the output vector at time step nTs.

Ts is the sampling period; Ai, Bi, Ci and Di are constant ma-
trices of appropriate dimensions. The underlying continuous
system Ξ = (ζ, Q, C, ζ0) (also called the multimode system)
describes the whole continuous behavior of the system. Notice
that transitions between modes are implicit and consequently,
transitions are not constrained in any way.

2.3 Illustrative example – Underlying CS and DES

We consider a dynamic hybrid system whose underlying dis-
crete system is described by the automaton of figure 1. o1 and
o2 are observable events (commands, discrete sensor outputs,
...), uo1, uo2 and uo3 are unobservable events, that possibly
represent fault events. Modes q1, q2, q3 and q4 can be nominal

Fig. 1. The Underlying Discrete System

or anticipated fault modes 1 .
The underlying continuous system is given by a state space
form model for every mode qi, i ∈ [|1, 4|]. Without loss of
generality, we consider no noise and no disturbances.{

Xi(n + 1) = AiXi(n) + BiU(n)
Y (n) = CiXi(n) + DiU(n)

where

A1 =
(

0.7 0
0 0.7

)
, A2 =

(−0.5 4 0
0 0.6 0
6 0 0.8

)

A3 =

( 0.3 −0.3 0
0 0.6 0

−0.3 0 0.9

)
, A4 =

( 0.6 −0.3 0
0.3 0.6 0
−0.6 0 0.9

)

B1

(
1
0

)
, B2 = B3 =

(1
1
1

)
, B4 =

(2
2
0

)
C1 =

(
1 1
1 0

)
, C2 =

(
1 0 0
0 1 0

)
1 For sake of simplicity, the unknown mode is not represented in the automaton
figure.

C3 =
(

1 0 1
0 1 1

)
, C4 =

(
1 0 1
0 1 1

)
D1 = D2 = D3 = D4 =

(
1
0

)

3. DIAGNOSIS OF THE UNDERLYING CS

The underlying continuous system is diagnosed by extending
the parity space approach to multimode systems.

3.1 Parity Space Approach extended to multimode systems

Following the parity space approach, consistency tests may take
the form of a set of Analytical Redundancy Relations (ARRs)
by eliminating non observable variables Cordier et al. [2004].
The ARRs set associated to a mode qi is denoted by ARRi.
An Analytic Redundancy Relation ARRij can be expressed as
rij = 0, where rij is called the residual of the ARR. Since
ARRs are constraints that only contain observable variables,
they can be evaluated on-line with the incoming observations
given by the sensors, allowing one to check the consistency
of the observed against the predicted system’s behavior. ARRs
are satisfied if the observations satisfy the model constraints, in
which case the associated residuals are zero. In the opposite
case, all or some of the residuals are non zero. The set of
residuals in mode qi hence results in a local Boolean fault
indicator tuple.

rij =
{

0 when ARRij is satisfied
1 otherwise

j = 1, ..., NARR(qi), where NARR(qi) is the number of associ-
ated ARRs/residuals.
The Parity space approach has been recently extended to multi-
mode systems in Cocquempot et al. [2004].
Given a vector V , let us denote by V p the vector obtained by
the concatenation of the vector values at every sampling instant
(n− p + k), 0 ≤ k ≤ p, for a given order p.
Hence V p(n) = [V T (n− p), ..., V T (n− p + k), ..., V T (n)]T .
Consider a multimode system like Ξ and a mode qi, then the
computational form of the residual vector,
Ri = [ri1, ri2, ..., riNARR(qi)]

T at order pi is:

ρpi
ci

(n) = Ωpi

i Y pi(n)− Ωpi

i Lpi

i (Ai, Bi, Ci, Di)Upi(n)

and its evaluation form is :

ρei(n) = 0

with:

Lpi

i (Mi, Ni, Pi, Qi) =


Qi 0 ... 0

PiNi Qi ... ...
... ... ... 0

PiM
(pi−1)
i Ni ... PiNi Qi



Opi

i =

 Ci

CiAi

...
CiA

pi

i


and Ωpi

i is a matrix orthogonal to Opi

i (there always exists an
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order pi such that Opi

i exists).
In the multimode framework, the set of ARRs linked with each
functional system mode generally is different, although some
ARRs may be shared.

3.2 Illustrative example – ARRs Computation

Let us take again the example of figure 1. For every mode, the
order of the parity space is 1, i.e. the computational form is
calculated from the continuous observable variables U and Y,
at time n− 1 and n, and given as follows:

• ρ1
c1

(n) =
(
−0.70 0.10 0.70 −0.10
−0.10 −0.70 0.10 0.70

) y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(

0.10 −0.70
−0.70 −0.10

) (
u1(n− 1)

u1(n)

)

• ρ1
c2

(n) =
(

0.32 −0.84 0.32 0.30
0.20 0.44 0.20 0.84

) y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+
(
−0.93 −0.32
−1.25 −0.20

) (
u1(n− 1)

u1(n)

)

• ρ1
c3

(n) = (−0.34 0.85 −0.17 0.34)

y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+ (0.00 0.17)

(
u1(n− 1)

u1(n)

)

• ρ1
c4

(n) = (−0.34 0.85 −0.17 0.34)

y1(n− 1)
y2(n− 1)

y1(n)
y2(n)


+ (0.00 0.17)

(
u1(n− 1)

u1(n)

)
Figures 2 and 3 show the real-time evolution during 10 seconds
of system residuals when the multimode system is under dif-
ferent modes indicated at the bottom of the figures. Residuals
are computed according to the sampling period Ts = 0.01s, by
the residual bench that takes as input observable variables: the
input U and the output Y.
We can verify that residuals of mode qi are null when the
system mode is qi, ∀i ∈ [|1..4|]. We notice that residuals of
mode q3 and q4: ρ3 = [r5] and ρ4 = [r6], are null in mode q3 as
well as in mode q4. Hence, a diagnosability problem can appear
and will be discussed in subsection 3.6.

3.3 Residual Filter

Mode switches are characterized by a spurious jump of the
residual values (c.f. figures 2 and 3) that is due to the fact that
the temporal window –over which observations are recorded to
evaluate the residuals– overlaps over two modes. Since resid-
uals have been designed for every mode separately, this may
cause false alarm problems. This is solved by implementing a
residual filter that takes as input residual values computed at
every time step, and generating as output clean boolean indi-
cators that reflect the consistency between model and observed
behavior. Filtered residuals are denoted by the same symbols ri
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Fig. 2. Residuals of Mode 1 and 2: ρc1 = [r1, r2]T and ρc2 =
[r3, r4]T
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Fig. 3. Residuals of Mode 3 and 4: ρc3 = [r5] and ρc4 = [r6]

as rough residuals.

The principle of the filtering is to hold-on to the current value as
long as the residual is not computed to a different value during
a number of steps specified by a prefixed temporal window
TFilter. The value of TFilter determines the filter sensitivity
with respect to the rough residual changes. It is set according to
the physical properties of the dynamic system (time response,
etc ...).

3.4 Mode Signature

The concept of fault signature used for continuous systems is
now extended to multimode systems. Boolean residuals associ-
ated to every mode are computed by the residual filter and they
are used to evaluate the observed signature at every time step.
Observed signature is thereafter compared to pre-computed
mode signatures. New concepts of mirror and reflexive signa-
tures are defined and lead to the definition of mode signature as
defined in Bayoudh et al. [2007].

Mirror and Reflexive signatures
Definition 1. Mirror Signature.
Given the vector Rk = [rk1, rk2, ..., rkNARR(qk) ]

T of sys-
tem residuals in mode qk, the qk-mirror signature of mode
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Fig. 4. Filtered residuals of Mode 1 and 2 (graphs for r1 (r3)
and r2 (r4) are superposed)
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Fig. 5. Filtered residuals of Mode 3 and 4

qj is given by vector Sj/k = [s1j/k
, ..., sNARR(qk)j/k

]T =

[Rk(ζj
OBS)]T .

The qk-mirror signature of mode qj is the vector of residuals of
mode qk computed with the observations ζj

OBS obtained when
the system is in mode qj . We say that it is the signature of mode
qj seen in mode qk.
Definition 2. Reflexive Signature.
Given the vector Rj = [rj1, rj2, ..., rjNARR(qj) ]

T of system
residuals in mode qj , the reflexive signature of mode qj is given
by vector Sj/j = [0, 0, ..., 0]T = [Rj(ζ

j
OBS)]T .

The reflexive signature of mode qj is the vector of residuals of
mode qj computed with the observations ζj

OBS obtained when
the system mode is qj . Note that the reflexive signature of a
mode is actually its own mirror signature.

Mode signatures
Definition 3. Mode Signature.
The mode signature of a mode qj is the vector obtained
by the concatenation of all its mirror signatures, Sig(qj) =
[ST

j/1, S
T
j/2, ..., S

T
j/j , ..., S

T
j/m]T .

3.5 Illustrative example – Mode signatures

The pre-computed mode signatures of the example of fig-
ure 1 are given in table 1. The observed mode signature

Sig(q1) =

(
S1/1
S1/2
S1/3
S1/4

)
=


0

0

−
1

1

−
1

−
1

 Sig(q2) =

(
S2/1
S2/2
S2/3
S2/4

)
=


1

1

−
0

0

−
1

−
1



Sig(q3) =

(
S3/1
S3/2
S3/3
S3/4

)
=


1

1

−
1

1

−
0

−
0

 Sig(q4) =

(
S4/1
S4/2
S4/3
S4/4

)
=


1

1

−
1

1

−
0

−
0


Table 1. Mode Signatures of the underlying con-

tinuous system Ξ

[r1, r2, r3, r4, r5, r6]T is evaluated on-line from observable
variables (U, Y) and the corresponding boolean residuals when
the system goes along a sequence of modes are given in figures
4 and 5.

3.6 CS Diagnosability Discussion

We notice that mode 3 and 4 have the same mode signature,
therefore the underlying continuous system is not diagnosable
w.r.t the diagnosability definition of Bayoudh et al. [2007] de-
fined as follows:

Definition 4. Diagnosability.
Two modes qi and qj (i 6= j) are diagnosable iff Sig(qi) 6=
Sig(qj). The underlying continuous system Ξ is diagnosable
iff all pairs of modes qi and qj , i 6= j, are diagnosable.

The hybrid system can be diagnosable although the underlying
continuous system is not, as shown in Bayoudh et al. [2007].
Hybrid diagnosis must call upon both continuous and discrete
knowledge. In our approach, we associate discrete events to
signature switches, in order to combine continuous and discrete
informations in the same framework. Then, DES diagnosis
techniques can be performed.

4. DES DIAGNOSIS FRAMEWORK

4.1 Diagnoser Approach

The discrete part of the system is modeled by the finite state
machine M = (Q,Σ, T, q0) (see section 2.1). We consider
ΣF ⊆ Σuo as the set of fault events to be diagnosed. We
assume that the underlying discrete event system, M, has no
unobservable cycles (i.e cycles containing unobservable events
only).
The set of fault events ΣF is partitioned into disjoint sets corre-
sponding to different fault types Fi, ΣF = ΣF1∪ΣF2∪...∪ΣFn

and ΣFi ∩ ΣFj = ∅, for i 6= j.
The aim of the diagnosis is to make inferences about past
occurrences of fault types on the basis of the observed events.
In order to solve this problem the system model is directly
converted into a diagnoser.
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The diagnoser Diag(M) = (QDiag,ΣDiag, TDiag, q0 Diag) is
a deterministic finite state machine built from the system model
M = (Q,Σ, T, q0), where:

• ΣDiag = Σo is the set of observable events of the system.
• QDiag is the set of states of the diagnoser: QDiag ⊆

2Q×2ΣF i.e. QDiag ⊆ P(Q × P(ΣF )), where P(E)
denotes the power set of E. The states of the diagnoser
provide the set of diagnosis candidates as a set of couples
whose first element refers to the state of the original
system and the second is a label providing the set of faults
on the path leading to this state.

• TDiag is the diagnoser transition function built by a recur-
sive process that consists in computing all the reachable
states from the diagnoser initial state and by propagating
the diagnosis information. For more details see Sampath
et al. [1995].

• q0Diag = {(q0, {∅})} ∈ QDiag , is the initial state of the
diagnoser.

Definition 5. Uncertain Diagnoser State.
Given a diagnoser state qDiag ∈ QDiag , this state is Fi-
uncertain iff Fi does not belong to all the labels of the state
whereas Fi belongs to at least one label of the state.

4.2 DES Diagnosability Discussion

We recall the definition of DES diagnosability.
Definition 6. DES Diagnosability.
A fault F is diagnosable iff its occurrence is always followed
by a finite observable sequence of events that allows one to
diagnose F with certainty (as defined in Pencolé [2004]). The
system is said to be diagnosable iff all the anticipated faults are
diagnosable.

Formally, let sF t be a sequence of events (or trajectory) such
that sF ends with the occurrence of F , and t is a continuation
of sF . F is diagnosable iff:
∀ trajectory sF t, ∃ an integer n: length(t) ≥ n ⇒ (∀ trajectory
s such that PΣo(s)=PΣo(sF t), F occurs in s), where PΣo is the
projection operator on the set of observable events.

The criterion to check DES diagnosability using the diagnoser,
defined in Sampath et al. [1995], is the following:
Theorem 1. The system M is not diagnosable iff the associated
diagnoser Diag(M) contains an uncertain cycle, i.e. a cycle in
which there is at least one Fi-uncertain state for some Fi and
whose states also define a cycle in the original system M .

In the DES community the diagnoser is used to analyze the
diagnosability property of the system or as a discrete observer.
The definitions and theorem defined above for a fault event
from ΣF ⊂ Σuo generalize to any unobservable event from
Σuo. In our approach, the diagnoser is extended to hybrid
systems and used for on-line supervision 2 .

4.3 Illustrative example – DES Diagnosability

The diagnoser of the underlying discrete event system of figure
2.1 is given in figure 6. The underlying discrete system is non
diagnosable because of the presence of one uncertain cycle
(o1, o2) and whose states also define a cycle in the original
automaton (theorem 1).
2 This paper deals with the hybrid diagnosis approach. Diagnosability analysis
of hybrid systems has been studied in Bayoudh et al. [2007].

Fig. 6. The diagnoser of the underlying discrete system M

5. HYBRID DIAGNOSIS BY COMBINING CS AND DES
APPROACHES

In our approach, a fault event is necessarily followed by
the system being in the corresponding fault mode. Hence, in
this framework, state tracking, i.e. estimating the sequence of
modes of the system, is equivalent to fault event detection . Our
method includes the following steps: the parity space approach
is applied to diagnose the underlying continuous system. Then,
mode signatures are generated after residual filtering. The mode
signature switches, i.e. change of value of a subset of boolean
residuals, emerge on the discrete domain in the form of discrete
events as explained in 5.1. Finally, the DES approach diagnoser
technique can be applied to perform hybrid diagnosis.

5.1 The abstraction of CS dynamics in terms of discrete events

The mode signature switches are abstracted in terms of discrete
events. By adding these events to the underling DES, we
obtain the behavior automaton, that couples both discrete and
continuous knowledge (like in Lunze [2000] and Bayoudh et al.
[2006]).
Assumption 1. We assume that the dynamics of the discrete
command events are slower than the dynamics of residual
generators (mode signatures have time to establish between two
consecutive discrete events).

We define a function fCS DES , which associates an event is-
sued from the continuous domain (representing a change of the
mode signature) for each discrete transition of the underlying
DES.
This function aims at defining ΣSig as the set of discrete events
issued from the abstraction of continuous dynamics of the mul-
timode system.

fCS DES : Q× T (Q) −→ ΣSig

(qi, qj) 7−→

{
Roij ∈ ΣSig

o if Sig(qi) 6= Sig(qj)
Ruoij ∈ ΣSig

uo if Sig(qi) = Sig(qj)

• ΣSig
o is a set of observable events, generated when the

mode signature of the source mode is different from the
mode signature of the destination mode.

• ΣSig
uo is a set of unobservable events generated when the

mode signature of the source mode is equal to the mode
signature of the destination mode.

• We define ΣSig = ΣSig
o ∪ ΣSig

uo .

Hence, the behavior of the hybrid system can be described by a
word of the hybrid language Lhyb ⊆ (ΣSig ∪ Σ)∗ according to
the language theory as in Ramadge and Wonham [1989]. The
hybrid language can be generated by the behavior automaton as
in Bayoudh et al. [2006].
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5.2 Illustrative example – behavior automaton

The behavior automaton of the hybrid system of figure 2.1 is
given in figure 7.

Fig. 7. The behavior automaton of the hybrid system S

5.3 The Diagnoser Approach applied to Hybrid Systems

The diagnoser approach is applied to hybrid systems by com-
puting a hybrid diagnoser from the behavior automaton. We
use the DIADES software from Pencolé [2006] to compute off-
line the finite state machine modeling the diagnoser. Then, this
diagnoser is implemented in a MATLAB/SIMULINK block
and used to track the system mode on-line. It takes as input
observable (pure) discrete events, and observable events issued
from the abstraction of continuous dynamics.

5.4 Illustrative example – Results

Let us take the hybrid system of figure 1. We have showed in
subsections 3.6 and 4.3 that the underlying discrete event and
continuous systems are non diagnosable.
The system model is implemented in a MATALAB/SIMULINK
block, and diagnosed on-line. The sampling period is 0.01s.
The system state is tracked at every time step during the
simulation time (10s).
We command the system from the initial state q1 to follow
the discrete trajectory: [(uo1, t = 1s), (o2, t = 3s), (o1, t =
5s), (o2, t = 6s), (o1, t = 7s), (uo3, t = 9s)]. We display
both real and estimated system modes. We notice that the
hybrid diagnoser is able to follow the system mode, even after
a non observable event uo1. The hybrid diagnoser can also
diagnose modes q3 and q4 that have the same mode signature,
by coupling continuous and discrete informations. We can
notice that the diagnoser tracks the system mode with a little
delay, due to the sensitivity of the residual filter TFilter, and
the computation time.
The results are quite good and open numerous perspectives.

6. CONCLUSION

This paper deals with the problem of diagnosing systems
that exhibit both continuous and discrete event dynamics. The
method that has been proposed combines techniques from both
continuous and discrete event diagnosis fields. The resulting
on-line hybrid model based state tracking algorithm achieves
improved diagnosability with respect to using separately con-
tinuous dynamic diagnosis and discrete dynamic diagnosis.
This is illustrated by an example. It is interesting to notice
that, although techniques from both continuous and discrete
event diagnosis fields are combined, the method remains quite
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Fig. 8. Mode tracking of the hybrid system

modular. In particular, we have used the parity space approach
to derive the signatures associated to each operational mode but
another FDI approach could be used. The key issue is actually
the abstraction of signature changes into a relevant set of events.
Numerous perspectives arise from this work. In particular we
are interested in extending the approach in a distributed frame-
work. This would allow us to tackle the combinatorial problem
of the diagnoser approach. On the other hand, we aim at closing
the loop, i.e. at using the results of our diagnoser to perform
reconfiguration actions guided by diagnosability properties of
the system.
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Y. Pencolé. Diades, diagnosis of discrete event systems, 2006. URL
http://www.laas.fr/˜ypencole/DiaDes.

P. J. Ramadge and W. M. Wonham. The control of discrete-event systems. Proc.
IEEE, 77(1):81–98, 1989.

M. Sampath, R. Sengputa, S. Lafortune, K. Sinnamohideen, and D. Teneketsis.
Diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 40:1555–1575, 1995.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7270


