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Abstract: This paper deals with the stabilization of a five degree-of-freedom active magnetic
bearing using a novel predictive nonlinear control approach. That approach is based on using
a simplified nonlinear model of the bearing axes without considering couplings to synthesize
a discrete-time controller. The controller is then able to stabilize the load with predetermined
linear dynamics that form the control design parameters. Simulations and experimental results
obtained from a laboratory bearing show the robustness of the proposed controller, both in
terms of modeling errors and perturbation rejection.

1. INTRODUCTION

Non-contacting magnetic bearings are magnetic levitation
devices that have been stirring up a lot of interest in recent
years, both in academic and industrial communities. They
are becoming important devices in applications ranging
from axle bearings in high speed machinery such as tur-
bines, pumps or compressors to flywheel inertial energy
storage systems [CDF+05]. Indeed, they are demonstrat-
ing numerous advantages when compared to traditional,
mechanical bearings: as they are contactless devices, fric-
tion is low and predictable, they can work in a complete
vacuum which usually tends to prevent proper lubrication
of conventional bearings, and reduce wear-out and thus
cost of ownership of expensive high-speed rotating ma-
chinery.

However, building stable, static magnetically positioned
systems using only permanent ferromagnetic magnets, ac-
cording to Earnshaw’s theorem, is impossible. Even though
passive solutions involving the use of diamagnetic mate-
rials are being investigated [MSB01], they are still rela-
tively underdeveloped. Those limitations mean that most
bearings are active magnetic bearings (AMBs), which are
electromagnetic devices requiring active control systems in
order to stabilize the load [SBT94].

Fig. 1. An AMB axis.

The basic principle behind AMBs operation is simple, as
shown by Fig. 1. Each control axis is fitted with two
electromagnets and a position sensor that measures the
displacement of the shaft. The electromagnets generate a

force proportional to the square of the current intensity
passing through them and inversely proportional to the
air-gap between the shaft and the stator. By controlling
those forces, it is possible to steer the position of the shaft
along each control axis. However, that principle makes the
model of an axis highly nonlinear, which in turn leads
to many complexities in control synthesis. Furthermore,
since AMBs are fast electromechanical systems, consid-
ering computational issues is essential when it comes to
implementing real-time control strategies [GP05].

Hence, much work has been devoted to designing control
laws for AMBs. In order to keep the computing effort
needed by implementation reasonable, extensive studies
have been carried out on linear modeling and control,
such as state-space and transfer approaches, H∞ con-
trol [FMM90], µ-synthesis [NY94], LQ control [GP05], or
input-output linearization [CDC96]. In recent years how-
ever, thanks to the ever increasing computing power avail-
able, nonlinear controllers have gained a lot of popularity,
as they are generally better than linear ones. The most
popular technique used is feedback linearization combined
with robust control techniques [CK05], but other nonlinear
control techniques ranging from fuzzy control [VMDC96]
or sliding mode control [CDC96] [CKS93] to discrete dy-
namic programming [SHC98] or continuous time model
predictive control [HWH07] have been studied.

In this paper, we are focusing on the design of a heuristics
based, nonlinear discrete-time predictive controller for a
single axis. While predictive control usually implies to
solve an on-line optimization problem for a given con-
trol horizon at each time step [GSDD05], the proposed
controller only predicts the behavior of the plant one
control step ahead. That knowledge is used to build a
control input that makes, subject to certain limitations,
the system follow linear dynamics given as design param-
eters, effectively building a linearizing control while not
requiring too great a computing effort. As any predictive
approach, the controller has to be robust towards both
prediction errors and external perturbation forces. For the
sake of clarity, we only study the stabilization of a single

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12183 10.3182/20080706-5-KR-1001.3497



degree of freedom, using current applied to the coils as
the constrained control input. As we consider couplings
between different axes as unknown perturbations, that
same controller can be applied to all five control axes.
This simplification would not hold if the elimination of the
unbalance (see eg. [DC98]) due to the offset between shaft
rotational and gravity centers was the control problem,
but this is an entirely different issue not addressed here.
We first describe the proposed control approach. A model
necessary to control synthesis and plant simulation is then
derived. Finally, simulation and experimental results ob-
tained on a five-degrees-of-freedom laboratory AMB show
the robustness of the proposed approach.

2. PROPOSED CONTROL SCHEME

2.1 Overview

The basic idea behind the proposed discrete-time control
strategy is to use a-priori knowledge of the plant dynamics
to compute a control input that would steer its output
towards a linear, predefined behavior given as a design
parameter. This a-priori information is gathered from
repeating off-line numerical integration of a numerical
model of the system, varying the initial conditions in a
properly chosen subspace of the model state-space, for
each admissible, discrete, control input value. This yields
a prediction map that, from a specific initial state and a
given control input value, provides an approximation of
the system state and outputs after one time-step.

The on-line algorithm purpose is to pick at each time-step
the most appropriate control input to apply to the plant
using that prediction map. Starting from the current state,
which is supposed known, the system outputs and state for
each admissible control value is predicted. Meanwhile, the
output of a stable linear dynamical system of appropriate
dimension is computed, using as initial conditions the
current plant outputs. This is the objective for the next
control step. The bounded control value that steers the
plant outputs the closest to the objective is then computed
through approximate distance minimization in the phase
space, and applied to the plant. The main advantage of
that algorithm if compared to usual predictive control
is that no expensive on-line optimization step is needed.
However, as it is limited to a horizon of one time-step,
it does not intrinsically take inputs, outputs and state
constraints into consideration. Respecting those kind of
constraints depend on the choice of the reference system.

2.2 Prediction map

Consider the following time-invariant dynamical system
representation:

{

ẋ(t) = f(x(t),u(t))
y(t) = g(x(t),u(t))

x ∈ R
n,u ∈ R

m,y ∈ R
p. (1)

We can introduce the vector noted v:

v(t) = [x(t) y(t)]T ∈ R
n+p, (2)

and the two permutation matrices Px and Py such that:

x(t) = Px · v(t) and y(t) = Py · v(t). (3)

What we want to obtain is a prediction map pr that, given
an initial state condition xk = x(k·∆t) and a control input

uk = u(k · ∆t), predicts the a-priori state/output vector
v̂−

k+1
= v̂(k ·∆t+∆t)−, where ∆t is the controller sample

time, and k a positive integer:

v̂−

k+1
= pr(xk,uk). (4)

In order to build that prediction map, a regular rectangu-
lar tessellation T on a subset P of R

n×R
m is constructed.

P = [xmin xmax]× [umin umax] arbitrarily limits the state
and input intervals the predictor is built upon.

For each vertex of T , that is every state/input combination
in T , the dynamical system given by Eq. (1) is numerically
integrated using simulation tools such as Simulink on a
single sample time-step. The solution v is stored in a table.
The values of pr at unknown points can then be inter-
polated from that table, using multilinear interpolation.
While multilinear interpolation leads to errors propor-
tional to the square of the grid size, its main advantage is
the low computing effort needed to get interpolated values,
hence the choice of that approach instead of more precise
but less efficient methods such as spline interpolation.

2.3 On-line control algorithm

The proposed control algorithm can be divided into five
main steps:

• error estimation,
• objective computation,
• state/output prediction for all possible inputs,
• control input computation,
• next state/output prediction.

We suppose that at step k, an estimation v̂k of the
plant state and outputs is available, eventually using a
state estimator. We also suppose the prediction v̂−

k is
available from the previous control step. That prediction
is a representation of what the plant state and outputs
should be if its initial state was vk−1 and the constant
control input uk−1, computed at the start of the previous
control step, was applied during all its duration. Of course,
modeling errors in Eq. (1) and interpolation errors in
Eq. (4) mean that the prediction is inherently unreliable.
Therefore, it has to be corrected at each time-step. The
prediction error estimation is given by:

εk = εk−1 + α(v̂−

k − v̂k), (5)

where α is a damping coefficient in ]0, 1]. The error
estimate at step k is thus the cumulative prediction error
made during all the previous steps. Indeed, by hypothesis,
we consider the difference between consecutive prediction
errors to be small if the displacement of the state/output
is equally small. That means that when the system has
reached the set point, the error estimate will converge
towards a value mainly compensating for model errors
at the set point, thus rejecting static errors. Indeed,
a non-zero static error would mean that v̂−

k does not
converge towards v̂k, which can not be true if the system
is stabilized at the set point.

The output objective y∗
k+1 ∈ R

m is computed by a stable
reference linear system of the form

ż = A · z, z = ŷ(t) − yc, A ∈ Mp×p, (6)

where yc is the control set point. Discretizing Eq. (6), we
obtain:

zk+1 = e−A·∆t · zk (7)
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and finally

y∗
k+1 = e−A·∆t(Py · v̂k − yc) + yc. (8)

A variable set point can be plugged into yc in order to
achieve output trajectory tracking. However, the reference
system dynamics act as a low pass filter, thus limiting the
tracking capabilities of the control strategy.

The next step is to be able to select amongst all the
possible inputs uk ∈ U = [umin,umax] which one will
minimize the distance between y∗

k+1 and ŷ−

k+1
. In other

words, the following minimization problem has to be
solved:

uk = arg min
uk∈U

∥

∥ŷ−

k+1
− y∗

k+1

∥

∥

2
, (9)

where
ŷ−

k+1
= Py(pr(Px · v̂k,uk) − εk). (10)

In order to limit the computational complexity of that
step, a piecewise linear approximation of

∥

∥ŷ−

k+1
− y∗

k+1

∥

∥

2

is used instead. The search for the minimizing uk value
is carried out by iteratively computing the orthogonal
projection of y∗

k+1 on each linear part of that approxima-
tion. If that projection exists, then the minimizing value is
computed by interpolation over that part. In order for that
technique to attain an approximation of the minimum, the
prediction map must be quasi-convex, limiting the kind of
systems this control strategy can handle to those that are
linearizable.

The last operation is to compute a prediction of the next
state/outputs for the next error estimation step:

v̂−

k+1
= pr(Px · v̂k,uk) − εk, (11)

which ends the on-line computations for time-step k.

This algorithm relies heavily on the prediction error not
being too big, or varying too much in time. Hence, an
implementation has to be careful not to over-correct the
prediction errors. Usually, the state and outputs are not
entirely known, which means an estimator has to be used,
even if it is as simple as an Euler derivative estimator. Such
estimators introduce delays that have to be taken care of
in order for the error estimation step to be meaningful. In
the same vein, the computed control input generally gets
applied to the plant with a one sample time delay. This can
be obtained by taking another prediction step before the
objective computation and computing the control input
to be used at step k + 1 instead of step k. However, every
added prediction step increases the error-induced noise,
and even though it can be damped by adjusting the α
parameter, that can lead to a degradation of the controller
performance.

3. AMB MODELING

As all the axes are similar if we ignore couplings, we
only need to model one axis in order to synthesize the
controller. Hence, we are only considering the x axis. There
are two possible control inputs that can be used for an
axis: either the coils currents ixp and ixm, or the coils
excitation voltages Exp and Eym. In our case, the currents
are used by the experimental platform. As we will see,
that makes the model of an axis a second-order system.
However, the proposed controller can also be used with

Fig. 2. x − y control plane

excitation voltages as control inputs, as simulations show
in [BDMV05].

The model needed for control synthesis does not have to
be exact, as modeling errors are taken care of as external
perturbation. However, if they are known, incorporating
constant perturbations such as gravity into the synthesis
model from the start is a good idea.

Considering only the x axis, as shown on Fig. 2, the shaft
acceleration can be written as:

mẍ = F1 − F2 + Fp. (12)

Were F1, F2 are the electromagnetic forces generated
by the coils, and Fp a constant, additive perturbation
force such as gravity. Neglecting magnetic saturation and
hysteresis effects, we have:

F1 =
λ1ixp

2

2(e0 − x)2
and F2 =

λ2ixm
2

2(e0 + x)2
, (13)

where e0 is the nominal air-gap of the axis. The λ1 and
λ2 parameters depend on the geometry of the coils and
the shaft. As each axis is composed of two symmetrical
actuators, we can consider both of them equal to λx. If we
combine Eq. (12) and (13), we obtain a model that is not
linearizable when the shaft is at the origin and the currents
equal zero [CDC96]. Traditionally, in order to obtain a
linear model suitable to the application of linear control
theory, a physical linearization is performed by introducing
a bias current I0 into the coils. That premagnetization
current creates a constant magnetic flux in both actuators.
The flux build-up time is thus eliminated and a nearly
linear response on magnetic flux is obtained by varying
the inputs currents around that value as the shaft makes
small displacements along the axis (Fig. 3(a)).

However, using a bias current is quite energy-consuming
since both coils are always active. It is thus more efficient
to base the control on the nonlinear model where only one
coil is active at any given time (Fig. 3(b)). In this mode
of operation, currents ixp and ixm are mutually exclusive.
They can be replaced by a single control input ix as follows:

ixm =

{

−ix if ix < 0
0 otherwise

and ixp =

{

ix if ix > 0
0 otherwise

. (14)

Rewriting Eq. (13), we obtain:

F1 = −F2 =
λx sign(ix)ix

2

2(e0 − sign(ix)x)2
. (15)
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Fig. 3. Linear (a) vs. nonlinear (b) AMB operation

Eq. (14) implies that at any given time, either F1 or
F2 vanishes. Finally the model used for control synthesis
becomes:

mẍ =
λx sign(ix)ix

2

2(e0 − sign(ix)x)2
+ Fp. (16)

4. EXPERIMENTAL SETUP

The device used for experiments is a laboratory AMB
test bench (Fig. 4) from MECOS-TRAXLER AG, model
miniVS. It is is built around a magnetic suspension unit
made of a rotor and a stator, one industrial PC featuring
a Pentium IV processor running The MathWorks xPC
Target real-time executive linked to a desktop computer
running MATLAB and Simulink through an Ethernet
network, a power electronics control interface, a signal
conditioning interface, and a power supply. The magnetic
suspension device is composed by a rotor shaft driven by
an electric motor, and five magnetic bearings controlling
the shaft position along the x1,2, y1,2 and z axes. The shaft
can rotate along the z axis. Those magnetic bearings are
current-controlled by means of a high-gain controller built
in the power electronics. Current references are set through
a digital-to-analog converter interface card from National
Instruments in the PC. They are fitted with magnetic
transducers in charge of measuring the shaft position, and
current-sensing devices. The sensor outputs are acquired
by the industrial PC through the signal conditioning de-
vice and an analog-to-digital converter card also made by
National Instruments. The magnetic transducers precision
is limited to 1 µm by the acquisition chain. In order
to simplify the development of the real-time controller
implementation, we are using The MathWorks xPC Target
rapid prototyping system. The controller is described using
Simulink on the desktop PC through a model mixing built-
in blocks when possible and custom C language function
blocks for the prediction and control input computation
parts of the controller. Indeed, optimizing these parts make
sense as they form the bulk of the control algorithm.
After code generation and compilation stages, the control
application is loaded on the industrial PC and run, using
a 700 µs cycle time. Table 1 summarizes the experimental
test bench parameters.

A few implementation issues have to be taken into account.
The main issue is the lack of shaft translational-speed
sensing. Speed measurements have to be derived from the
position sensors outputs through Euler derivation. How-
ever, a property of this class of derivative estimators is to
produce an output delayed by half a time-step. That delay

Fig. 4. Experimental setup

is difficult to handle, as the prediction map only contains
full time-step evolution information. The approach used
here is to use a two-time-step Euler derivative estimator,
which delays its output for a full time-step. Using together
the delayed speed estimation, a one-step-delayed position
measurement, and knowledge of the currently applied con-
trol input, the controller computes the desired current
control by doing two successive prediction steps. Those
two prediction steps lead to an increase of error-induced
noise, which is mitigated by setting the noise correction
damping coefficient to α = .5.

Table 1. AMB parameters

Parameter Value Description

m 3.097 kg Shaft mass

e0 0.410−3 m Nominal air-gap

λ{x,y} 1.210−6 mH · m λ for control planes

λz 2.3210−6 mH · m λ for the x axis

φ̇max 30000 rpm Max. shaft angular speed

Imax 6 A Max. coil current

Vmax 50 V Max. coil voltage

Fp m ×
√

2/2 × 9.81 N Gravity for axes y and z
Fp 0 N Gravity for axis x

5. SIMULATION AND EXPERIMENTAL RESULTS

All the results are obtained by making the AMB x axis
follow a 10 Hz square position reference trajectory with
an amplitude of 2/3 · e0 m. The algorithm used for all
experiments and simulation is the same implementation
of the control strategy presented in section 2. First, Fig. 5
shows simulation results obtained on the model derived in
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Fig. 5. Square position reference tracking - Simulation

section 3. The speed measurement ẋ is obtained through
an Euler derivative approximation from the position x.
The current input ix is computed one time-step ahead
in order to account for the digital-to-analog conversion
delay observed on the real experimental bench. As we can
see, the shaft position follows the reference trajectory, but
the square wave is filtered by the reference linear system
used for the controller design. That linear system has a
canonical second-order transfer function with a natural
frequency w0 = 200 Hz and a damping ratio ζ = 1.1.

The noise observed on the current input is twofold. Firstly,
the position measurement and current input are quantized,
which adds noise to the state estimation and thus to the
prediction. Secondly, since there is no gravity on the x axis,
it is not controllable when the position and current are
zero. That means that large control inputs will have small
effects on shaft speed when it is at the origin. In order to
keep the shaft stabilized, the control system has to produce
large current excursions around zero that tend to lead to
prediction-error overcompensation. That in turns creates
some noise on the control input. In order to alleviate that
behavior, some premagnetization could be used when x is
close to the origin, making the shaft controllable.

Fig. 6 shows a real-life experiment in the same conditions
as the simulation. As we can see, the simulation did
predict the experiment quite well. However, the current
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Fig. 6. Square position reference tracking - Experiment
without gravity

input is noisier, which can be attributed to errors in the
coil parameters used during the predictor construction,
and especially the value of λx. Moreover, the current
input is not exactly symmetrical, which is indicative of
a discrepancy between the two coils of that axis. Note
however that the observed noise is not significantly higher
than what is obtained in [De 98] with a non-linear PID
controller on the same setup.

Finally, the same experiment is conducted with the AMB
making a 45◦ angle to its normal, horizontal position. The
x axis is now subject to a perturbation due to gravity
which has not been foreseen during control synthesis.
Fig. 7 shows that the perturbation is rejected, the current
being shifted away from zero as needed to compensate.
The current noise is now significantly lower than that of
Fig. 6, as the origin is now stabilizable with a non-null
current, and is thus a controllable state.

6. CONCLUSION

A novel predictive nonlinear controller applied to the
stabilization of an active magnetic bearing without pre-
magnetization has been presented. The only work that
has been needed on the experimental system is to derive
a sufficiently precise simulation model in order to auto-
matically synthesize the controller. Experimental results
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Fig. 7. Square position reference tracking - Experiment
with gravity

show that this controller is able to make the device ex-
hibit a predefined linear behavior while compensating for
modeling errors and external perturbations, thus acting
as an implicit linearizing controller. Its tracking capa-
bilities have also been illustrated. That controller seems
generic enough to be applied to other systems, while still
maintaining desirable properties. However, being based
on heuristics, its convergence properties have not been
studied. In particular, the error correction step is essential
to the algorithm and needs further refinement. Whether
a well-chosen reference system could be used to constrain
the state and/or outputs within specified bounds remains
to be investigated.
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