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Abstract: Electromagnetic suspension systems are inherently nonlinear and, when digitally
controlled, frequently face hardware limitations. The main contributions of this paper are: the
design of a nonlinear H∞ controller, including dynamic weighting functions for such a system
and the presentation of a practical procedure to implement this controller on a fixed-point DSP.
Experimental results are also presented, in which the performance of the nonlinear controller is
evaluated specifically in the initial suspension phase, when the starting gap is too far from the
equilibrium working gap.
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1. INTRODUCTION

Electromagnetic Suspension Systems (ESS) have been
widely used and studied, specially because magnetic ac-
tuators present some advantages over other types of actu-
ators, such as non-contact actuation, avoiding mechanical
wear. These systems are inherently nonlinear and open-
loop unstable, and the development of high performance
position controllers for levitated objects motivated the
publishing of many papers along the last decade (Bleuler,
1992; Nadashima, 1994; Bittar and Sales, 1998).

However, most of the papers presented focused on models
obtained by means of linearization of the system at nomi-
nal working gap and were not concerned about instability
during suspension phase, specially when there are large ini-
tial gaps. Some papers approached the subject of varying
linear plant according to the gap by switching controllers
(Al-Muthairi and Zribi, 2004; Banerjee et al., 2006).

This work presents a practical control system design
strategy and experimental results. The process starts from
a H∞ controller for a linearized plant around a nominal
gap. Then, the same weighting functions are used in the
design of a nonlinear H∞ controller. The use of weighting
functions with dynamics in nonlinear H∞ controls systems
has not been used in similar works, which explore only
static weighting functions (Sinha and Pechev, 2004).

In this way, it was possible to operate with large starting
gaps with better results than those obtained by linear H∞
control design.

In addition, this work presents some practical aspects of
hardware and firmware implementation of the controller
and a procedure for determining the required word length
in a DSP using the fixed-point ToolBox from MATLAB
and IQMath Library from Texas Instruments.

2. SYSTEM MODELING

In the ESS shown in Fig. 1, the electrical current i(t)
through the magnetic coil actuator generates the attrac-
tion force F (t) on the payload with mass m; x(t) repre-
sents the air-gap and g the local gravity acceleration. The
vertical dynamic mathematical model is described by (1):

mẍ(t) = mg − F (t), (1)

and the attractive force is given by (Sinha, 1987; Bittar
and Sales, 1998):

F (t) = k
i(t)2

x(t)2
, (2)

where k is the magnetic actuator constant, which depends
on the bearing geometry and electrical characteristics.

In the equilibrium condition, ẍ = 0,

k
i20
x2

0

= mg, (3)
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Fig. 1. Block diagram of ESS

Table 1. Prototype characteristic

equilibrium gap x0 = 5mm
equilibrium current i0 = 380mA
bearing constant k = 1.6 · 10−4Nm2/A2

power stage constant kpot = 0.25V/A
mass m = 0.240kg

where x0 and i0 are position and current in the equilib-
rium point, respectively. Considering small disturbances
xδ(t) and iδ(t) around the equilibrim point (x0, i0), the
linearization of (1) gives

mẍδ(t) =
2ki20
x3

0

xδ(t) − 2ki0
x2

0

iδ(t). (4)

Combining (3) and (4), gives

ẍδ(t) =
2g

x0
xδ(t) − 2g

i0
iδ(t). (5)

As shown in section 4.1, the electronic power circuit is
designed so that the relationship between the control
voltage and the magnet coil current is linear, as expressed
in (6) and (7)

vδ(t) =−kpotiδ(t), (6)

xδ(t) = ksx
(v)
δ (t), (7)

where vδ(t) and x
(v)
δ (t) are small disturbances around the

equilibrium point. kpot and ks are constants defined in the
hardware setup.

Replacing (6) and (7) in (5) gives

ẍ
(v)
δ (t) =

2g

x0
x

(v)
δ (t) +

2g

kpotksi0
vδ(t). (8)

The following open-loop system transfer function is ob-
tained from (8):

G(s) =
X

(v)
δ (s)

Vδ(s)
=

2g
kpotksi0(

s +
√

2g
x0

) (
s −

√
2g
x0

) . (9)

Table 1 presents some prototype characteristics.

3. CONTROLLER DESIGN PROCEDURE

The controller design procedure presented in this section
follows the same lines of (Sinha and Pechev, 2004). The

z

+
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Fig. 2. Block diagram for the control system design
main difference lies on the fact that, similarly to the linear
H∞ control practice, dynamic weighting functions are here
explored with robustness purposes.

3.1 Dynamic Weighting Functions Specification

The methodology for specifying of weighting functions in
the case of linear H∞ control design is well established
in the literature (Doyle et al., 1989). However, in the
case of nonlinear H∞ control design, only static weighting
functions have been evaluated (Sinha and Pechev, 2004),
although, from a theoretical point of view, it can be eas-
ily shown that dynamic weighting functions may also be
included in the design (Isidori and Astolfi, 1992). Fig. 2
presents the standard block diagram for the control sys-
tem including the plant, the controller and the weighting
functions.

In this section, the nonlinear plant shown in (8) is firstly
linearized around the operation gap, as in section 2. Then
dynamic weighting functions

W1(s) =
20

s + 0.4
(10)

related to performance robustness, and

W3(s) = 20
s + 0.045
s + 3000

(11)

related to noise attenuation and uncertainty robustness are
specified in the context of the linear H∞ control design.
In order to simplify, the weighting function W2(s), related
to the control signal, is assumed to be equal to the unit.

In the next section, these weighting functions will be
included in the nonlinear H∞ design.

3.2 Nonlinear H∞ Output Feedback Control Design

Observing the EES represented in Fig. 1, combing (1) and
(2) and defining x1 = x−x0, x2 = ẋ, x̄1 = x0, u = (i−i0)2
with i0 as in (3), the nonlinear state space model can be
expressed as

ẋ1 = x2,

ẋ2 = g − g
x̄2

1

(x̄1 + x1)2
− k

m

u

(x̄1 + x1)2
+

1
m

w1,

y = x1 + w2,

(12)

where w1 represents the external force disturbance, while
w2 represents the noise acting on the plant. Equation (12)
can be rewritten as

ẋp = fp(xp) + gp1(xp)w + gp2(xp)u,
y = hp2(xp) + kp21(xp)w,

(13)
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where

fp(x) =

⎡
⎣ x2

g − g
x̄2

1

(x̄1 + x1)2

⎤
⎦ , gp1(x) =

[
0 0
1
m

0

]
,

gp2(x) =

⎡
⎣ 0

− k

m

1
(x̄1 + x1)2

⎤
⎦ , hp1(x) =

[
x1

x2

0

]
,

kp11(x) = 0, kp12(x) = [ 0 0 1 ]T ,

hp2(x) = x1, kp21 = [ 0 1 ].

The dynamic weighting functions (10) and (11) can be
expressed, in state space form, as:

ẋw1 = Aw1xw1 + Bw1(hp2(xp) + kp21(xp)w),
z1 = Cw1xw1,

ẋw3 = Aw3xw3 + Bw3hp2(xp),
z3 = Cw3xw3 + Dw3hp2(xp),

(14)

Moreover,
z2 = W2u, (15)

where W2 is a constant, in order to simplify.

Combining (13), (14) and (15), we have
ẋ = f(x) + g1(x)w + g2(x)u,
z = h1(x) + k11w + k12u,
y = h2(x) + k21(x)w,

(16)

where

x =

[
xp

xw1

xw3

]
, f(x) =

[
fp(xp)

Aw1xw1 + Bw1hp21(xp)
Aw3xw3 + Dw3hp2(xp)

]
,

g1(x) =

[
gp1(xp)

Bw1kp21(xp)
0

]
, g2(x) =

[
gp2(xp)

0
0

]
,

h1(x) =

[
Cw1xw1

0
Cw3xw3 + Dw3hp2(xp)

]
, k11(x) =

[ 0
0
0

]
,

k12(x) =

[ 0
W2

0

]
, h2(x) = hp2(xp), k21(x) = kp21(xp).

The nonlinear H∞ project purpose is to find a class of
admissible controllers with local attenuation of the exoge-
nous input that satisfies the L2-gain inequality (van der
Schaft, 1992)

T∫
0

‖z(t)‖2dt ≤ γ2

T∫
0

‖w(t)‖2dt, γ ≥ 1 (17)

where z(t) is the penalty vector and w(t) is the disturbance
input vector, as shown in Fig. 2. The equilibrium point of
a dissipative dynamical system is stable if for x(t) = 0|t=0

there is a nonnegative smooth storage function V(x(t))
that satisfies the Hamilton-Jacobi-Isaacs (HJI) inequality
(Isidori and Astolfi, 1992).

V T
x (f(x) + g1(x)w + g2(x)u) + L(x, w, u) ≤ 0

L(x, w, u) = hT
1 h1 + ‖u‖2 − γ2‖w‖2 (18)

where Vx = ∂V (x(t))/∂x(t). The left-hand side of the
HJI inequality is known as the Hamiltonian function

H(x, V (x), w, u). The goal of the design procedure is to
find u(x) that satisfies the HJI inequality. The analytical
derivations are focused on finding a saddle point in the
Hamiltonian function so that
H(x, Vx, w, u∗) ≤ H(x, Vx, w∗, u∗) ≤ H(x, Vx, w∗, u), (19)

where w∗ is the worst disturbance input that maximizes
the Hamiltonian and u∗ is the control input law that
minimizes the Hamiltonian. With k = kT

12k12 = I and
hT

1 k12 = 0, w∗ and u∗ can be defined as (van der Schaft,
1992; Isidori and Astolfi, 1992)

w∗ =
1

2γ2
gT
1 V T

x , u∗ = −1
2
gT
2 V T

x . (20)

So as to determine the storage function V (x(t)) that
satisfies the saddle point condition, (20) is translated into
(18), thus the following HJI inequality can be defined as:

H∗(x, Vx) = V T
x f + hT

1 h1 +
1

4γ2
Vxg1g

T
1 V T

x

−1
4
Vxg2g

T
2 V T

x ≤ 0.
(21)

Due to the difficulty in finding an analytic solution for this
equation, (21) is converted into an infinite sum inequality
by Taylor’s series. Using this numerical approximation,
with the ESS parameters defined in Table 1, the corre-
sponding first-order control law is then given by

u = 4796.2x1 + 125.52x2 + 1711.5x3 − 1038.2x4. (22)

Once the state variable x2(t) is not available for feedback
control in the ESS, a state estimator in conjunction with
the control law is designed. The state variables x3(t)
and x4(t) are calculated by the filters W1(s) and W3(s),
respectively. The nonlinear estimator was obtained using
the concept of local dissipation presented in (Isidori and
Kang, 1995). Considering the system below

˙̄x = f(x̄) + g1(ξ)w(x̄) + g2(x̄)u(x̄) + G(x̄)(y − ȳ),
ȳ = h2(x̄)x̄ + k21w(x̄), (23)

where x̄ is the estimator state vector and ȳ is the estimator
output. Usually, the output injection G(x̄) has a nonlinear
structure; an approximate solution may be derived by
using the same procedure based on Taylor’s series. Thus,
the first order solution is given by, (Isidori and Kang,
1995),

(Q − P )G = (K21K
T
21)

−1(K21G
T
1 Q + γ2HT

2 ), (24)

where P defines the first-order approximation of the stor-
age function, V (x) = xT Px, for state feedback; Q defines
the function W (x̄) = x̄T Qx̄ corresponding to the feedback
output problem, while G1, H2 and K21 are associated to
the linearized system (16).

In the case of the ESS, with parameters defined in Table
1, the following output injection is obtained

G =
[

206.39
12922.31

]
, (25)

thus leading to the state estimator given in (26)
˙̃x1 = x̃2 − 206.39x̃1 + 206.39y,

˙̃x2 = 9.8 +
1

(0.005 + x̃1)2
(−0.000245− 0.196x̃1

−0.0052x̃2) − 12922.3x̃1 + 3.26 · 10−6x̃2

+12922.3y.

(26)
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Solutions of these nonlinear equations give the estimated
state variables x̃1 and x̃2, while x3 and x4 are directly
given by the realization of W1 and W3. The control law
(22) makes use of these state variables to implement the
output feedback controller.

4. HARDWARE DESCRIPTION

4.1 Control hardware

For the hardware design project, a high performance DSP
(TMS320F2812), from Texas Instruments, with 32 bits
fixed-point was used. The sampling time was chosen as
200μs for compatibility with the power stage magnetic
actuator (fs = 5kHz). Once dynamic linear weighting
functions are being used, Tustin bilinear approximation
was used to convert continuous-time functions to discrete-
time. Due to the nonlinear nature of the observer (26), it
is not possible to use the classical linear transformation
from continuous time-domain to the discrete-time. So, as
in (Sinha and Pechev, 2004), a Runge-Kutta-4 (RK-4)
solver was used within the control loop.

Therefore, at every sample of the signal, the control system
reads the data from an optical sensor, solves the nonlinear
observer equations (26), through RK-4, to estimate x1(t)
and x2(t), solves the difference equations for W1(z) and
W3(z) to determine x3(t) and x4(t), calculates the control
law (22), thus generating the control signal to the power
stage that drives the magnetic actuator.

The output-feedback control configuration implemented
on the DSP is shown in Fig. 3.

The power stage uses a switched electronic circuit based
on a half H-bridge with two MOSFET transistors and two
ultrafast recovery diodes, as described in (Shirazee and
Basak, 1995), which drives the magnetic coil actuator. The
main difference is the coil current and the control voltage
signal is injected in a comparator with hysteresis. It can be
shown that, in this configuration, the coil current follows
the control reference voltage (Vref ). Through a PWM con-
trol logic electronic circuit, the voltage information created
into the comparator element is translated to a pulsed
voltage signal that turns the MOSFET transistors ON
or OFF. The basic electronic block diagram of the power

Logic control
of PWM

+

-

A
magnetic
actuator

sensor
current

flyback
diode

VDC

Vref

Fig. 4. Block diagram of power circuit stage

stage circuit is given in Fig. 4. This small improvement in
the power electronic circuit leads to a linear relationship
between the control voltage and the magnet coil current,
as expressed in (6) and, as mentioned before, simplifies the
mathematical modelling of the ESS.

The digital-analog converter has 12 bits resolution and
connects with the DSP by SPI (Serial Peripheral Inter-
face).

4.2 Word-length determination on the fixed-point DSP

Fixed-point digital signal processing is used in many ap-
plications due to low cost, high speed and low power con-
sumption. However, most control project designers have
used computational tools with floating-point simulation
and better numerical resolution (MATLAB/SIMULINK,
MAPLE, etc.). As a consequence, in order to implement
the controller, designers mostly ride a hard way to adapt
the control algorithm for processors with lower numerical
resolution on fixed-point.

For this reason, in the last years several optimization
techniques have been proposed to translate floating-point
algorithms into fixed-point algorithm, without perfor-
mance degradation (Cantin et al., 2006; Fang et al., 2005;
Constantinides et al., 2003). Depending on the applica-
tion, each technique presents advantages and disadvan-
tages. In this context, manufacturers of computational
tools have adapted and made available for the design-
ers practical solutions to minimize this arduous work of
translating floating-point algorithm into fixed-point algo-
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Table 2. Conversion from MATLAB to ANSI C CODE

MATLAB code MATLAB code DSP ANSI C code
using float-point using fixed-point toolbox using IQMath library

#define GLOBAL_Q 30
IQ=30; #include <IQmathLib.h>

_iq30 aW1,bW1,cW1;

aW1=0.002 aW1=fi(0.002,1,32,IQ) aW1=_IQ30(0.002);
bW1=0.002; bW1=fi(0.002,1,32,IQ); bW1=_IQ30(0.002);
cW1=0.9998; bW1=fi(0.9998,1,32,IQ); bW1=_IQ30(0.9998);

x3_k=aW1*u1_k+ x3_k=fi(fi(aW1*u1_k,1,32,IQ)+ x3_k=_IQ30mpyIQX(aW1,30,u1_k,30)+
bW1*u1_k_1+ fi(bW1*u1_k_1,1,32,IQ)+ _IQ30mpyIQX(bW1,30,u1_k,30)+
cW1*x3_k; fi(cW1*x3_k_1,1,32,IQ))1,32,IQ); _IQ30mpyIQX(cW1,30,x3_k,30);

x3_k_1=x3_k; x3_k_1=x3_k; x3_k_1=x3_k;
u1_k_1=u1_k; u1_k_1=u1_k; u1_k_1=u1_k;

x=x3_k; x=x3_k.double; x=x3_k;

rithm, as can be found at Fixed-Point ToolBox in MAT-
LAB/SIMULINK (from MathWorks) and the IQMath Li-
brary - A virtual floating point engine (from Texas Instru-
ments). In this section, a practical procedure is presented
to make this translation using the Fixed-Point ToolBox in
MATLAB and the IQMath Library.

Basically, when the DSP is used for practical implemen-
tations, the translation of floating-point algorithm into
fixed-point algorithm consists in evaluating the dynamic
range and the minimum accuracy of each operand, On,
in the control algorithm. Thus, it is possible to deter-
mine the Integer Word Length (IWLn) and the Fractional
Word Length (FWLn), where n = 0, 1, 2, . . . , N − 1, and
where N is the number of operands to be translated. The
wordlength for each operand is obtained as follows (Cantin
et al., 2006)

On → WLn = IWLn + FWLn + si, (27)

where the bit si = 1, if the operand is negative or positive
(two’s complement arithmetic way); otherwise si = 0,
if the operand is always positive. Thus, after dynamic
range verification, all WLn can be determined for each
operand defined in the nonlinear H∞ control algorithm
obtained in section 3.2. Now, with the fi constructor
from Fixed-Point Toolbox (MATLAB), it is possible to
check, by simulation, if the values of FWLn and IWLn for
each operand are adequately determined even before the
implementation of the DSP firmware (ANSI C Code). The
fi constructor accepts value, signedness, wordlength and
fraction length (in that order). Example: fi(2.9998, 1, 32,
16) translates the number 2.9998 into fixed-point number
with 32 bits of wordlength, 16 bits of fractionlength,
15 bits of integerlength and 1 signed-bit. The IQMath
Library (from Texas Instruments) includes a collection
of optimized mathematical function for ANSI C Code
that can be used directly in mathematical operations
(IQNmpy, IQNmpyIQX, etc.) in the control algorithm
(Texas Instruments, 2002). These computational tools
can significantly shorten the firmware development time.
Table 2 shows small pieces of program CODE to illustrate
conversion from MATLAB to ANSI C CODE.

This procedure was very useful during the implementation
and debugging stage of the RK-4 algorithm, since the value
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Fig. 5. Simulation results for different gaps

of the nonlinear observer coefficients differs in many orders
of magnitude, (26). Another difficult task in implementing
RK-4 algorithm is related to the convergence, which oc-
curred after about 30 steps, each h = 10−4 in length.

5. EXPERIMENTAL RESULTS

The mechanical setup featured in this work allows selecting
different initial gaps. Fig. 5 shows simulations for the linear
and nonlinear controllers for different initial gaps. The
better performance of the nonlinear controller is evident.
In Figs. 6 and 7, it can be seen that experimental results
using nonlinear H∞ control techniques on the DSP are
very similar to those obtained by simulation.

The overshoot signal that appears during pull-up was
considered acceptable since the rotor did not hit the coil
of the actuator and did not fall back.

Another important fact to be considered was the use of
optical position sensor that prevented crosstalk between
magnetic bearing and sensor. Previous practical experi-
ments conducted by the authors in similar projects showed
that the hall sensor presents crosstalk between bearing and
sensor, demanding more robustness for the control system
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if this effect has not been considered in the mathematical
modeling.

6. CONCLUSION

This paper described a practical procedure to design a non-
linear H∞ controller applied to a magnetically levitated
system with large initial air-gap. The use of dynamic linear
weighting functions in the nonlinear H∞ control improved
the performance and robustness of the ESS. This system
was designed and implemented on a fixed-point DSP hard-
ware and tested for large gap operation. The simulations
and the experimental results showed that nonlinear H∞
control was more efficient than that already established
linear H∞ control to solve the instability problem during
the initial suspension phase, when the gap is too far from
the equilibrium working point.

A practical summarized approach of hardware as well
as firmware implementation using MATLAB Fixed-Point
Toolbox and IQMath Library that can be easily applied
to various discrete-time system realizations with finite
wordlength was also described.
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