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{ASchaum,JMorenoP}@ii.unam.mx

∗∗ Universidad Autónoma Metropolitana-Iztapalapa, México D.F.
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Abstract: The problem of designing a globally convergent observer for a class of tubular
reactors with boundary measurements is addressed. The problem is tackled by extending a
dissipativity theory-based observer design for nonlinear finite-dimensional systems, which has
been recently applied to a class of continuous stirred tank reactors. The underlying idea of the
proposed observer approach consists in designing the tubular reactor data-assimilation scheme
so that the estimation error dynamics are given by a two-dissipative system interconnection:
one linear distributed dynamical system with the convective and diffusive mechanisms, and one
nonlinear lumped static system with the reaction kinetics. The approach is applied to a tubular
reactor with non-monotonic kinetics and boundary measurements, and the associated sufficient
solvability condition was identified and interpreted in terms of dissipativity and dimensionless
numbers with physical meaning.

1. INTRODUCTION

The last decades were marked by a rapid and inten-
sive development of control theory for infinite-dimensional
(distributed parameter) systems (DPS) (see e.g. Gilles
[1973], Franke [1987], Curtain and Zwart [1995], Vande
Wouwer and Zeitz [2002], Christofides [2001] and ref-
erences therein). There are two main approaches: the so
called early-lumping (EL) and late-lumping (LL). The
first one (EL) refers to a model truncation via Galerkin-
approximation, orthogonal collocation, approximative in-
ertial manifolds, and others. This approach yields in gen-
eral a set of coupled ordinary differential equation (ODEs)
or ”lumped parameter systems” (LPS). The main advan-
tage of EL approaches is the possibility of applying well-
known design methods from well-established LPS theory
(see e.g. Christofides [2001]). The main disadvantage
of the EL approaches is the difficulty of exploiting the
intrinsic structural dynamical properties of the system
reflected in the DPS model, for design purposes. The LL
approach refers to methods which confront the distributed
system feature and its main advantage is the possibility of
performing the observer design on the basis of information
contained in the original model equations. Nevertheless,
most of these approaches need certain knowledge about
semigroup theory and thus are hard to be used in a control
engineering framework.

Recently, a dissipativity-based approach to observer design
for LPSs has been proposed e.g. by Arcak and Kokotovic
[2001] and Moreno [2005]. The idea is to set a data-

1 This work has been supported by DGAPA-UNAM, project
IN112207-3. The authors gratefully acknowledge the support from
CONACyT research grant (Design and Control of Batch Processes)
and project 51244.

assimilation scheme so that the resulting estimation error
dynamics are made of two dissipative subsystems, one that
is linear, dynamical and driven by standard measurement
injection, and one that is nonlinear, static and subjected
also to measurement injection. The estimation error con-
vergence is ensured by adequately matching the dissipative
properties of both subsystems, or equivalently, choosing
a suitable two-way energy exchange mechanism, within
Popov’s well-known absolute stability framework (see e.g.
Popov [1964]). This approach has been applied to design
globally convergent observers for biochemical (Schaum and
Moreno [2006]) and chemical (Schaum, Moreno, Diaz-
Salgado and Alvarez [2007]) continuous lumped reactors
with non-monotonic kinetic rates, in the understanding
that this kind of kinetics represent a difficult observer
and control design problem, because of the lack of local
observability around the concentration which maximizes
the reaction rate.

The problem of designing observers and control for the
regarded system class has been addressed by several au-
thors. Alvarez, Romagnoli and Stephanopoulos [1981]
used orthogonal collocation to obtain a truncated model
for which a variable measurement structure was imple-
mented. Boubaker, Babary and Ksouri [1998] tackled the
observation problem of a nonlinear plug-flow reactor also
by an orthogonal collocation method yielding a LPS for
which a variable structure estimator was then designed.
Similar problems have been tackled (e.g. in Hagen and
Mezic [2003]), by applying a storage functional on the
original system’s equations and prior introducing a modal
representation, designing the observer by solving a Linear
Matrix Inequality (LMI). One of the main advantages of
this contribution is the ensurance of a dominated observer
(control) spill-over. Curtain, Demetriou and Ito [2003]
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developed a distributed observer design based on spectral
factorizations, ensuring a solution of a Ricatti equation
based on which a compensator (observer-based controller)
was designed.

In this work, a first step towards the extension to dis-
tributed biochemical and chemical process systems of the
afore mentioned dissipativity observer design for contin-
uous lumped chemical reactors is taken. For this pur-
pose, the scope is circumscribed to a rather simple single-
reaction axial tubular reactor class which captures the fun-
damental convection, diffusion, reaction, and measurement
mechanisms of an ample class of tubular reactors. The
reactor case example has one spatial (axial) dimension, two
boundary measurements, and includes the basic mecha-
nisms at play: diffusion, convection and nonlinear (possibly
non-monotonic) reaction kinetic rate. This consideration
must be regarded in the understanding that such reactor
class includes some cases of practical interest, and above all
represents an inductive methodological step that must be
addressed and resolved before considering more complex
reactors (multiple reactions and species, axial and radial
space distributions, and domain measurements).

First, the reactor model is represented as a two-system
interconnection: one linear distributed dynamical expo-
nentially stable subsystem with the combined diffusion-
convection mechanism, and one nonlinear, static subsys-
tem with the nonlinear kinetics. Then, an observer with
two boundary measurement injections is set and the re-
sulting error dynamics is analyzed via Lyapunov energy
method, yielding a sufficient condition for the existence of
a globally convergent observer. Such condition involves two
dimensionless numbers: the Peclet number (convection-
to-diffusion proportion) and a Damköhler-like number
(convection-to-reaction quotient). The proposed approach
is illustrated and tested through numerical simulations
with a case example with non-monotonic kinetics. The
global convergence feature is verified and, as expected, the
measurement injection speeds up the error dynamics with
respect to the natural ones.

The present paper is organized as follows. The system
model is presented in Section 2. The proposed observer
design is presented in Section 3 and tested by numerical
simulations. Finally Section 4 concludes the paper.

2. OBSERVATION PROBLEM

Consider an (open or packed) isothermal tubular reac-
tor with diffusion/dispersion, convection, nonlinear single
species kinetics over the axial spatial domain [0, 1]. The
evolution of the concentration spatial profile is described
by the following partial differential equation:

∂c

∂t
=

∂2c

∂x2
− π

∂c

∂x
− r(c), 0 < x < 1, t > 0

x = 0 :
∂c

∂x
− πc = −πce(t), t ≥ 0

x = 1 :
∂c

∂x
= 0, t ≥ 0 (1)

t = 0 : c(x, 0) = c0(x), 0 ≤ x ≤ 1

y(t) = [ c(0, t) c(l, t) ]
T

= [ ye(t) yf(t) ]
T

,

where

π =
tD
tC

=
Lv

D
, t =

τ

tD
, tD =

L2

D
, tC =

L

v
, v =

q

A
.

c is the dimensionless reaction concentration (say, referred
to pure reactant), x is the dimensionless axial position
referred to the reactor length L, ye (or yf ) is the entrance
(or exit) boundary concentration measurement, τ is the ac-
tual time, t is the dimensionless time referred to Eisntein’s
diffusion time tD, D is the diffusion/dispersion coefficient,
π is Peclet’s number, or equivalently the diffusion(tD)-
to-convection(tC) characteristic time quotient, v is the
axial flow velocity, meaning the volumetric flow rate(q)-
to-area(A) quotient, and r(c) is the (monotonic or non-
monotonic) reaction rate function. Typically, the Peclet
number ranges over [104, 106] for open tubes and over
[10, 103] for packed beds (Fogler [1999]).

Our observation problem consists in designing a glob-
ally convergent observer to reconstruct the composition
profile on the basis of two boundary measurements. The
problem will be addressed via the dissipativity focus we
employed before in the consideration of lumped continu-
ous stirred reactors (Schaum, Moreno, Diaz-Salgado and
Alvarez [2007]).

It must be pointed out that the proposed approach for
system (1) can be extended in the future to non-isothermal
reactors and multi-species kinetics, with the possibility of
suitably located domain measurements.

3. OBSERVER DESIGN

3.1 Principal considerations

Let us consider the following observer for system (1):

∂ĉ

∂t
=

∂2ĉ

∂x2
− π

∂ĉ

∂x
− r(ĉ), 0 < x < 1, t > 0

x = 0 :
∂ĉ

∂x
− πĉ = −πce(t) + k0(ŷe(t) − ye(t)), t ≥ 0

x = 1 :
∂c̃

∂x
= k1(ŷf (t) − yf (t)), t ≥ 0 (2)

t = 0 : ĉ(x, 0) = ĉ0(x), 0 ≤ x ≤ 1

y(t) = [ ĉ(0, t) ĉ(l, t) ]
T

= [ ŷe(t) ŷf(t) ]
T

,

with two measurement injections: one in the entrance (x =
0) and one in the exit (x = 1), and two adjustable gains
(k0 and k1), one per measurement. From the subtraction
of (2) from (1) the estimation error dynamics follows:

∂c̃

∂t
=

∂2c̃

∂x2
− π

∂c̃

∂x
+ ν(x, t), 0 < x < 1, t > 0

x = 0 :
∂c̃

∂x
− πc̃ = k0(ŷe(t) − ye(t)), t ≥ 0

x = 1 :
∂c̃

∂x
= k1(ŷf (t) − yf (t)), t ≥ 0 (3)

t = 0 : ĉ(x, 0) = ĉ0(x), 0 ≤ x ≤ 1

ν(x, t) , − [r(c + c̃) − r(c)] , −ρ(c̃, t),

where c̃(x, t) = ĉ(x, t) − c(x, t) is the observation error.
Note that this system can be represented in the Hilbert
space Z = L2([0, l], R), defining an adequate operator
in the framework of abstract differential equations. Thus,
system (3) is a nonlinear boundary control system in Z,
whose linear part generates an exponentially stable C0-
semigroup. For the purpose at hand, it suffices to keep
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ρ(c̃, t)

− ν c̃
ΣK

Fig. 1. Illustration of the structure of the observation error.

in mind that the developments take place in the Hilbert
space Z = L2([0, l], R).

Let us regard the observation error dynamics as a two-
subsystem interconnection: (i) one linear dynamical sub-
system

∂c̃

∂t
=

∂2c̃

∂x2
− π

∂c̃

∂x
+ ν(x, t), 0 < x < 1, t > 0

x = 0 :
∂c̃

∂x
− πc̃ = k0(ŷe(t) − ye(t)), t ≥ 0 (4)

x = 1 :
∂c̃

∂x
= k1(ŷf (t) − yf (t)), t ≥ 0

t = 0 : ĉ(x, 0) = ĉ0(x), 0 ≤ x ≤ 1

with the convection, diffusion and measurement injection
mechanisms, and the reaction rate spatio-temporal func-
tion ν(x, t) as exogenous distributed input, and (ii) one
nonlinear static subsysytem

−ν(x, t) , ρ(c̃(x, t), t) (5)

which, driven by the concentration error profile c̃(x, t)
generates the reaction rate error profile (ρ). In other words,
system (3) is seen as the negative interconnection of a

linear system ΣK : ν
k0,k1−→ c̃, that maps the distributed

source function ρ(c̃) (in a way modified by the output injec-
tion Kỹ) to c̃(x, t), with a static time-varying nonlinearity
ν = −ρ(c̃, t). The system structure of this is illustrated
in Figure 1. From an abstract energy perspective, the
nonlinear part supplies energy to the linear part, and
vice versa. On basis of an energy exchange framework the
methodological steps of the proposed approach are stated
next:

• Sector condition for ρ(c̃(x, t), t): Find bounds of the
energy supply from the nonlinear part (ρ) to the linear
part (ΣK) by drawing a sector type dissipativity
condition for ρ(c̃(x, t), t).

• Strict dissipativity of ΣK : Then, a Lyapunov energy
dissipativity condition for ΣK is employed, so that
the negative interconnection of ΣK with ρ(c̃(x, t), t)
is strictly dissipative.

This pursuit will be carried out in a concrete storage
functional based framework, with direct implications of
the stability of the error’s zero solution by means of
Lyaupunov’s second method (see e.g. Zubov [1964], Gilles
[1973], Franke [1987]).

3.2 Sector condition for ρ(c̃(x, t), t)

From the application of the mean value theorem, the reac-
tion rate error function satisfies the following expression:

ρ(c̃, t) = r(c + c̃) − r(c) = r′(c + ηc̃)c̃, η ∈ (0, 1).

Thus, the range of ρ(c̃, t) is completely included in the
sector determined by the maximum and minimum of the
reaction rates gradient

K1 ≤ r′(c + ηc̃) ≤ K2, K1, K2 ∈ R, (6)

and ρ(c̃, t) ∈ [K1, K2] (Khalil [2002]), this is

(K1c̃ − ρ) (ρ − K2c̃) ≥ 0 (7)

or equivalently

K1c̃
2 ≤ρ(c̃, t)c̃ ≤ K2c̃

2. (8)

Inequality (7) represents a (pointwise) dissipativity condi-
tion in Z (cp. Moreno [2005]). From integration over the
spatial domain [0, 1] and the definition of inner product in
Z 2 , this can be interpreted as a distributed dissipativity
inequality. Note that for K1 ≥ 0 the non-linearity is
passive and a sufficient condition for the stability of the
(negative) interconnection of ΣK with ρ is the exponential
stability of the linear dynamical subsystem ΣK . Therefore
the more interesting case is given for K1 < 0, as in this case
the exponential stability of ΣK is (generally speaking) not
sufficient for an stability assessment for its interconnection
with ρ. This issue is analyzed next.

3.3 Strict dissipativity of ΣK

Here the idea is to choose k0, k1 in (3), so that the
dissipativeness of the linear convective-diffusive subsystem
ΣK is ensured (in an appropriate manner). For this aim,
introduce a quadratic storage functional candidate S(c̃)
defined by the weighted squared concentration error norm

S(c̃) , 〈c̃, P c̃〉 , (9)

with a positive weight function P (x) > 0 to be determined.
If one can show that, with respect to S(c̃), the linear part
enables us to choose the gain pair (k0, k1) so that the
energy stored in the concentration profile error is (strictly)
dissipated, in virtue of the conic form of the chosen storage
functional, the (exponential) stability of c̃ = 0 can be
concluded. For this aim, we have to show that:

∃P > 0, ǫ > 0, k0, k1 :
dS(c̃)

dt
≤ −ǫS(c̃). (10)

If this condition is met, S is a Lyapunov functional, and
the exponential stability of c̃ = 0 follows by Lyuaponv’s
second method (see e.g. Zubov [1964], Gilles [1973],
Franke [1987]).

Thus, the key step is to find P > 0, ǫ > 0 and an
observer gain pair (k0, k1) so that the convection-diffusion-
reaction interconnection (ΣK ,−ρ(c̃, t)) meets the negative
dissipation rate inequality (10). There are different ap-
proaches to achieve this. Here, the task will be persued
via a natural concept of absolute stability concepts for the
interconnection in combination with strict dissipation with
respect to the quadratic storage functional S(c̃).

Next, conditions for the (adjustable) gains k0, k1 are
drawn so that the linear convective-diffusive dynamical

subsystem ΣK : ν
k0,k1−→ c̃ meets dissipativity condition

(10) that allows the required stability assessment of the
interconnection with ν = −ρ(c̃). In the next proposition

2 The used inner product is the conventional one in Z = L2, i.e.

〈a, b〉 =
∫

l

0
abdx, a, b ∈ Z.
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are stated sufficient conditions on the observer gains to
achieve this.

Proposition 1. (Proof in the Appendix )
There is an observer gain pair (k0, k1) which makes the
reactor observer (2) globally exponentially convergent if
the Peclet number π (convection-to-diffusion measure) and
the lower bound (possibly negative) K1 (6) of the reaction
rate derivative meet the following condition:

π2

4
+ 2K1 > 0. (11)

A particular solution for the gain pair is

(k0, k1) = (−3

4
,
1

4
)π (12)

which ensures that the dissipativity inequality (10) is
satisfied with ǫ = π2/4 + 2K1.

According to equation (12): (i) the convergence condition
is always met by reactors with monotonic kinetics, as
K1 ≥ 0 (passive case), and (ii) the fulfillment of the
convergence condition by a reactor with non-monotonic
kinetics (K1 < 0) requires that the lower bound K1 < 0
of the reaction rate derivative, in the antitonic branch,
is smaller than one eight of the square Peclet number.
Moreover for the gain choice (12) represents a limiting
case, and the point of departure to perform the gain tuning
procedure in the light of an adequate estimator functioning
with a suitable compromise between reconstruction rate
and robustness. Actually from the proof results that the
gain pair has to be chosen such that

π−
√

π2+ 8K1−4ǫ ≤ 4k1≤π+
√

π2+ 8K1−4ǫ
k0 = k1 − π

. (13)

The following section illustrates the methodology for a
representative case with non-monotonic reaction rate.

4. A CASE STUDY

4.1 Problem specification

In the chemical reactor engineering field, it is known
that continuous reactors with non-monotonic kinetic rates
rise difficult observer and control problems, because there
is a lack of local observability around a steady-state
with maximum reaction rate, and of global observability
(Schaum and Moreno [2007]). This is caused by the
lack of concentration distinguishability in the sense that,
given the actual reaction rates value it is not possible to
establish if the concentration is in the isotonic or antitonic
branch of the function. Given that the observation problem
for continuous reactors has been recently addressed via
the dissipativity approach, (Schaum and Moreno [2006],
Schaum, Moreno, Diaz-Salgado and Alvarez [2007]), and
that the scope of the present study is the extension of
such approach to the tubular reactor case, let us consider
our reactor (1) observation problem with non-monotonic
(Haldane-type) kinetics

r(c) =
kc

(1 + σc)2
, tR =

1

k
(14)

where k > 0[1/s] is the reaction frequency factor, tR its
corresponding charateristic reaction time, and σ > 0 is
the auto-inhibition constant. It must be pointed out that

this kinetics rate underlies an important class of indus-
trial (bio)chemical processes. From the above mentioned
continuous reactor dissipativity-based observation study
(Schaum, Moreno, Diaz-Salgado and Alvarez [2007]), we
know that the rate error function ρ(c̃, t) encompasses the
sector [−k, k

27 ]. Consequently, following the above result
(A.11) the absolute stability of the linear part with respect
to non-linearities in [K1, K2] follows if

π > 2
√

2k (15)

implying that the observer gains must meet the conditions
(13). This in turn implies that the strictly negative dissi-
pation rate inequality (10) is met, and that the storage
functional S(c̃) is a Lyapunov functional. It follows that
∃M > 0 : S ≤ Me−ǫt, and ||c̃(x, t)|| → 0 exponentially
fast. From continuity arguments (note that c̃(x, t) has to be
at least twice differentiable in x), it follows that the error
profile c̃(x, t) vanishes exponentially. Thus the exponential
convergence of the estimate to the actual value for each
point of the tubular reactor is concluded.

Summarizing, the fulfillment of the inequalities (15) en-
sures the global exponential stabilizability of the two-
subsystem interconnection (ΣK , ρ). The condition says
that the destabilization potential of the chemical reaction
must be dominated by the convection-diffusion mecha-
nism. The condition pair (??), (??):(i) establishes that the
boundary linear measurement innovation injection must
be chosen according with the Peclet (π) and reaction rate
(k) value, and (ii) constitutes the basis of a gain tuning
procedure.

4.2 Simulation study

In a first simulation, the reactor (1) was regarded with the
Peclet-inhibition-reaction rate triplet (π, σ, k) = (10, 3, 4)
and the initial concentration profile c0(x) = 0. The ob-
server was set with the derived initial profile ĉ0(x) = 1,
and the application of the gain condition (A.10) yielded
the gain pair (k0, k1) = (−7.5, 2.5). Keeping in mind that
the reactor time is scaled with respect to the diffusion
time, the corresponding estimation behavior is presented
in Figure 2, showing that: (i) as expected, the close-to
boundary regions converge quickly, (ii) there is a con-
vergence speeding diffusion-like propagation of innovation
(i.e. information contained in the measurement and not
in the model) from the boundary towards the center, and
(iii) practical profile convergence within a 98% setting is
attained with a rate about eight times faster than the nat-
ural reactor dynamics. For comparison a different scenario
was tested: the Peclet-inhibition-reaction rate triplet was
set to (π, σ, k) = (1000, 3, 400), while the initial profiles
where kept equal (c0(x) = 0, ĉ0(x) = 1). The optimal
(with respect to observer convergence speed) observer gain
conditions yielded (k0, k1) = (−750, 250). The correspond-
ing estimation error evolution is presented in Figure 3,
showing: (i) quick close-to-boundary convergence, (ii) a
convergence speeding wave (convection)-like axial prop-
agation of innovation, and (iii) convergence rate about
twenty times faster than the natural one.

4.3 Concluding Remarks

From the preceding implementation results, the following
comments are in order:
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Fig. 2. Profile of observation error c̃(x, t): scenario 1.
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Fig. 3. Observer error profile evolution: scenario 2.

• Due to the Lyapunov-like approach, there is a given
”a-priori” robustness of the observer convergence
with respect to additive proportional errors of the
type δ(c̃) = βc̃, which grows with the Peclet number
π. This means that high superficial velocities and/or
low diffusion coefficients favor robustness. In other
words, a ”plug-flow like” reactor exhibits the best
robustness property.

• The observer performance can be improved by further
incorporating suitably located domain measurements
and/or improved data assimilation mechanisms.

• It is known from LPS theory that the system’s de-
tectability is a necessary condition for observer de-
sign. In particular, this means that the observer error
converges to zero for all the so called bad exogenous
inputs (here the inflow concentration ce(t)) which
may cause indistinguishable concentration profiles.
These results suggest that the reactor’s detectability
property and the sensor location issue can be ad-
dressed as a detectability assessment problem.

5. CONCLUSIONS

The problem of designing a globally convergent observer
for a class of tubular reactors with boundary measure-
ments has been addressed. The problem has been solved
by applying a dissipativity theory based observer design.
The data-assimilation scheme was designed so that the
estimation error dynamics were given by a two-dissipative
system interconnection: one linear distributed dynamical
system with convective and diffusive mechanisms, and one
nonlinear lumped static system with the reaction kinetics.
The convergence conditions were drawn via Lyapunov’s
second method, and endowed with physical meaning. The
underlying tradeoff between profile reconstruction rate and

robustness was identified. The proposed approach was
illustrated with a representative example through simu-
lations.

The proposed study is a point of departure to design
reduced order observers and to perform optimal sensor
location assessments.
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D. Franke, Systeme mit örtlich verteilten Parametern
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6. APPENDIX A.

Proof of Proposition 1: Take the time derivative of S(c̃)
(9), this is

dS(c̃)

dt
= 2

∫ 1

0

( ∂2c̃

∂x2
− π

∂c̃

∂x
+ ν

)

P c̃dx (A.1)

By the divergence theorem we have that

2

∫ 1

0

∂2c̃

∂x2
P c̃dx=

[

2P
∂c̃

∂x
c̃

]1

0

−
∫ 1

0

{

dP

dx

∂[c̃2]

∂x
+2P

[

∂c̃

∂x

]2
}

dx.

(A.2)

Consider the boundary conditions in (4) and obtain
[

2P (x)
∂c̃

∂x
c̃

]1

0

=2P (1)k1c̃
2(x) − 2P (0)[k0 + π]c̃2(0).

Introduce the auxiliary function K(x) such that

K(0) = k0 + π, and K(1) = k1.

By means of K(x) rewrite the boundary term
[

2P (x)
∂c̃

∂x
c̃

]1

0

=
[

2P (x)K(x)c̃2
]1

0
.

The last term can be expressed as an integral by

[

2P (x)K(x)c̃2
]1

0
=

∫ 1

0

∂

∂x

[

2P (x)K(x)c̃2
]

dx. (A.3)

Substituting (A.3) into (A.2) yields

2

∫ 1

0

∂2c̃

∂x2
P c̃dx =

∫ 1

0

{

2PK
∂[c̃2]

∂x
+ 2

(

dP

dx
K + P

dK

dx

)

c̃2−

−dP

dx

∂[c̃2]

∂x
− 2P

[

∂c̃

∂x

]2
}

dx.

(A.4)

For the sake of simplicity choose K constant, implying that

k1 = k0 + π, and
dK

dx
= 0, (A.5)

so that (A.4) becomes

2

∫ 1

0

∂2c̃

∂x2
P c̃dx =

∫ 1

0

{[

2PK − dP

dx

]

∂[c̃2]

∂x
+ 2

dP

dx
Kc̃2−

−2P

[

∂c̃

∂x

]2
}

dx.

(A.6)

Now recall the sector condition on ν = −ρ (8) to obtain

2

∫ 1

0

Pνc̃dx = −2

∫ 1

0

Pρc̃dx ≤ −2K1

∫ 1

0

P c̃2dx. (A.7)

Substitute this into (A.1) and obtain finally

dS(c̃)

dt
≤

∫ 1

0

{[

(2K − π)P − dP

dx

]

∂[c̃2]

∂x
+

+

[

2
dP

dx
K − 2PK1

]

c̃2

}

dx.

Conclude that the dissipation inequality (10) is met if the
following two conditions are satisfied

dP

dx
− (2K − π)P =0 (A.8)

2
dP

dx
K − 2K1P ≤− ǫP, ǫ > 0. (A.9)

The solution of the differential equation (A.8) yields

P (x) = e(2K−π)x,

and the substitution of this expression into the differential
inequality (A.9) yields the algebraic inequality

[(4K − 2π)K − 2K1 + ǫ]P ≤ 0.

Thus, the corresponding gain possibilities are given by

K =
1

4

[

π ±
√

π2 + 8K1 − 4ǫ
]

. (A.10)

The existence of a real solution for the observer gain
function K is ensured if the following condition is met

0 <
π2

4
+ 2K1. (A.11)

Keeping in mind (A.5), a possible choice of the observer
gain is

k0 = −3π

4
k1 =

π

4
,

(A.12)

implying that (10) is satisfied with

ǫ =
pi2

4
+ 2K1. (A.13)

This ends the proof. 2
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