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Abstract: This paper presents an active Fault Tolerant Control (FTC) strategy for vehicle
lateral dynamics. A bicycle vehicle model using small angle approximations is used to represent
vehicle behavior. Firstly, the nonlinear lateral vehicle dynamics is approximated by a Takagi-
Sugeno fuzzy model with parametric uncertainties and sensor faults. Secondly a robust H∞

output controller is used. A method based on a bank of observers is used for detection and
isolation of sensor faults. The effectiveness of the proposed strategy have been illustrated in
simulation.
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Nomenclature

af Front axle distance from the center of gravity (m)
ar Rear axle distance from the center of gravity (m)
Cf Front lateral cornering stiffness (N/rad)
Cr Rear lateral cornering stiffness (N/rad)
J yaw moment of inertia (kg m2)
µ road adherence
αf,r Front and rear tyre slip-angles (rad)
δf Road wheel steer angle (rad)
u longitudinal velocity (m/s)
v lateral velocity (m/s)
ay lateral acceleration (m/s2)
r yaw rate about the center of gravity (rad/s)
Mz yaw moment (Nm2)

1. INTRODUCTION

Vehicle active control systems aim to enhance handling
and comfort characteristics ensuring stability in critical
situations. In this context, several systems have been
developed these last years (ABS, ASR, TCS, DYC . . . )
and some of theme have already been commercialized
and becoming a standard equipment in many vehicles.
However, faults or abnormal operations of any or some of
components of such a system can prove extremely costly
and in some cases create situations that are dangerous to
the safety of passengers. Our objective is to develop an
active fault tolerant controller for vehicle lateral dynamics
against sensors failures. To do so, a new strategy based
on a method of Fault Detection and Isolation (FDI)
(Isermann (2001); Ding et al (2005); Blanke et al (2003))
is developed so as to avoid sensor fault effect on vehicle
system where faults are assumed to be incipient, abrupt
but not generate a total sensor faults. The fault detection

scheme uses a bank of observers each utilizing a different
output measurement to estimate the vehicle states. The
analytical redundancy provided by the bank of observers
is then used to construct residuals that have unique
signatures in the presence of faults.

Two fuzzy robust H∞ observer-based controllers devel-
oped in (Oudghiri et al (2007a)) have been used, each one
utilizes different output sensor to reconstruct vehicle state
variables, after the detection and the isolation of sensor
fault, a switching block selects the controller which has
used the output of the healthy sensor in order to maintain
the stability of the vehicle.

The proposed method is based on the uncertain Takagi-
Sugeno (T-S) fuzzy representation largely used in control
and estimation problems of nonlinear systems these last
years (Kim et al (1999); Tanaka and Wang (1998); Korba
et al (2003); Chadli and El hajjaji (2006); Chadli et al
(2008)). This representation allows to describe the vehicle
dynamics in large domain and by the same way to improve
the stability of vehicle lateral dynamics.The proposed
stability conditions of the closed loop system are given
in terms of Linear Matrix inequalities (LMI) (Boyd et
al (1994)) and can be solved in a single-step procedure.
Based on work given in (Oudghiri et al (2007b)), this paper
introduces some improvement by taking account extern
disturbance and considering uncertainties on all system
matrices.

This paper is organized as follows. Section II briefly de-
scribes the used vehicle models in uncertain T-S repre-
sentation. Section III gives the robust H∞ fuzzy observer
based controller. Section IV presents the Fault Tolerant
Control (FTC) scheme used to stabilize the lateral vehicle
dynamics. Section V presents the simulation results that
validate the proposed algorithm. Conclusions are given in
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Section VI.

Notations : The symbol ∗ denotes the transpose elements
in the symmetric positions. P > 0 means a positive-
definite symmetric matrix P .

2. UNCERTAIN TAKAGI-SUGENO FUZZY VEHICLE
MODEL

Let us consider the following two freedom degree vehicle
lateral dynamics model, it is given in terms of the lateral
velocity v and the yaw rate r

(

˙v(t)
˙r(t)

)

=







2
Fyf (t) + Fyr(t)

m
− u(t)r(t)

2
afFyf (t) − arFyr(t)

J
+

Mz(t)

J






(1)

where Fyf and Fyr are front and rear lateral forces
respectively, their nonlinear expressions are given in ?,
Bakkern et al (1989). They have been approximated by
two fuzzy rules as follows























Fyf =

2
∑

i=1

hi(αf )Cfi(µ)αf

Fyr =
2

∑

i=1

hi(αr)Cri(µ)αr

(2)

where hi(i = 1, 2) are the membership functions, they
satisfy the following conditions











2
∑

i=1

hi(αf ) = 1,

0 ≤ hi(αf ) ≤ 1,∀i = 1, 2.

(3)

αf and αr represent tyre slip-angles at the front and rear
of the vehicle respectively such that

αf =−
v + afr

u
+ δf (t),

αr =−
v − arr

u
, (4)

Cfi and Cri represent front and rear lateral tyre stiffnesses,
they are difficult to estimate accurately and also exhibits
large variations due to the road adhesion µ. To take into
these variations, we assume that these coefficients vary as
follows

{

Cfi = Cfi0(1 + difi)
Cri = Cri0(1 + difi)

(5)

with ‖fi(t)‖ ≤ 1 where di indicates the deviation magni-
tude of the stiffnesses coefficients from their nominal values
Cfi0 and Cri0. By considering (1, 2, 4, 5), the uncertain T-
S fuzzy model of the lateral vehicle dynamics is obtained
as

ẋ(t) =

2
∑

i=1

hi(αf )((Ai + ∆Ai)x(t) + BMz(t) + Bfiδf (t)),

z(t) =

2
∑

i=1

hi(αf )C1ix(t),

y(t) =

2
∑

i=1

hi(αf )((C2i + ∆Ci)x(t) + Diδf (t))

(6)

where x = [ v r ]
T
, y = [ ay r ]

T
, z = r

z(t) is the controlled output vector and y(t) is the output
vector of the system, ∆Ai and ∆Ci represent parametric
uncertainties with appropriate dimensions.

Ai =







−2
Cfi + Cri

mu
−2

Cfiaf − Criar

mu
− u

−2
Cfiaf − Criar

Ju
−2

Cfia
2

f + Cria
2

r

Ju






,

Bfi =







2
Cfi

mu

2
afCfi

J






, B =

[

0
1

J

]

,Di =

[

2
Cfi

m
0

]

,

C1i = [ 0 1 ] , C2i =

[

−2
Cfi + Cri

mu
−2

Cfiaf − Criar

mu
0 1

]

,

we assume that the uncertainties can be formulated as
follows

∆Ai = DAiFi(t)EAi, ∆Ci = DCiFi(t)ECi (7)

where Fi(t), i = 1, 2 are matrices uncertain parameters
such that F (t)T

i F (t)i < I, i = 1, 2. I is the identity
matrix of appropriate dimension. EAi, ECi,DAi and DCi

are known real matrices of appropriate dimensions that
characterize the structures of uncertainties.

3. H∞ FUZZY OBSERVER BASED CONTROLLER
DESIGN

In this section, stability conditions formulated in LMI
constraints that guarantee the stability of the uncertain
T-S fuzzy model (6) with H∞ disturbance attenuation γ
are presented.
The structure of the fuzzy output feedback controller is
given as

Mz(t) =
2

∑

i=1

hi(αf )Kix̂(t), (8)

where x̂(t) ∈ ℜ2 is the estimated state and Ki ∈ ℜ1×2(i =
1, 2) are the controller gains to be determined. The pro-
posed fuzzy observers for the uncertain T-S fuzzy system
(6) is as follows (9)
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˙̂x(t) =

2
∑

i=1

hi(αf )(Aix̂(t) + BMz(t) + Bfiδf (t)

− Gi(y(t) − ŷ(t))),

ŷ(t) =
2

∑

i=1

hi(αf )(C2ix̂(t) + Diδf (t))

(9)

where ŷ(t) ∈ ℜ2×1 is the estimated output. Gi ∈ ℜ2×2(i =
1, 2) are the observer gains to be determined to satisfy
x(t) − x̂(t) → 0 exponentially as t → ∞.

The global asymptotic stability of the uncertain T-S fuzzy
model (6) is summarized in the following theorem :

Theorem 1. For a given positive number γ > 0, some
positive scalars α, ǫ2ij , ǫ3ij , ǫ4ij , ǫ5ij . If there exist matrices
Z > 0, Y > 0, Mi, Ji, Zij and a positive scalars ǫ1ij , ǫ6ij

with Zji = ZT
ij satisfying the following LMI

(

Θii Λii

∗ Ψii

)

< Zii i = 1, 2 (10)

(

Θij + Θji Λij + Λji

∗ Ψij + Ψji

)

< Zij + Zji i < j (11)











Z11 · · · Z1r V T
1k

...
. . .

...
...

Zr1 · · · Zrr V T
rk

V1k · · · Vrk −I











< 0, k = 1, 2 (12)

with Vik = ( C1i 0 ) (13)

where Θij , Λij and Ψij are given in 17, 18 and 19 respec-
tively.

Then H∞ control performance is guaranteed for the fuzzy
model (6) via the fuzzy observer-based controller (8) where
Ki = MiZ

−1 and Gi = Y −1Ji

Proof : See Oudghiri et al (2007a). These conditions allow
to determine in one step the controller and the observers
gains Oudghiri et al (2007a).

4. THE FTC SCHEME

The method of Fault Tolerant Control (FTC) that we
propose is based on a FDI functional block which uses
a bank of two observers each utilizing a different output
measurement to estimate the vehicle states (figure 1).
Before giving the control strategy, let us considering the
following assumptions

• Let Cl
i(i, l = 1, 2) denotes the lth row of matrix Ci.

• Sensor failures are modeled as additive signals to
sensors outputs

y(t) =

2
∑

i=1

hi(αf )((C2i + ∆Ci)x(t) + Diδf (t))

+ Ff(t)

(14)

where F represent a distribution matrix and f(t)
represents (additive) sensor faults and indicates which
of the sensor providing measurements are prone to
possible faults. It is defined as follows

For failure of sensor 1 F = (1 0)T

For failure of sensor 2 F = (0 1)T

• we also assume that at any time at most one sen-
sor fails. This assumption is guaranteed by the two
possible values of the matrix F .

4.1 Observer Bank Design

The observer design scheme presented in the previous
section is applied to the design of two observers. Observer
1 uses the lateral acceleration ay and the observer 2 uses
the yaw rate r. Both observers estimate the two states of
the model.
The schematic of the FTC strategy is given in figure 1.
Here, note that the ’ ˆ ’ denotes estimate and ’1’ or ’2’
subscript denotes the estimate from the first or the second
observer.

Fig. 1. Block diagram of the observer-based FTC

The structure of the observer 1 is given as :

˙̂x1(t) =

2
∑

i=1

hi(αf )(Aix̂1(t) + BMz(t) + Bfiδf (t)

−G1

i (ay(t) − ây1(t))),

ây1(t) =

2
∑

i=1

hi(αf )(C1

2ix̂1(t) + D1

i δf (t)) (15)

The structure of the observer 2 is given as :
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˙̂x2(t) =

2
∑

i=1

hi(αf )(Aix̂2(t) + BMz(t) + Bfiδf (t)

−G2

i (r(t) − r̂2(t))),

r̂2(t) =

2
∑

i=1

hi(αf )(C2

2ix̂2(t) + D2

i δf (t)) (16)

where Cl
2i and Dl

i are the lth rows of the matrices C2i and
Di respectively and Gl

i(i,l=1,2) are the constant observers
gains to be determined.

We assume that all pairs (Ai, C
1,2
i ) are observable, which

are necessery conditions to estimate the state through
either the first output ay or the second one r.

4.2 FDI Block Design

Residuals are generated by comparing the estimates with
the measured values for the sensor outputs. Table 1 lists
the generated residuals.

Variable Residual 1 Residual 2

Lateral acceleration R1,ay = ây1 − ay R2,ay = ây2 − ay

Yaw rate R1,r = r̂1 − r R2,r = r̂2 − r

Table 1. List of generated residuals

From these residuals, the presence or absence of a partic-
ular fault can be deducted using the following rules.

(i) Only one fault is present at any time.
(ii) If a sensor is faulty all estimates from the observer

using the same sensor are affected.

From the above rules the following logic table (Table 2) is
constructed to identify the fault. Note that in the second
column of the table, elements values of the residual vector
are denoted by ’1’ and ’0’s; the ones denoting non-zero
elements and the zeros denoting elements whose value is
zero.

Fault [R1,ay R2,ay R1,r R2,r]

Lateral acceleration sensor [1 1 1 0]

Yaw rate sensor [0 1 1 1]

Table 2. Logic Table for Fault Isolation

After detecting the faulty sensor, we use a switcher to
choose the good controller by applying the following rules :

if sensor 1 fails then

Mz(t) =

2
∑

i=1

hi(αf )K1

i x̂1(t)

if sensor 2 fails then

Mz(t) =

2
∑

i=1

hi(αf )K2

i x̂2(t)

where x̂1(t) and x̂2(t) are given by (15) and (16). The bloc
diagram of the observer-based FTC is given in figure 1.

5. NUMERICAL ILLUSTRATIONS

To show the effectiveness of the vehicle sensor FTC de-
signed in this study, we have carried out some simulations.
In the design, the nominal stiffness coefficients and the
parameters of the vehicle considered are given in the fol-
lowing tables :

Nominal stiffness
coefficients

Cf1 Cf2 Cr1 Cr2

Values 60712 4812 60088 4555

Table 3. Nominal stiffness coefficients

Parameters J m af ar u

Values 3000 1500 1.3 1.2 20

Table 4. Vehicle parameters

By solving the LMIs given in theorem 1 , we obtain the
following controller and observer gains

K1

1
= 103

[

−0.5483 −6.4169
]

, K1

2
= 103

[

0.7802 −6.4249
]

K2

1
= 103

[

−0.5535 −6.4097
]

, K2

2
= 103

[

0.7832 −6.4280
]

G1

1
=

[

−6.4547
−16.3823

]

, G1

2
=

[

−6.5373
−19.5597

]

G2

1
=

[

15.2767
7.6614

]

, G2

2
=

[

20.4305
−0.0279

]

All the simulations are realized on the nonlinear model
given in (1) with the following consideration:

• Vehicle speed: 20 ms−1 ≤ u ≤ 30ms−1

• Adhesion coefficient: 0.4 ≤ µ ≤ 1
• Front wheel steer angle (rad): −0.06 ≤ δf ≤ 0.06

The additive signals representing failures, added to output
sensors, have the following expression

f(t) =

[

f1(t)
f2(t)

]

= η

[

ay(t)
r(t)

]

From figure 2 to figure 5, we can note that without
application of the proposed FTC strategy, when sensors
faults occur (in sensor 1 between 2s and 8s, in sensor 2
between 12s and 18s), the vehicle lost their performances.
In figure 6 and figure 7, with the same steering pad
maneuvers (upper curve), by using the proposed FTC
strategy, we can remark that not only the vehicle remains
stable but also the real and the estimated vehicle state
variables are superposed. These simulation results (figure
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6 and figure 7) prove the effectiveness of the proposed FTC
strategy and the robustness of the designed law control.
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Fig. 2. Failures of sensors
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Fig. 3. Vehicle response without FTC strategy when sensor
1 is faulty and sensor 2 is healthy
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Fig. 4. Failures of sensors
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Fig. 5. Vehicle response without FTC strategy when sensor
1 is healthy and sensor 2 is faulty
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Fig. 6. Failures of sensors
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Fig. 7. Vehicle response with FTC strategy when sensor
1 and sensor 2 are faulty. Initial conditions: x(0) =
(0.1 − 0.1)T , x̂(0) = (0 0)T
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Θij =

























(ZAT
i + MT

j BT
i ) + (∗)T + ρ−2B1iB

T
1i

+ǫ1iiDAiD
T
Ai + ǫ6ijDBiD

T
Bi

ZET
Ai MT

j ET
Bi ZDBi ZET

Ai MT
j ET

Bi ZET
c

EAiZ −ǫ1iiI 0 0 0 0 0
EBiMj 0 −ǫ−1

2ijI 0 0 0 0

DT
BiZ 0 0 −ǫ2ijI 0 0 0

EAiZ 0 0 0 −ǫ−1

4iiI 0 0
EBiMj 0 0 0 0 −ǫ−1

3ijI 0

ECZ 0 0 0 0 0 −ǫ−1

5iiI

























(17)

Λij =

(

B2iMj 0
0 0

)

(18)

Ψij =

























−2αZ MT
j ET

Bi αI 0 0 0 0

EBiMj −ǫ−1

3ijI 0 0 0 0 0 0
EBiMj 0 −ǫ6ij 0 0 0 0 0

αI 0 0 AT
i Y + CT

2jJ
T
i + Y Ai + JiC2j Y DBi Y DAi Y DBi JiDc

0 0 0 DT
BiY −ǫ3ijI 0 0 0

0 0 0 DT
AiY 0 −ǫ4iiI 0 0

0 0 0 DT
BiY 0 0 −ǫ3ijI 0

0 0 0 DT
c JT

i 0 0 0 −ǫ5iiI

























(19)

6. CONCLUSIONS

This paper proposes a method based on a bank of two
observers for fault-tolerant control of vehicle lateral dy-
namics. The chosen vehicle model is a frontwheel steered
bicycle model with tire corning stiffness assumed to be un-
certain. Two robust fuzzy H∞ observer-based controllers
are developed based on two measurements output. Based
on a FDI block, which analyzes different residuals, sensors
failures are detected and isolated. By using a switch block,
we select the good controller for maintaining the stability
and nominal performances in spite of presence of sensors
faults. The FTC scheme is validated using vehicle nonlin-
ear model and taking account uncertainties (for example
variation of road adhesion conditions and longitudinal
velocity).
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