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Abstract: This paper presents results for an automatic navigation system for agricultural
vehicles. The system uses stereo-vision, inertial sensors and GPS. Special emphasis has been
placed on modeling the natural environment in conjunction with a fault-tolerant navigation
system. The results are exemplified by an agricultural vehicle following cut grass (swath). It
is demonstrated how faults in the system can be detected and diagnosed using state of the
art techniques from fault-tolerant literature. Results in performing fault-diagnosis and fault
accomodation are presented using real data. Copyright c©2008 IFAC

1. INTRODUCTION

Agricultural machinery is increasingly getting automated.
For example, agricultural vehicles have seen a revolution in
automation by adoption of GPS for automatic steering. A
number of technical limiting factors of these GPS systems
however do exist. Some of these are faults inherent to GPS
receivers, such as those induced by satellite occlusions and
multipath errors. Others include that the GPS systems
require a detailed navigation plan as they themselves
cannot ”see” features in the field that want to be followed.
It is thus of interest to find a solution to these limitations.

Earlier research results can be split into 3 broad categories:
work in fault-tolerance, stereo-vision, and position esti-
mation for navigation in agriculture. Stereo-vision is an
active topic in agriculture. It has been shown that stereo-
vision can be used for navigation by finding the relative
position of a vehicle to a variety of agricultural structures:
Rovira-Más et al. (2007), Kise et al. (2005). Relative
position estimation has been fused in Rovira-Más and
Han (2006). Visual odometry has been fused in Andersen
et al. (2007). Sensor faults in these articles are typically
treated in simple fashion by gating on, for example, the
innovation in a kalman filter. Literature however exists to
treat fault detection systematically, Blanke et al. (1997),
Blanke et al. (2006), by using systematic fault-tolerant
design tools. They have been demonstrated to work in
practice on for example ships: Blanke (2006). How the
systematic methods as presented in Blanke et al. (2006)
can be applied to navigation in agriculture and especially
with vision-based navigation sensors has not previously
been demonstrated.

This paper will deal with a specific field operation that
involves the agricultural vehicle to follow cut grass (swath)
in order to pick it up with a baler (see fig. 1). The
system to be analyzed is equipped with stereo-vision, a
single antenna GPS and an IMU, in one configuration.
GPS positions of the vehicle that formed the swath are
known. The combination of stereo-vision and GPS allows

Fig. 1. This is an example of a swath that the navigation
system should follow. The vision system locks on and
tracks the swath most central in the image.

the system both to ”see” the swath but also navigate
based on the given map. This creates system redundancy
that is essential for achieving fault-tolerance. A visual
odometry algorithm on the stereo-camera allows for the
relative positionment of the vehicle without GPS or IMU.
The GPS receiver used was a high-end EGNOS receiver
and the IMU was a tactical grade (low accuracy) MEMS
based unit.

The two main ideas presented here is first a behavior
model for representing the natural environment, namely
the swath. Secondly, it is shown how parts of this model
(the swath location) can be used in conjunction with
sensor inputs to create a fault tolerant sensor fusion
system. The fault diagnosis is illustrated using real data.
Combining the sensor information optimally for state
estimation beyond estimating faults is not delved into.
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Fig. 2. Using position information and 3D data from the
stereo-camera the entire field (if necessary) can be
reconstructed in 3D. This is a 15m section of a swath.

Fig. 3. The middle of the swath can be represented
by a cubic spline with a number of knots. This
is accompanied by the width of the swath at each
location along the spline as well as the height of the
material within the bounds of the swath. The height
of the swath is shown as different intensities. The
illustration is from a top-down view.

2. SWATH MODEL

A model of the swath requires extracting the salient
features of the environment required for the field operation
and storing them in the model representation. The salient
features are the location of the swath and the distribution
of the swath material across the swath. The location of
the swath is modeled as a cubic spline with the number
of knots being fixed for a certain length of swath. The
spline is positioned along the middle of the swath. The
distribution of the swath material is first modeled by
defining the swaths width at any given point along the
spline. Secondly, points inside the 2D volume enclosed
by the swath width are assigned a value pertaining to the
height of the swath at this point relative to the ground.
The swath height is represented by a grid map of resolution
2 cm for each grid point. The model is illustrated in fig. 3.
The concept behind the swath location, width, and height
is now explained in more detail.

2.1 Swath Location

The swath location is defined as being in a 2D coordinate
system on the ground plane. A function f represents the
lines down the middle of the swaths. Given coordinate
pairs (x, y) then f is:

y = f(x) (1)

The model of the swath location is then s(x) with s ∈
S3(k0:n), where k0:n are the spline knots and the spline
coefficients and S3 is the cubic spline domain. Then the

model is equal to the swath location plus the approxima-
tion error ǫa of fitting a spline to f :

s(x) = f(x) + ǫa (2)

Based upon the concept of having a controller that allows
the vehicle to follow the swath location, the x-track error
εx (signed shortest distance from the control point to the
spline) can be found as a function of the tractor position
and the spline. Defining the spline sb in body coordinates
a function E can be set to find the x-track error:

εx = E(sb) (3)

2.2 Swath Width

For each point on s the swath width is defined by the two
points on either side of s that are orthogonal to s at these
points and which lie a distance dw away from s at each
point. The function g defines dw as a function of x and
the model s. The tangent of s at a specific point is given
by differentiation of s. This allows for the swath width to
change along the length of the swath.

dw = g(x, s) (4)

2.3 Swath Height

The swath height is the mean swath height inside each
grid square in the grid map bounded by the swath sides as
defined by the swath width and location. Given the grid
map coordinates (x, y) the swath height zm at this point
is defined by the function h:

zm = h(x, y) (5)

2.4 Swath Sets

The above model is only for a single swath. Each swath in
the field is then described by a set of the above functions
with M being the set of such swaths and n being the
number of swaths:

M = {si, gi, hi} , i = 1...n

3. BEHAVIOR MODELS

The following sections outline how the behaviour-based
model of the swath can combined with models of GPS,
stereo-vision sensor and odometry data. The purpose is to
arrive at a set of constraints that can be used for analysis
of system structure and subsequent generation of residuals
for fault diagnosis. This idea was brought into the field of
fault diagnosis by Staroswiecki and Declerck (1989) and
later expanded, see Staroswiecki and Comet-Varga (2001)
and Blanke et al. (2006). The advantage of this approach
over classical methods, Tzafestas and Watanabe (1990),
include the ability to use a formulation of behaviors at
high level of abstraction.
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Fig. 4. The location of the swath as recorded by the
GPS mounted on the vehicle that formed the swath.
It is assumed the start and end points of the GPS
trajectory have been recorded. The swath location is
shown in red and has been fitted with a spline. Green
indicates the trajectory followed by the vehicle where
it was not forming swath - raw GPS readings. All
units are in meters in the NED coordinate system.

3.1 GPS

The GPS positions of the vehicle that formed the swath
is fitted with the spline (see fig. 4). The distribution
of the swath cannot be measured by the GPS receiver.
Knowledge of the machine settings used to construct the
swath are assumed known giving an approximate height
hest and width dw,est of the swath. These settings can
be used as estimates for the swath model fitting. Given
the measured GPS positions p̂n

2
of the vehicle and the

attitudes of the vehicle Θ̂2 the position of swath formation
behind the vehicle can be calculated. The path formed by
these positions is then fitted with the spline model using
the function k to provide an estimate of the swath location.
The information in the GPS map is then, in an abstract
formulation:

sg = k(p̂n, Θ̂2) (6)

3.2 Stereo-Camera

A stereo algorithm is used to find the correspondence
between features in the left and right image sensor (il, ir).
The position of the features relative to the stereo-camera
can then be inferred in 3D. Modern vision algorithms
then exist to register 3D models with the 3D point cloud
provided by the stereo-camera: Goshtasby (2005). An al-
gorithm has been constructed that allows such registration
between the swath model and the 3D points. The stereo-
algorithm and registration will be denoted by the function
areg. Thus, given the two images a measurement of the
swath location sc, width gc, and height hc can be computed
for the part of the swath in the image.

[

sc

gc

hc

]

= areg(il, ir) (7)

Fig. 5. (a) RGB topdown-view of the swath with swath
location and swath width superimposed on the swath.
(b) The swath model showing both swath location,
width and height by image feature extraction.

These measurements are stored in a map representation for
an individual swath. sm is the spline formed by combining
previous measurements.

4. STRUCTURAL MODEL

The structural model describes the behavior of variables
in the normal, fault-free system using a behavior based
approach. A violation of a behavior indicates a fault in the
system. Given the current setup a fault could for example
be in a sensor, an algorithm, and/or an assumption about
the environment. The structural approach treats faults
unambiguously.

The constraints are composed of a number of measurement
(m), differential (d), and system constraints (c). The
variables in the constraints are likewise composed of two
groups: the subset of known variables K and the subset of
unknown variables X . The constraints are listed in Eq. 9.

K = {vb,ab,pn
1
, sg, sc, sm,Rn

b (Θ, λ)}

X = {pn, ṗn, sb, s, εx} (8)
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Table 1. Incidence Matrix.

known unknown

\ sg sc sm vb ab p1 p ṗ εx

m1 1 1

m2 1 1

m3 1 1

m4 1 1 1

m5 1 1

m6 1 1

Table 2. Dependability Matrix.

constraints

\ d1 m1 m2 m3 m4 m5 m6

p1 1 1 1

p2 1 1

p3 1 1 1

p4 1 1

c1 : sb = Rn
b (Θ, λ)s + pn

c2 : εx = E(sb)

d1 : ṗn =
d

dt
pn

m1 : vb = Rn
b (Θ, λ)ṗn

m2 : ab =
d

dt
Rn

b (Θ, λ)ṗn (9)

m3 : pn
1

= pn

m4 : sg = s

m5 : sc = sb

m6 : sm = sb

Following the notation in Fossen (2002): vb is the tractor’s
velocity vector over ground seen in body coordinates
as measured by visual odometry; ab is the acceleration
vector given by the IMU; pn the position in (North,
East) coordinates with pn

1
being the position measurement

from the GPS; Rn
b is the rotation matrix from body to

navigation frame, which is a function of Θ, the attitude
vector (Euler angles roll, pitch and yaw) and of λ, the
latitude;. sb is the spline body coordinates. In this
analysis, the Rn

b matrix is assumed to be known.

5. STRUCTURAL ANALYSIS

As described in Blanke (2006) a structural analysis is then
performed on the structural model. The constraint d1 is a
differential constraint and as such cannot fail. To simplify
the structural analysis the constraints {c1, c2} are pulled
into the measurement constraints {m4,m5,m6} and faults
in them are treated as subsystem faults in the respective
measurement constraints instead. The incidence matrix
can be seen in table 1. A number of parity relations are
then found as shown in Table 2.

Based on the dependability matrix in Table 2, the parity
relations are derived in analytical form and used as the
basis for the residuals (Eq. 10). As all the columns of
Table 2 are different, it follows that all faults should be
structurally detectable and isolable as the faults will have
a unique signature in these residuals.
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Fig. 6. The vehicle was driven manually over a swath.
The driver centered the vehicle over the middle of
the swath and drove for 2min while maintaining
this centered position. The x-track errors from the
subsystems were recorded.

r1 : vb − Rn
b (Θ, λ)

d

dt
pn

1
= 0

r2 :
d

dt
vb − ab = 0

r3 : E(sc) − E(Rn
b (Θ, λ)sg + pn

1
) = 0 (10)

r4 : E(sc) − E(sm) = 0

6. FIELD TESTS

The properties of residuals were investigated based on
recorded data. The data stems from the test field run
illustrated in fig. 4. The position of the swath was first
logged by following the middle of the swath manually
- emulating the vehicle forming the swath. This was
repeated for a second pass emulating the vehicle that
should pick up the swath. This provides some form of
limited ground truth. The position error of the driver is
bounded between the runs as he constantly steers relative
to the swath. Experience with driving with balers puts
the error associated with not driving exactly over the
center of the swath to under ±0.2m as this is required
to pick up the swath successfully. In the data examined
the GPS has a false offset in the second pass relative to
the first pass of approximately 0.6m for the first approx.
70 s before it corrects its position estimate to bring it to
about 0.15m of the swath location. This second offset
is acceptable for normal operation. Field tests enabled
calculation of residuals r1, r3 and r4 as an instrumentation
issue prevented data reception from the IMU. The field test
is hence representing a case of one permanent failure and
an additional fault occurring.

6.1 Detailed Design of Residual Generators

The parity relations Eq. 10 are now further scrutinized
as a basis for change detector and hypothesis evaluation
design. A common assumption for readily available change
detection algorithms is that of a Gaussian amplitude dis-
tribution. A required property of residuals for average
run length calculations is whiteness. Fig. 7 shows the
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Fig. 7. Normalized histograms for residuals r1, r3, r4 in the
faultless scenario along with r3 in the case of the GPS
fault. Fitted gaussian distributions are shown on top
of the histograms.

histograms of residuals. The figure also shows Gaussian
distributions with mean and variance as observed. Resid-
ual 1 suffers from a deadband in the calculation of velocity
from the stereo images, hence, the distribution is not
Gaussian. The cause of the deadband must be investigated
further. Residual 3 appears to follow a shifted Rayleigh
distribution.

Statistical change detection will ideally be based on a log-
likelihood ratio test

si = ln(pθ1
(ri) − ln(pθ0

(ri)) (11)

where the probability densities from the observed distri-
butions should be used, pθ1

for the case of a fault, pθ0
for

the normal case, respectively. With the shifted Rayleigh
shape distribution of r3 in the no-GPS-fault case, a change
detection of CUSUM or GLR type is straight forward to
compute, Basseville and Nikiforov (1993). The Rayleigh
distribution gives, however, some computational burden
over the tests when Gaussian distributions are assumed.
The testing was therefore conducted using a Gaussian
assumption. In the above analysis, it is also noted that a
GPS fault is strongly detectable in residual r3 while only
weakly detectable in r1 due to the position differentiation
in the parity relation of r1. A low-pass filter is hence
applied on r1.

With respect to testing whiteness of the residuals, Fig. 8
shows the autocorrelation functions for the three available
residuals. Residual r3 is seen to comprise some correlation
due to filtering within the algorithm that determines the
spline approximation to the swath. Whiteness is particu-
larly important to reach design conclusions about average
run length.
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Fig. 8. Autocorrelation function for residuals r1, r3, r4 in
the faultless case. The blue lines indicate the bounds
of the 95% confidence intervals.

6.2 Change Detection and Hypothesis Evaluation

Change detection on the residual vector could be made
using a vector-based approach, where a known signa-
ture ρ(τ) = [ρ1(τ), ρ3(τ), ρ4(τ)]T is sought for in r(t) =
[r1(t), r3(t), r4(t)]

T . The computational burden is, how-
ever, larger than by applying a simple CUSUM test for
change in mean on r3 and r4 and make a threshold test on
r1. With adequate logics used for hypothesis testing, this
allows for isolation of faults. The result for r3 is shown
in fig. 10. The CUSUM test is given a mean value to
test for so that an erroneous x-track error of up to 0.2m
is permissible. From the system is started it takes 1 s to
isolate a fault. The CUSUM test for residual r4 stays 0
for the data indicating that sc and sm agree, and that any
variation between them is due to noise.

Isolation of the fault to the GPS subsystem (GPS sen-
sor and GPS Map) can, as minimum be achieved by
considering the residual vector [r3, r4]

T . Stronger isola-
tion is achieved by considering the full residual vector
[r1, r2, r3, r4]

T where the output of the GPS subsystem
is also compared to the visual odometry which in turn is
compared to the IMU output. The GPS jump is clearly
seen as a spike in residual r1 as shown in Fig. 11.

7. FAULT HANDLING

There are a number of approaches to fault accomodation.
In the present case, a GPS fault can be isolated, and
the magnitude of the fault can be estimated. It is then
a straight forward task to reconfigure the navigation
controller either to avoid using the faulty sensor or to
attempt to compensate for the fault by compensating the
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Fig. 10. CUSUM test for residual r3. H0 = 0 indicates no
fault.
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Fig. 11. Low-pass filtered residual r1.
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Fig. 13. By estimating the magnitude of the fault in the
GPS sensor it was possible to do fault accomodation.

sensor readings. Given that the residuals have detected
the fault in the GPS x-track signal it is indeed possible
to handle the fault automatically. The approach adopted
here was to do this is by estimating the GPS fault
magnitude using a Kalman filter and the vision x-track
signal. The estimated mean difference is used as the
correction estimate. Threshold detection on r1is used to
prevent invalid signals from being passed to the controller.
The response of the thus corrected position estimate is
shown in Fig. 13.

It can be seen that discrepencies in the GPS and vision
x-track signals quickly converge (the two signals in the
example are roughly within ±10 cm of each other). This

approach only works for correcting faults which are sta-
tionary errors to the input signal. It is stipulated that
most other GPS faults will be caught by the visual odom-
etry or IMU.

8. CONCLUSION

It has been demonstrated both using principles from fault
diagnosis and from fault-tolerant sensor fusion theory,
as well as experimentally, that an agricultural vehicle
equipped with GPS, IMU and stereo-vision can be made
fault-tolerant to sensor faults. The results presented here
were done offline and work will be pursued to demonstrate
them online. Real-time implementations are available
for the image processing algorithms. The computational
requirements for the fault-tolerant sensor fusion framework
is insignificant compared to the image processing. The
system should thus have a very good chance of working
online.

REFERENCES

H. J. Andersen, T. Bak, and M. Christensen. Fusion of gps
and visual motion estimates for robust outdoor open
field localization. Second International Conference on
Computer Vision Theory and Applications, VISAPP.
INSTICC., pages 413–418, 2007.

M. Basseville and I. Nikiforov. Detection of abrupt
changes: Theory and applications. Prentice-Hall, 1993.

M. Blanke. Fault-tolerant sensor fusion for marine naviga-
tion. Proc. 7th IFAC Conf. on Manoeuvring and Control
of Marine Craft, Elsevier IFAC, sep 2006.

M. Blanke, R. Izadi-Zamanabadi, S. A. Bøgh, and C. P.
Lunau. Fault-tolerant control systems - a holistic view.
Control Engineering Practice, 5(5):693–702, 1997.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control 2nd Edition.
Springer, 2006.

T. I. Fossen. Marine Control Systems. Marine Cybernet-
ics, 2002.

A. A. Goshtasby. 2-D and 3-D Image Registration: for
Medical, Remote Sensing, and Industrial Applications.
Wiley, 2005.

M. Kise, Q. Zhang, and F. Rovira-Más. A stereovision-
based crop row detection method for tractor-automated
guidance. Biosystems Engineering, pages 357–367, 2005.

F. Rovira-Más and S. Han. Kalman filter for sensor
fusion of gps and machine vision. Technical report, 2006
ASABE Meeting Presentation - Paper Number 063034,
2006.

F. Rovira-Más, S. Han, J. Wei, and J. F. Reid. Au-
tonomous guidance of a corn harvester using stereo vi-
sion. Agricultural Engineering International: the CIGR
Ejournal., 9, 2007.

M. Staroswiecki and G. Comet-Varga. Analytical re-
dundancy relations for fault detection and isolation in
algebraic dynamic systems. Automatica, 37(5):687–699,
2001.

M. Staroswiecki and P. Declerck. Analytical redundancy
in nonlinear interconnected systems by means of struc-
tural analysis. In Proc. IFAC AIPAC’89 Symposium.,
volume 2, pages 23–27. Elsevier - IFAC, 1989.

S. Tzafestas and K. Watanabe. Modern approaches to
system/sensor fault detection and diagnosis. Journal
A., 31(4):42–57, 1990.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1595


