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Abstract: A new perspective on analysis of large-scale Multi-Agent Dynamic Systems is presented.
The aim is to capture the global trends at a glance, by the use of dynamic data mining techniques, which
group agents according to similar characteristics or behavior, measuring and recording how the different
trends evolve through time. This methodology is presented and an example with a simulated dynamic
Multi-Agent System is included.

1. INTRODUCTION

Multi-Agent Systems (MAS) constitute an interesting approach
to deal with complex systems, either in simulated environments
(Bar-Yam [1997] and Martı́nez-Miranda, Aldea & Bañares-
Alcántara [2003]) or to control and maintain industrial appli-
cations (Castro & Oliveira [2005] and Pereira & Carro [2007]).
An agent can be considered, in a generic definition, as an au-
tonomous entity with a limited knowledge of its surrounding
or environment, which reacts according to its objectives (pre-
defined or learned), the information received from the environ-
ment and the interactions with other agents (Ferber [1999] and
Bonabeau [2002]).

A system of agents constitutes a collective whose characteris-
tics (position in the case of moving agents, or other states or
variables) can vary along the time. In a simulated environment,
all the information from the agents is available at each cycle.
However, different scenarios must be considered where the in-
formation flow among agents is asynchronous, only dependent
of the events produced. The data about the states or character-
istic variables of all the agents is gathered in a discontinuous,
asynchronous way, including different delays as the informa-
tion from each agent is sent through a different channel.

Therefore, a set of dynamic data is considered. The variables
dataset is updated whenever new information from any agent
is available. A global knowledge about the system at a given
time will not coincide with the same scenario when new data
is stored at a different time. The technique proposed in this
paper is the Dynamic Data Mining (Crespo & Weber [2005]),
being able to take advantage of new available data, combining
previous and new knowledge (when available) about the system
in an appropriate way.

This technique is suitable to measure, record, and evaluate
the trends of groups of agents sharing similar characteristics,
being part of a dynamic MAS. Application examples consid-
ered, appropriated for this methodology, would include net-
works of autonomous dynamic agents (Ferrari-Trecate, Buffa &
Gati [2005]), such as mobile robots or vehicles. These systems
constitute a decentralized network where each agent has to
accomplish a specific objective, reacting in a determined way
whenever another agent approaches it, or an obstacle is reached.

Both communication for the first case, and collision avoidance
protocols for the second, must be implemented and combined
with the movement due to the accomplishment of the specific
goal assigned to the agent. The behavior of these networks
include different schemes, such as a‘follow the leader’ imple-
mentation, where each agent has to follow the agent in front of
it, keeping a security distance, or flocking formations, imitating
the collective behavior in natural systems, where all the agents
have the same goal and a consensus is reached among them
concerning heading angles and separation distances (Cruz, Mc-
clintock, Perteet, Orqueda, Cao & Fierro [2007]).

The objective is to analyze the collective motion of the MAS, to
track and somehow infer from partial information the collective
dynamics of the agents. In some cases, for simulation purposes,
the behavior of each agent can be modeled, including the effect
of the interaction with the other agents, therefore a model of the
MAS can be obtained, by means of state-space equations. See,
for instance, (Ferrari-Trecate et al. [2005]). However, in other
cases the model is unknown, and the only available informa-
tion are measurements from the state of the different agents at
different times (such as, for instance, a signal sent by the robot
indicating its position). The methodology of dynamic data min-
ing allows the depiction of a global picture of the main trends
of groups of agents with similar behaviors, which includes the
evolution of the different groups, how they have formed, split
from bigger groups, or joined to others. This methodology can
be useful when no information about the goals or missions of
the different agents is known, and it has to be inferred from the
resulting trends. The same can be applied to other measured
variables (not only position and not only from moving agents),
such as the case of static agents in a network, with different
tasks assigned, that periodically report their internal state, out-
put values, or working points (Castro & Oliveira [2005] and
Naso & Turchiano [2004]). Implementations of this kind vary
from software agents in nodes of a distributed network (Nwana
[1996]), to agent-based manufacturing systems or distributed
real-time embedded systems (Pereira & Carro [2007]). The
dynamic data mining methodology would allow to track and
observe the evolution of the states of all the agents, giving a
global view of similar behaviors or their convergence to a set
of different states. Each time the information about the state of
some of the agents is available, the information about the be-
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havior patterns and the trends of the different groups of agents
can be computed. Despite the fact that a complete information
from all the agents at the same time, at each cycle, would be
the desirable scenario, partial information can also be used to
update the database and to perform a new analysis, which will
result in a modification of the current trends or patterns detected
at the MAS.

In the rest of this paper, a methodology to deal with this pro-
posal of agents’ trend evaluation and registering is presented.
A simulation example where this methodology is applied on a
simulated dynamic MAS is reported. A conclusions section is
included, along with a list of used references.

2. DYNAMIC DATA MINING

The objective is to capture the global view of the different
trends that may arise at a large-scale MAS through time, and
how they evolve according to the different inputs, initial states
and nature of the agents. The proposed methodology is based on
the data mining processes. Different techniques can be applied
when dealing with data mining, in general, and dynamic data
mining in particular. Some of the most used approaches are:
rule-based (for instance, fuzzy) systems (Chan & Au [1997]),
neural networks (Zhang, Fraser, Gagliano & Kandel [2000]),
decision trees (Lutu [2002]), and clustering methods (Han &
Kamber [2001]).

Fuzzy models are widely used because of their universal func-
tion approximation capabilities and the parallelism to human
reasoning processes (Wang, Yang & Muntz [1997] and Dı́ez
[2003]). Moreover, fuzzy rule-based systems, neural networks,
and clustering techniques have a strong relationship, provided
that rule extraction tasks can be given or provided by an expert
but, in general, methods for solving the rule extraction prob-
lem (Nelles [1999]) are based on genetic algorithms, neural
networks, templates, or clustering techniques. Rule extraction
using clustering provides, among other advantages (Duda, Hart
& Stork [2000]), systematic methodologies for fuzzy identifica-
tion of models or classifiers (Babuska [1998], Dı́ez & Navarro
[1999], Emami, Türksen & Goldenberg [1998] and Sugeno &
Yasukawa [1993]), different available techniques for dealing
with quantitative and/or qualitative data (Andritsos [2002]), and
the possibility to apply compatible cluster merging (Krishnapu-
ram & Freg [1992]) or possibilistic partitions (Krishnapuram &
Keller [1993] and Dı́ez, Sala & Navarro [2006]) to a defined
algorithm.

Previous works on the field of dynamic data clustering can
be found for hierarchical (Karypis, Han & Kumar [1999]),
or objective function (mainly fuzzy) approaches (Joentgen,
Mikenina, Weber & Zimmermann [1999]). In Crespo & Weber
[2005], the concept of cycle (period between the creation of
a classifier and its update) is defined. The main idea behind
this concept is that fuzzy clustering techniques are used to
determine static attributes to dynamic data, but attributes would
be updated (making use of new data when available) after a
period of time.

The use of fuzzy logic (Zadeh [1965]) is recommended
throughout this paper, not only as the main concept behind the
algorithms in both stages (object assignment and clustering),
but also when some variables need to be graded, in order to
establish the criteria for new prototypes to be created or existing
ones to be removed. The possibilistic factor (Dı́ez et al. [2006])

is also mentioned, as a more versatile option that allows a more
accurate assignment and membership recognition of an object
to one or various prototypes.

3. PROCEDURE FOR THE DYNAMIC MINING ON
MULTI-AGENT SYSTEMS

The process that is going to be presented has been designed as
a process of continuous evaluation, being split in two stages,
each time that new measures are available and the analysis is
relevant. In a first step an object assignment is produced, of
the available data from each agent to the existing prototype or
prototypes that it fits best. A reconfiguration of prototypes is
carried out from this assignment. Next, at the second step, the
new configuration will be redefined and fine tuned by the use of
clustering techniques.

3.1 Description of the methodology

Step 1: Membership assignment At this stage, whenever new
data measures are available, a process starts where the data from
each agent are compared with the existing base of prototypes
(the ones that were produced in the previous cycle), to check the
membership of the agents to the current set of prototypes, by a
Pattern Recognition System (PRS) (Maravall [1993]). Usually
the Euclidean distance is used as a similarity measurement,
though this is not the unique (nor most recommended) option.

This assignment results in a membership grade of each agent to
one or more prototypes to more or less extent, or no member-
ship to any existing prototype at all. Three different options can
be considered:

• Exclusive membership. Each object falls within the influ-
ence area of an existing prototype, therefore the object is
said to belong to that prototype and does not belong to any
other.

• Non-exclusive membership. Fuzzy logic techniques allow
an assignment of different membership values of each data
object to all the existing prototypes. The more the object
is similar to a prototype, the higher its membership grade
will be to that prototype. The sum of all the membership
values of a same data object to all the existing prototypes
must equal 1.

• Non-exclusive possibilistic membership. The fuzzy possi-
bilistic option allows that the different memebership val-
ues of a data object to all the prototypes sum different than
1, which means that each data object can have a value of
membership to a prototype according to its similarity, not
restricted to an overall adequacy to all the prototypes. This
one seems to be the most versatile option.

As a result of this process, an assignment is done of the
measured data to a set of existing prototypes, as depicted in the
diagram in Fig. 1. The data can be found to match into one of
the current prototypes to a more or less extent, but usually, when
dealing with a dynamic system, the values of the objects may
have changed since the last measure, therefore the prototypes
will not cover the new domain of all the new objects data. At
this point, a procedure for prototypes updating can be started,
following a computation in two steps:

• Data objects not matching any of the existing prototypes
can be found. In this case, a new prototype is created, by
defining one of the data objects as the centre or represen-
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Fig. 1. Pattern Recognition System (PRS)

tative element of all the group. A new prototype is then
created and added to the list.

• Prototypes can be found that have lost all the data belong-
ing to them. These prototypes are thus ”empty” and should
be removed. Their characteristics are stored (in case of fu-
ture re-apparitions) and the prototypes are removed from
the list due to obsolescence.

The result will be a set of prototypes (defined by their centres)
where the obsolete ones are excluded from the analysis, and
new ones are defined according to necessity. A second stage of
clustering will refine this recognition of prototypes.

Step 2: Clustering A fuzzy clustering algorithm, such as
the FMLE, GK, or the FCM (Bezdek [1981]), is suggested
to be applied on the data contained in the database from
all the agents at all the instants of time. These algorithms
group objects according to a similarity measure (usually the
Euclidean distance, see Jain & Dubes [1988]), giving thus a
powerful tool to capture the dynamic of the whole system at
a glance. The parameters needed for the algorithms to run
usually are the number of expected or desired clusters and an
initial configuration of centres or membership grades. When
no information about the final classes is available, the initial
configuration is chosen based on a random computation. In this
case, the set of prototypes obtained from previous cycles at the
pattern recognition stage is used to compute the initialization
state of the clustering algorithm.

As the algorithm converges from this initial configuration, the
final result will refine the centres of the prototypes and the
membership values of each agent to the detected prototypes,
differing from the initial configuration in an extent which
will be related to the accuracy of the previous estimation of
prototypes. The resulting patterns inform about the variation in
the characteristics of a dynamic MAS as they were from the
last cycle where the analysis was done. Therefore, not only
information about the different trends is recorded, but also
about the variability of the MAS through time.

When dealing with qualitative data, clustering algorithms based
on quantitative distances should not be used, and other solu-
tions be applied instead (Andritsos [2004]). Clustering algo-
rithms have been described in the literature that are designed
to analyze qualitative data, based on other similarity measures
different than the Euclidean distance, such as the interconnec-
tivity and closeness at the CHAMELEON algorithm (Karypis
et al. [1999]), the overlap metric at the fuzzy K-modes (Ng &
Wong [2002]), or the entropy at the COOLCAT (Barbará, Li &
Couto [2002]). Also algorithms specifically dealing with spatial
clustering are available (Wang et al. [1997]).

With the result of the clustering algorithm, A further refinement
of clusters and membership can be done at this point, allowing
some possibilities, such as forgetting factors for the weight
of the detected clusters from previous measurements, or a
normalization procedure on the resulting clusters:

• Clusters with large areas can be split in two.
• Clusters whose objects share similar characteristics can be

merged.

The new centers for created prototypes can be chosen and left
ready for the next cycle. The next step would be to capture
the characteristics of each prototype. Different variables can be
considered like, for instance, a health variable. Given a group of
N agents, from where information is measured and evaluated
at each cycle or iteration k = {1 . . . n}, and a number of c
detected prototypes is revised, the health variable is defined as
a value related to the number of agents belonging to the same
pattern or prototype. The value of this variable can be obtained
from a fuzzy logic evaluation based on membership functions.
Each detected pattern behavior has its own health variable, and
an update of the values would be produced with each new cycle,
following the formula given in (1), where ∆s is a function
that computes the variation in data membership to prototype
d = {1 . . . c} at each iteration.

sdk+1 = sdk
+ ∆s (1)

Other variables to be considered are:

• The area of influence of a prototype.
• Its density, or number of objects per volume unit.
• Statistical information from the objects belonging to that

prototype, such as the mean and the standard deviation.

The prototypes could be considered as a new MAS with ”con-
densed” information enclosed (space and time). Registering
allows to keep a track and observe how the different trends
evolve, giving the possibility to build a polynomial model to
estimate the behavior of the group of patterns, and therefore to
be used as a prediction model to evaluate the trend of the overall
system (see Fig. 2).

3.2 Resume and pseudocode

Concerning the process of dynamic information discovery,
there is a need to re-evaluate the global knowledge about the
system each time the information about the agents is available.
A final step is, then, to consider how the relations could be
established among the different resulting scenarios in different
instants of time, in order to discover and record trends in the
data objects. Figure 2 summarizes the whole process of the
previously described dynamic mining. To help understanding
the steps in the analysis, the pseudocode for the implementation
of this methodology is reported:

Do for n times
Update database of agents adding all
the new available data
Perform a Pattern Recognition System
on the current base of patterns
or prototypes
Create or remove new prototypes
according to the membership of the
updated database
Apply a clustering algorithm on the
updated database, setting the
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Fig. 2. Clustering process, tuning of prototypes and trends
computation

updated base of prototypes as the
initial clusters to be refined

Merge or split clusters according to
their size, density or other variables

4. EXAMPLE

The present methodology has been designed for a full range
of different, large-scale environments, such as industrial dis-
tributed systems where the different nodes can be considered as
agents with local processes attached. However, to serve as an
experiment study, a specific MAS has been designed. Based on
a previous work (Dı́ez, Benı́tez & Albertos [2005]), a model of
dynamic agents is simulated at an unbounded environment.

4.1 Design of a Dynamic MAS

A MAS has been designed with a pure reactive behavior, in
resemblance to cellular automata (Bar-Yam [1997]). Agents
are thought to be autonomous entities that behave through the
actuators or outputs, according to information gathered through
sensors from interaction with the environment and the other
agents (Russell & Norvig [2003]). In this case, the agents are
modeled as units with a local influence area, delimited by a cir-
cle of radius r, and three characteristic variables: their position
(x and y values), and a parameter m of attraction or repulsion
for other agents. The objective is to simulate a dynamic envi-
ronment where, depending on the initial configuration or spatial
distribution, the agents move searching either to be close one to
each other, either to be as far as possible from the rest of agents,
according to the value of the parameter m. The equation that
defines the behavior of each agent i can be expressed by (2).

Fig. 3. Simulation example of the designed MAS

Only the agents that fall within the influence area of an agent at
each cycle have an effect on it, which translates in a movement
of the agent, towards or against the other agents, depending on
the parameter m.





xi(k + 1) = mi
1
2

n∑

j=1

(xj(k)− xi(k))

yi(k + 1) = mi
1
2

n∑

j=1

(yj(k)− yi(k))
(2)

The condition for any agent j to be inside the influence area of
an agent i is defined by the equation of a circumference, such
as (3).

(xj − xi)2 + (yj − yi)2 ≤ r2 (3)

In order to avoid a rapid decay of the dynamics, the agents
that search other agents and do not find any other inside their
influence area at a given cycle k, are assigned a movement
towards a random position inside their influence area. Figure
3 depicts a simulation of 100 agents for 100 cycles of this kind
of MAS.

4.2 Results

In this case, the measures have been collected from all the
agents at each cycle. In order to compare the results, in the
previously described MAS (Fig. 3), the methodology presented
has then been applied along with an ordinary clustering process
(the FCM algorithm). The FCM algorithm is also the one
applied at the dynamic mining methodology.

The results are displayed graphically in Fig. 4(a), with repetitive
clustering on the data at each cycle (the data from one cycle
at a time or static data); Fig. 4(b), with repetitive clustering
on the stored available data from all the cycles (the dynamic
data); and Fig. 4(c), for the methodology of dynamic data
mining presented in this paper. The dots represent the centers
of the clusters or prototypes, and the lines encircle their area of
membership. It can be seen that the methodology of dynamic
mining allows a flexibility that repetitive clustering might not
reflect. As cycles count and the system evolves, the dynamic
mining analysis adapts to the dynamics, giving a view of how
the different patterns have changed through time.
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(a)

(b)

(c)

Fig. 4. Comparison among static clustering (a), clustering on
all the database form all the cycles (b), and the proposed
methodology for dynamic data mining (c)

5. CONCLUSIONS AND FUTURE WORK

This paper presents a methodology to capture the different
trends in a dynamic MAS, taking into account previous infor-
mation about prototypes detected and how they can vary from
an initial configuration. The methodology consists in a pattern
detection and refinement process, developed in two steps: first,
a Pattern Recognition System (see section 3.1.1), and second, a
clustering procedure (section 3.1.2).

This research is still in progress, since, considering that this
methodology effectively gives an overview of the dynamic of a
MAS, its efficiency must be proved compared with other known
methods. As can be seen from the simulation experiment, for
instance, an application of a common clustering algorithm may
yield similar or approximate results, with no measure of validity
or adequation still available from both techniques. However, the
ability of the detailed methodology to describe the dynamics of
an evolving MAS at a glance, is considered as an appropriate
starting point for further developments.

Identifying trends allows as well a further step, which consists
in a prediction model. The information about the prototypes at
each cycle can be used to train a model to predict the future
outcomes of specific variables, or, in this case, the evolution of
the clusters and the migration of their centers.
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