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Abstract: The main contribution of this paper is a new method for sliding surface sector design
to reduce the chattering. A new approach enables a systematic design based on the key idea that
the Tensor Product (TP) model transformation is capable of decomposing sectors, furthermore it
can define a High Order Singular Value Decomposition (HOSVD)-based canonical sector system.
It is partially combination of sector sliding mode control, the classical manifold design for the
linear system and HOSVD-based canonical description of a wide class of nonlinear systems.
Experimental results of a DSP-controlled single-degree-of-freedom motion-control system are
presented.

1. INTRODUCTION

Sliding mode control of variable structure systems has a
special role in the field of robust control. On one hand,
the exact description of sliding mode needs advanced
mathematics, which was established by Filippov [1960],
Filippov [1964] in the early sixty’s. On the other hand, it is
quite easy to implement in most engineering systems (Lin
et al. [2007]), a simple relay is necessary in most cases. The
main utility of sliding mode in control design problems is
to decouple the highly coupled nonlinear dynamics, and to
desensitize the performance to variations of the unknown
system parameters.

The initial works on sliding mode control were followed by
a large number of research papers in robotic manipulator
control, in motor drive control and in the field power elec-
tronics since they are typical variable structure systems.
Nowadays sliding mode control is one of the most popular
robust control methods for the engineering systems (Cheng
et al. [2007]). However, despite the theoretical predictions
of superb closed-loop system performance of sliding mode,
some of the experimental work indicated that sliding mode
has limitations in practice, due to the need for a high sam-
pling frequency to reduce the high-frequency oscillation
phenomenon about the sliding mode manifold, collectively
referred to as ”chattering”. In most of the experimental
work involving sliding mode (Yildiz et al. [2007]), the effort
spent on understanding the theoretical basis of sliding
mode control is generally minimized, while a great deal
of energy was invested in empirical techniques to reduce
chattering.

Sliding sector was introduced by Furuta and Pan [2000],
Suzuki et al. [2005] as a promising method to reduce the
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chattering. Another approach of sliding sector is proposed
by Xu et al. [1996], Korondi et al. [1998]. They are valuable
but they cannot be applied in a systematic way. The
systematic sliding manifold design for linear systems was
proposed by Utkin [1992]. It is interesting but the main
challenge is the nonlinear systems. A new HOSVD-based
canonical description of a wide class of nonlinear systems
was proposed by Baranyi [2004] which enables a systematic
controller design for a wide class of nonlinear systems.

A new approach of sliding sector design is proposed in
this paper enables a systematic design based on the key
idea that the TP model transformation is capable of
decomposing sectors, furthermore it can define a HOSVD-
based canonical sector system. It is partially combination
of sector sliding mode control Korondi et al. [1998], the
classical manifold design for the linear system Utkin [1992]
and HOSVD-based canonical description of a wide class of
nonlinear systems Baranyi [2004]. The basic steps of the
new design strategy are:

1) Description of the LPV system by convex TP model
form (using TP model transformation Baranyi [2004]).

2) Design a sliding surface is for each component of the
TP model, using the systematic design method of Utkin
[1992].

3) Constructing sliding sector from the set of surfaces
defined in the previous step.

4) Selecting a TP model transformation based control law
for the TP model transformation based sliding sector.

2. TENSOR PRODUCT BASED MODEL
TRANSFORMATION

This section is intended to discuss the fundamental of
tensor product models. Consider a parametrically varying
dynamical system

ẋ(t) = A(p(x))x(t) + B(p(x))u(t)
y(t) = C(p(x))x(t) + D(p(x))u(t)

(1)
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with input u (t), output y (t) and state vector x (t). The
system matrix

S(p(x)) =

(

A(p(x)) B(p(x))
C(p(x)) D(p(x))

)

∈ ℜOxI (2)

is a parameter-varying object, where p(x) ∈ Ω is time
varying N -dimensional parameter vector, and is an el-
ement of the closed hypercube Ω = [a1, b1] × [a2, b2] ×
· · · × [aN , bN ] ∈ ℜN . The parameter p (x) includes some
elements of x (t).

The TP model transformation starts with the given LPV
model (2). First a numerical discretization is performed
over a hyper-rectangular grid on Ω. The system is known
in the discrete points and an interpolation technique is
necessary between the discrete points. The next step is
reduction of the discrete model by High Order Singular
Value Decomposition Baranyi [2004], Petres et al. [2004],
which results in the TP model representation:

S(p(x)) =
R

∑

r=1

wr(p(x))Sr (3)

where wr(p(x)) are weighting coefficients and

Sr =

(

Ar Br

Cr Dr

)

(4)

There are several selection wr(p(x)) and Sr, from now on
the canonical form is applied Baranyi [2004] when

wr (p (x)) ∈ [0, 1] and
R

∑

r=1

wr(p(x)) = 1 (5)

For further details about TP model transformation, refer
to Baranyi [2004], Petres et al. [2004].

3. SLIDING MODE DESIGN FOR LINEAR SYSTEMS

The design of a sliding-mode controller consists of three
main steps. First is the design of the sliding surface, the
second step is the design the control law which holds the
system trajectory on the sliding surface, and the third and
key step is the chattering-free implementation.

The following linear time invariant (LTI) system is consid-
ered; first the reference signal is supposed to be constant
and zero. A single input multi output system is discussed.
The dimensions of (6) are modified. The system is trans-
formed to a regular form Lukuyanov and Utkin [1981].

[

ẋ1

ẋ2

]

=

[

A11 A12

A21 A22

] [

x1

x2

]

+

[

0
B2

]

u
x1 ∈ ℜn−1

x2 ∈ ℜ
u ∈ ℜ

(6)

The switching surfaces, σ of the sliding mode, where the
control vector components have discontinuities, can be
written in the following form Korondi and Hashimoto
[2000], where K is the ”surface matrix”.

σ = x2 + Kx1 = 0 σ ∈ ℜ and K ∈ ℜ(n−1) (7)

When sliding mode occurs (when σ = 0 and x2 = −Kx1),
the design problem of the sliding surfaces can be regarded

as a linear state feedback control design for the following
subsystem:

ẋ1 = A11x1 + A12x2 (8)

In (8), x2 can be considered as the input of the subsystem.
A state feedback controller x2 = −Kx1 for this subsystem
gives the switching surface of the whole VSS controller. In
sliding mode

ẋ1 = (A11 − A12K)x1 (9)

Various linear control design methods based on state feed-
back are applicable for (9) to the design of the switching
surfaces. The main problem is that this method
cannot be applied to a non-linear system which is
the main challenge. The solution can be the Tensor
Product model transformation.

3.1 Control Law

To ensure that the system remains in the sliding mode
(σ = 0) the condition

σ̇σ < 0 (10)

should hold. The simplest control law which can lead to
sliding mode is the relay:

u = M · sign(σ) (11)

This is easy to realize by power electronic circuits. The re-
lay type of controller can directly control the semiconduc-
tor switching elements, but it does not ensure the existence
of sliding mode for the whole state space, and relatively
big values of M is necessary which might cause a severe
chattering phenomenon. This control law is preferable if
the controller’s sample frequency is nearly equal to the
maximum switching frequency of semiconductor switching
elements.

If sliding mode exists then there is continuous control, so-
called ”equivalent” control, ueq, which can hold the system
on the sliding manifold. It can be calculated from σ̇ = 0

σ̇ = ẋ2 + Kẋ1 = 0
σ̇ = A21x1 + A22x2 + B2u + K(A11x1 + A12x2) = 0

(12)

ueq can be expressed from (12)

ueq = − ((A21 + KA11)x1 + (A22 + KA12)x2) /B2 (13)

In the practice, there is never perfect knowledge of the
whole system and its parameters. Only ûeq, the estimation
of ueq, can be calculated. Since ueq does not guarantee
the convergence to the switching manifold in general, a
discontinuous term is usually added to ûeq.

u = ûeq + M · sign(σ) (14)

The control laws (14) do not control the semiconductor
switching elements directly; additional PWM is needed.
Usually, this is no problem since the switching frequency
of the semiconductor elements can be much higher then
the sampling frequency of the fastest digital controller.
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Fig. 1. Sliding sectors (In case of n = 2)

3.2 Chattering free implementation, Sector Sliding Mode

The chattering in the basic sliding mode control is essen-
tially due to the requirement that the system state must
stick to the switching surface. Obviously this requirement
is too restrict when only finite switching rate is available.
Replacing the switching surface to the sliding sector may
enable the system state to move continuously.

To implement the proposed approach, two sliding surfaces
are defined first

σr = x2 + Krx1 = 0 r = 1, 2 (15)

Then the two sliding surfaces divide the whole state space
into three regions defined as

R1 = { x | σ1(x) > 0 and σ2(x) > 0 }

R2 = { x | σ1(x) < 0 and σ2(x) < 0 }

R3 = { x | σ1(x)σ2(x) ≤ 0 }

Here the region R3 is the sliding sector.

The control strategy of the proposed modified sliding mode
control method is

u = ueq + ud (16)

where ueq is the continuous ”equivalent” and ud is defined
as

ud =











Msign

(

σ1 + σ2

2

)

x ∈ R1 ∪R2

M
σ1 + σ2

|σ1| + |σ2|
, x ∈ R3

(17)

As shown in Fig. 1, let’s represent the sector by the a
surface of

σ = x2 + Kx1 = 0 where K =
K1 + K2

2
(18)

Robustness of the proposed method The stability of the
proposed sliding sector can be checked by the Lyapunov
function candidate

V = σ2/2 (19)

where σ is the middle of the sliding sector. To define V̇ ,
the value of σ̇ is necessary. Outside of the sector (in R1

and R2), according to (13) and (17)

σ̇ = −B2Msign (σ) (20)

According to (20), V̇ is always negative outside of the
sector

V̇ = σσ̇ < 0 (21)

It means the system trajectory enters into the sector in
finite time. In side of the sector

σ̇ = −B2M
σ1 + σ2

|σ1| + |σ2|
and V̇ = σσ̇ ≤ 0 (22)

Since V̇ = 0 implies σ = 0, the sector sliding mode inherits
the most important characteristic of classical sliding mode.
Note, that at the boundary of the sector

Msign (σ) = −M
σ1 + σ2

|σ1| + |σ2|
(23)

As the system state approaches the middle of the sector the
absolute value of the discontinuous term is getting smaller
that ensures the chattering free applications.

4. SLIDING MODE DESIGN BASED ON TENSOR
PRODUCT TRANSFORMATION

The sliding sector design method can be extended for
nonlinear systems given in the form of (1). Firs it is
transformed to the form of (3) and a sliding surface is
designed for each system Sr.

σr = x2 + Krx1 = 0 (24)

The definition of the three regions can be extended in the
following way

R1 ∈ {x|
R
⋂

r=1

σr(x) < 0} R2 ∈ {x|
R
⋂

r=1

σr(x) > 0}

R3 ∈ {x|
R
⋃

i,j

σi(x)σj(x) ≤ 0}

(25)

Here the region R3 is a sliding sector. R = 2 in case of
Fig. 1.

A modified version of (17) is applied

u = uc + ud (26)

where uc is a feed forward compensation term based on the
estimation of the ”equivalent” control, ud is a switching
term to suppress the system parameter variations and
disturbances.

uc = ûeq

ud =























−M rmsign (σ1) if x ∈ R1 ∪R2

−M









R
∑

r=1
wr((p(Xs))σr

R
∑

r=1
wr((p(Xs)) |σr|









if x ∈ R3

(27)

where Xs is the value of x at a properly selected point of
the sliding sector. There are three cases

• The nonlinearity is only inside of subspace (8)
• The nonlinearity is only outside of subspace (8)
• The nonlinearity is inside and outside of subspace (8)
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Fig. 2. The experimental system

Fig. 3. System structure

Here only the second case is discussed. The sliding surface
is designed in such a way that

ûeq = ueq1 = ueq2 · · · = ueqR (28)

where ueqi is calculated for each system Sr according to
(13)

ueqi = − ((A21i + KiA11i)x1 + (A22i + KiA12i)x2) /B2i(29)

Note, ueqi is not the real equivalent control signal, and
(28) itself cannot definite the sliding surface.

5. APPLICATIONS

The experimental system consists of a conventional DC
servo gear motor with encoder feedback and variable
inertia load coupled by a relatively rigid shaft, as shown
in Fig. 2 and the structure can be seen in Fig. 3. The
controller is implemented using a DSP as the computation
engine.

5.1 System equations

In the course of control design, a reduced-order model is
used, in which the armature inductance and the flexibility
of the shaft are ignored. The state variables are the shaft
position, θ and the shaft angular velocity, ω, the control
signal u is the motor voltage. The effect of massd is
considered as a disturbance. The model calculated from

the nominal parameters of the system is as follows (when
the friction is ignored):

(

θ̇
ω̇

)

=

(

0 1
0 −76

) (

θ
ω

)

+

(

0
18

)

u (30)

The harmonic gear connected to the motor has relative
big friction. Coulomb has nonlinear characteristic, which
is modeled in the following way:

u = u′

(

1 −
1

|u′| + 2.7

)

(31)

where u′ is the control signal of the original linear system.
The first part of the correction of the control signal
in (31) is achieved empirically. It is quite straightforward
to explain. The Coulomb friction torque is independent
of the input voltage of the motor. If the input voltage is
small the effect of the Coulomb friction is relative big. As
you increase the absolute value of the motor voltage, the
effect of Coulomb friction is getting relatively smaller and
smaller. The second (dynamic) term is necessary because
of TP model transformation. There is a Matlab toolbox
for Tensor Product model transformation. The toolbox is
available for download together with documentation and
examples at http://tptool.sztaki.hu/.

The system matrix

S(p(x)) =

(

0 1 0
0 −76 p(x)
1 0 0

)

(32)

where p(x) ≡ p(u) = 18 ∗

(

1−
1

2.7 ∗ abs(u) + 1

)

(33)

The parameter vector is

Ω = [umin, umax] = [−22, 22] (34)

Since equidistant sampling is applied and the sampling
density must be high around zero voltage, the interval
Ω is sampled at 137 grid points. The sampled system is
arranged into a tensor

Su =
(

S1 S2 · · · S137

)

∈ ℜ137x(3x3) (35)

where tensor, Su, has only two singular values (1061.6
and 31.7). That is why the above nonlinear system can
be modelled by two linear systems:

S1 =

(

0 1 0
0 −76 17.7
1 0 0

)

, S2 =

(

0 1 0
0 −76 13.9
1 0 0

)

(36)

The two weighing coefficients as a function of the control
are shown in Fig. 4.

5.2 Sliding surface design

Since a second-order model is applied, the sliding ”surface”
is a sliding line that can be described by a scalar parameter
K in (24).

σr = ω + Krθ = 0 where r = 1, 2 (37)

According to (13) and (30),

ueq = − ((−76 + Kr)x2) /B2r (38)

where the values of B2r can be read from (36). One equa-
tion cannot definite two parameters. The sliding surface
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Fig. 4. The weighing coefficients as a function of the control
signal
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is carefully designed (i.e. pole K is selected according
to Korondi and Hashimoto [2000]) to satisfy both fast
response both vibration suppression for the both systems.
K = 15 in Korondi and Hashimoto [2000], the sector
around that value is selected. If K1 = 8 than K2 = 22
according to (38) which is acceptable. Xp is selected in
such a way that w1(p(Xs)) = 0.5, w2(p(Xs)) = 0.5.

5.3 Experimental results

The experimental results of the proposed and a conven-
tional controller are compared in Fig. 5-Fig. 10.

The nonlinearity of the system is borne from the huge
friction of the harmonic gear. To verify the friction model,
the real and simulated velocities (ωr, ωs) are compared in
Fig. 5, where the input voltage of the motor is a shifted
sinusoid with amplitude of 12 V (open loop response).
Note, the voltage input is divided by 5 to use the same
scale as the speed. It can be seen in the Fig. 5, if the
motor is in standstill, at least 2 V should be switched
across the motor to start it. On the other hand, the motor
is stick, if the input voltage is under 1.2 V. The power
electronic PWM unit is saturated at 22 V. It is also a
kind of nonlinearity which could be handled using a TP
model. Because this paper concentrates on sliding sector
design, only the nonlinearity of the friction is handled by
TP model.
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Fig. 6. Comparison of the position responses
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The chattering of the classical sliding mode and the
chattering free response of the sector sliding mode control
can be compared in Fig. 6. and Fig. 7.

After entering into the sector, the trajectory reaches the
surface (σ = 0) gradually and smoothly, in case of sector
sliding mode. The phase trajectory of the conventional
sliding mode controller reaches the sliding surface directly
and earlier than that of the sector sliding mode controller.
After reaching the surface, the trajectory chatters around
the surface. In Fig. 10, the system enters into the sliding
sector approximately at t = 0.5s (σ1 = 0) in case of the
sector sliding mode control. The main difference appears
in the control activity. The conventional sliding mode is
very robust but it needs intensive control action (see in
Fig. 8), which causes significant audio noise as well. The
sampling rate was quite rare. Tsampling = 10ms. The
chattering could be reduced by increasing the sampling
frequency but this paper demonstrates that the reduction
of chattering (the intensity of the control action and the
audio noise) is significant at the same sampling rate, if the
TP based sector sliding mode (Fig. 9) is applied instead of
the traditional sliding mode control. The oscillation in the
control signal is caused by the friction (Fig. 9. t = 0.5 −
08s).
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Fig. 8. Control signal in the case of conventional SMC
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Fig. 9. Control signal in the case of sector SMC
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6. CONCLUSION

In this paper, a modified variable structure control strat-
egy with continuous switching control has been developed
in detail for the nonlinear system with uncertainty. The
control strategy can be regarded as the extension of con-
ventional VSS based sliding mode control method through
expanding the switching surface to the sliding sector. The
sliding sector is designed by a tensor product model trans-

formation. The major advantage of the proposed control
scheme is the introduction of the continuous switching con-
trol which successfully achieves smooth control response
and retains the robustness of sliding mode control simulta-
neously. Both theoretical analysis and simulations demon-
strate the attractiveness and the asymptotic stability of
the sliding sector with the use of the proposed switching
control which is essentially an interpolated control.
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