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Abstract: In this paper we study different strategies for identifying thermodynamic models of
buildings using experimental data collected from large scale wireless sensor networks. Wireless
sensor networks can easily provide temperature, humidity and solar radiation measurements
from tens to hundreds of sensors, thus potentially providing a fine-grained spatial-temporal
resolution. In order to cope with such a large number of inputs and outputs, we tested subspace
identification algorithms which are suitable for identifying large scale MIMO systems. The
identified model can be used to evaluate the thermodynamic efficiency of the building. We
also explore different sensor selection strategies in order to choose among all sensors the
most informative ones. Using a small set of sensors not only greatly reduces computational
burden in the identification algorithms, but can also be used to predict with high accuracy
the measurements of the other sensors using Kalman filters. The identification algorithms, the
sensor selection strategies, and the Kalman filter adopted have been tested and compared using
experimental data collected from 65 sensors deployed in a 80m2 − 200m3 building over an 11
day period.
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1. INTRODUCTION

Steady increasing prices of energy resources and growing
environmental concerns about climate changes is putting
much attention on energy conservation policies and tech-
nologies that can improve energy efficiency with low neg-
ative environmental effects. In particular, energy expendi-
ture for temperature control in buildings account for up to
30% of total budget and it is doomed to increase with the
proliferation of air conditioning systems. Therefore, there
is a need to use energy more efficiently and in a cleaner
manner in both new and old buildings, as testified also
by a recent European Community Directive 2002/91/EC
which imposes several actions in these directions. There-
fore, there is a strong need to develop both technologies
and tools that can provide:

• a-posteriori thermal efficiency of a building, i.e. a
certification based on experimental data

• thermal monitoring and comfort control systems es-
pecially in large building

• energy saving quantification after remodeling and
energy-specific retrofitting of existing buildings

• automatic fault-detection and monitoring of HVAC
systems

Wireless sensor networks (WSNs) seem a particularly
useful technology in this prospect. In fact, a WSN is

⋆ This work was partially supported by EU fund MIRC-6-CT-
2005-014815 “SENSNET", by the Italian CaRiPaRo Foundation,
and by the national project New techniques and applications of

identification and adaptive control funded by MIUR.

a network of small devices, called motes, provided with
sensors (temperature, humidity and solar radiation sen-
sors), a microcontroller, some memory and I/O ports,
and a wireless antenna which allow them to communicate
with their neighbors. WSNs are easy to deploy since they
are battery powered, they do not need to be placed in
specific locations since the network is self-configurable
and adaptive, they are non-intrusive since each device is
smaller than a cigarette packet, and finally they are quite
inexpensive. As a consequence a WSN, by avoiding the
need of cabling, can be rapidly installed also in existing
buildings with minor costs and intrusion, and collect mea-
surements from hundreds of locations for long periods of
time. Such measurements thus provide an unprecedented
quantity of information that can be used to identify a fine-
grained model of the building and to certificate its thermal
efficiency. Moreover, it is possible to envision the use of
WSNs not only for thermal efficiency certification, but also
for collecting data for realtime thermal monitoring and
regulation systems especially in large buildings. However,
the effective use of WSNs for thermodynamic identification
requires the development of novel mathematical tools that
can cope with such a large number of sensors. So far ther-
modynamic identification of buildings have been developed
based on data collected from a small number of sensors,
mainly due to the fact that measurement collection is
expensive and time-consuming. The most popular tools
adopted for thermodynamics identifications of buildings
are based on ARX, ARMAX and Neural Networks models
(see Dodier and Henze (2004)); these two latter model
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classes turn to be particularly difficult to handle when the
number of inputs and outputs grow very large, leading also
to ill-conditioned estimation problems when the inputs
and outputs are highly correlated, as it is the case for
measurements collected from sensors which are closely
located. Moreover, the choice of the location of sensors
from which data for identification is collected, is generally
based on experience and rule of thumbs, and little have
been done to experimentally evaluate which are the most
informative locations where to place the sensors.

In this work, we propose to use WSNs for collecting
data for thermodynamic identification of building since
they can be used to rapidly collect measurements from
a large number of sensors. In order to cope with large
number of sensors we adopted recently developed subspace
identification tools that when compared to the traditional
methods mentioned above, have the advantage to be
numerically efficient also for large scale MIMO systems. To
our knowledge this is the first attempt to apply subspace
methods for identification of thermodynamical models of
buildings. Then we illustrate the problems associated with
optimal sensor selection in terms of extracting the most
informative sensors from an identification perspective.
Finally, we also show how a small number of sensors, if
appropriately chosen, can predict with very high accuracy
the readings of all the other sensors by using Kalman
filters, thus providing a useful tool that can be used to
close the loop around a thermoregulation systems. The
proposed methodologies were tested using experimental
data collected from 65 sensors deployed in a 80m2−200m3

building over an 11 day period. The main limitation of
these experiments is that data where collected in open-
loop thermodynamical conditions of the building, i.e. the
temperature inside the building was not regulated by any
heating/cooling system therefore the state of the building
evolved due to the external temperature, humidity and
solar insulation. Although the very goal of identification
of building thermodynamic models is the energy efficiency
of the building under closed-loop conditions, i.e. when
the heating/cooling regulation is in place, we believe that
the methodologies proposed can be readily extended by
simply including as inputs also the external loads of the
heating/cooling system.

2. EXPERIMENTAL TESTBED AND DATA
COLLECTION

As mentioned in the previous section, we tested the iden-
tification techniques based on experimental data collected
from a real building. The edifice we took into exam is a
small two-floor residential building of about 80 m2 and
200 m3 whose ichnography and picture are presented in
Figure 1. The building is situated in Padova (Italy) at a
latitude of 45.41 ◦N and the climatic zone is characterized
by 2383 degrees day referred to nominal temperature of 20
◦C. The experimental data was collected through a WSN
made of 65 Tmote-Sky nodes produced by Moteiv Inc.
Each Tmote-Sky is provided with a temperature sensor, a
humidity sensor, and a total solar radiation photoreceptor
(visible + infrared). In our identification experiments we
did not use the humidity sensors.

The data was collected under ideal conditions. In partic-
ular, during the data collection period, the building was
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Fig. 1. Ichnography(top) and picture (bottom) of the
edifice used as test case.

not inhabited, and all external windows and doors were
closed. This prevented the natural thermal dynamics to
be disturbed by nonlinear and unpredictable phenomena
due to air exchange with the external environment. Also
we could not use the building thermoregulation system be-
cause it was out of order. This meant that the inputs to the
system were given only by the external environment under
the form of external temperature and sun radiance. Since
the thermal dynamics of the building evolved only due to
uncontrollable external conditions, it was not possible to
strongly excite the system as it would have been possible
with the thermoregulation system in place, thus obtaining
data which are ill-conditioned for identification purposes.

Out of the 65 sensor nodes, one sensor measuring temper-
ature and one sensor measuring total solar radiation were
placed on each wall on the outer surface of the building
at an height of about 4.5 m. The remaining 57 sensors,
used as temperature sensor only, were positioned inside
the edifice. In particular, they were uniformly distributed
in the space so that the resulting model could describe
precisely the temperature in each part of the edifice, and
some of them were placed in the proximity of windows and
doors where the heat exchange is larger.

Due to logistical problem, we could perform only a single
experimental measurement during a period of 11 days
starting at 11.00pm, June 15th, 2007 and lasted until
10.00am, June 26th, 2007. We used a sampling time of 10

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8861



minutes. As mentioned above, data collected offered poor
model input excitation because during measurement the
weather was quite uniform with a nice sun shining every
day. The external high temperature was always around
31 ◦C while the low was about 24 ◦C. The mean internal
temperature of the building increased every day passing
from about 25 ◦C the first day (low temperature due to
the perturbation induced by sensor placement activity) to
about 28 ◦C the last one.

3. SUBSPACE IDENTIFICATION WITH INPUT
SELECTION

We shall model the thermodynamic behavior of the build-
ing as a discrete time, time invariant dynamical linear
model in state space form with exogenous inputs. The
inputs u(t) ∈ R

m of the model are a subset chosen from
one or more of the following classes:

• 4 external temperature sensors
• 4 external total solar radiation (visible and infrared

spectrum)
• 4 internal temperature sensors placed on the ground

floor.

The outputs y(t) ∈ R
l are the (remaining) internal temper-

atures inside the building. All inputs have been properly
scaled in order to avoid numerical ill-conditioning. The
rational behind the use of temperature sensors as inputs
is that they are indirectly related to the heat exchange
between the building and the environment.

We assume data {y(t), u(t)}, t = 1, ..., N are available and
we consider the dynamical model (in innovation form)

{

x(t + 1) = Ax(t) + B u(t) + K e(t)
y(t) = C x(t) + e(t)

(1)

where e(t) is the one-step-ahead prediction error, which is
a zero-mean white noise. We also assumed that there there
is one time delay in the transfer function from u(t) to y(t).
The dimension of the state space is denoted by n and all
matrices are sized accordingly.

The number of inputs and outputs is large and hence we
decided to use subspace identification techniques. These
methods are based on robust, non iterative and numeri-
cally efficient linear algebra tools which, contrary to other
methods based on the optimization of some cost function
(e.g. Prediction Error Methods, see Ljung (1997)) do not
require performing costly iterative minimization thus also
avoiding the risk of getting stuck in local minima, see
e.g. Van Overschee and De Moor (1996),Chiuso (2007). In
particular, we compared the MATLABr System Identifi-
cation Toolbox n4sid.m routine 1 and a recursive version
of the PBSIDopt algorithm in Chiuso (2007).

As mentioned in the introduction, using a large number
of inputs and outputs data can potentially provide a great
wealth of information to obtain a detailed model for the
building thermodynamics. However, if the inputs and/or
the outputs of the model are highly correlated we may
1 The current implementation in Matlab is actually a mixture
of the most well known methods, i.e. N4SID Van Overschee and
De Moor (1994), MOESP Verhaegen (1994) and CVA Larimore
(1990); different choice are the user parameters are performed based
on the options. We used the “default” Matlab choice besides that we
had to force stability on some cases.

incur in severe numerical problems due to collinearity.
This may happen, for instance, when the sensors are
closely positioned. This collinearity usually results in es-
timated models which are very sensitive to the available
data (i.e. the estimators’ variance will be large). Indeed,
some preliminary identification tests confirmed that the
model identified with the full set of inputs provided lower
prediction performance in fitting the validation data, as
compared to models identified with only a subset of total
inputs. One solution to address this problem is to force the
model to be “simple” by adding some regularization terms
or by forcing the model to have only a small number of
parameters, e.g. by selecting only a fraction of all possible
inputs (or outputs). Here we follow this second approach
being more suitable for subspace identification algorithms.

Note that, if one knew the linear model, one could obtain a
measure of relative importance of the single input among
the others (see the survey by van de Wal and de Jager
(2001) for a presentation of various methodologies). How-
ever, the system identification step is precisely where the
input selection process plays a key role.

Methods for avoiding the collinearity problems include
extensions of Principal Component Regression (see e.g.
Greenberg (1975)), of PLS (see Wold (1966)) and its
dynamic extensions (see e.g. Qin (1998) and references
therein).

In this preliminary work we took a simple route which
we describe next, leaving to future work analysis and
development of more sophisticated techniques. The input
selection has been achieved by constructing, for each
candidate subset, a linear state space model and electing
the best-fitting (on validation data) with respect to some
sort of metric. The metric chosen for the model M is the
scalar variance of the simulation error, that is

fit(M) = trace
(

E[eu(t)e⊤u (t)]
)

. (2)

Of course we approximate E[eu(t)e⊤u (t)] with the sample
variance of the fitting error, i.e. eu(t) = y(t) − yu(t) =
y(t)−C xu(t), where xu(t) is the state obtained by setting
e(t) = 0 and by using the identified initial condition 2 x̂(0)
in model dynamics given by equations (1).

Exhaustive search over all possible inputs combinations
is a combinatorial problem and is not a viable approach.
Instead we adopted an iterative greedy approach to the
selection problem. The candidate inputs have been divided
in three classes: external temperatures, external solar
radiation and internal temperatures. For each class we
select the best input in term of the metric proposed above.
We remove this input from the candidate input set and
we place it into the selected input set for identification.
Then we repeat the process until the desired number of
inputs have been selected (or until the validation metric
increases). Experimental evidences showed us that the
chosen subset is mostly independent from the order of class
selection. The results based on the previous identification
methodologies on validation data set are shown in Figure 2
and Figure 3. In particular, in Figure 2, we compared
the simulation performance of the two models identified
with n4sid.m and PBSIDopt by using the best input for

2 The initial condition could also have been re-estimated for the
validation data.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8862



12 24 36 48 60 72 84

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

time (hour)

te
m

p
e
ra

tu
re

 (
°

C
)

 

 

  y

N4SID

PBSID

Fig. 2. Temperature measured by one internal sensor, i.e.
one entry of output vector y, and simulated temper-
ature yu using the models identified by n4sid.m and
PBSIDopt.
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Fig. 3. Simulation error fit(M) based on the model identi-
fied by PBSIDopt using 2 and 3 inputs.

each of the three classes. In order to have acceptable
performance from n4sid.m we had to force stability and
use a high order model (namely at least as big as the
number of outputs) Differently, the model identified by
PBSIDopt was always asymptotically stable and showed
limited output error even with a low order model (namely
about one fifth of the number of outputs). It has been
observed that PBSIDopt performed consistently better
than n4sid.m under different testing conditions, therefore
we shall focus only on PBSIDopt in the remaining part of
the paper. In Figure 3 we show the simulation performance
of the model identified (using PBSIDopt) as the number
of inputs is increased. In the 2-input model we used the
most informative external temperature sensor and internal
ground temperature sensor, while in the 3-input model
we added the most informative radiation sensor. In is
interesting to mention that the input selection algorithm
found that most informative external temperature sensor
was the one placed on the south side and not on the north
side as commonly suggested (see e.g. AA. VV. (1994)).
This might be the result of the particular data-set we
used, however most common sensor placement strategies
are based more on experience rather than mathematical
analysis and it deserves more investigation.

4. PREDICTION VIA KALMAN FILTERING

It is a well known fact that simulation alone may perform
poorly when initial condition are unknown or when “exter-

nal” excitations, e.g. unmeasured environmental changes
in our setup, perturb the system. It has been in fact
observed that the simulated output of the model becomes
unreliable within few days.

However in many applications it could reasonable to as-
sume that few “internal” sensors are available as measure-
ments and one would like to predict the temperature in
other locations of the building. E.g. this could be used to
the purpose of designing a controller which maintains the
temperature as spatially homogeneous as possible while
using only one or few internal sensors.

In this Section we shall design a Kalman estimator, based
on the identified model, which use only a subset of the
output vector y(t) to predict the output of all the other
sensors.

Let us denote with L ⊆ {1, 2, . . . , l} the subset of outputs
which will be used as measurements to estimate the state
in the Kalman filter. Let M[R,C] be the sub-matrix of the

matrix M ∈ R
p×q obtained by choosing the rows in the set

R ⊆ {1, 2, . . . , p} and columns in the set C ⊆ {1, 2, . . . , q}.
Similarly, VR will be the vector obtained by choosing
entries in set R of the column vector V . The dot inside a
square bracket, as in M[R,·], indicates that all columns of
the original matrix have been retained; a similar notation
holds for the rows. Based on equation (1), we build the
reduced linear system

{

x(t + 1) = Ax(t) + B u(t) + K[·,L] e[L](t)
y[L](t) = C[L,·] x(t) + e[L](t)

(3)

with model error covariance matrix Λ[L,L], Λ = E[e(t)e⊤(t)].

The initial condition µ0 has been chosen such that it
captures the initial “average temperature” (i.e. the mean
of the sensor measurements in the set L at time zero). The
initial state covariance matrix P0 was instead chosen by a
trial and error procedure.

Again we face the problem of selecting a small subset of
outputs from a large set, yet providing good predictive
performance. That is, we have to select L in such a way to
reduce the global error on internal temperature estimates.
A natural way to evaluate the quality of the set L is to mea-
sure its ability in predicting all the output measurements.
This can be achieved by computing, using the filtering
algebraic Riccati equation (ARE) Anderson and Moore
(1979), the (steady-state) state error covariance P (L), i.e.
the state error covariance when only the measurements in
the set L are used. The corresponding output prediction 3

error variance is given by Φ(L) = CP (L)C⊤ +Λ. We then
minimize the scalar measure:

Jd(L) = tr(Φ(L)). (4)

Alternatively one could consider the sample version of the
above, i.e.

Jf (L) =
∑

t

||ŷ(t) − y(t)||2. (5)

Finding the optimal set of output sensors which minimizes
one of the previous metrics is again combinatorial problem,
therefore some efficient suboptimal strategy is required. In
this work we explored three different strategies. All these

3 One could, alternatively, consider the filtering error variance.
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strategies divide the sensors into two sets: the selected
sensor set S and the remaining ones R.

Greedy Search (GrS) It starts with an empty set S and
then sequentially finds among all the sensors in R the
one that provides best performance when added to the
set S. Once this sensor is found, it is removed from R
and placed in S and the procedure repeated until the
desired number of sensors have been selected.

Local Search (LS) The algorithm starts with S chosen
at random. Then it sequentially swaps one sensor be-
tween the two sets R and S and finds, among all pos-
sible swapping combinations, the one that leads to the
best performance improvement. Then the best swapping
is actually performed between the two sets and the
process repeated, avoiding to search previous swapping
combination. This procedure is guaranteed to improve
performance and every step and it stops when a local
minimum is reached or a certain number of iterations
have been performed.

Genetic Search (GeS) The previous strategy based on
LS is likely to end up in local minima. To reduce this
risk we adopted a genetic algorithm, see e.g. Goldberg
(1989), to find good sensors swapping between the sets
R and S. In particular, it starts with several candidate
sets S, called populations, and then it swaps sensors
among them (breeding and mutation) and only the
best performing new populations are likely to survive.
This process is continued till no major improvements
are observed or a certain number of iterations have
been performed. Although these algorithms are based
on heuristics and are not guaranteed to find the global
minimum, they often lead to good performance.

We applied the three previous algorithms in sequence,
i.e. we used the solution of GrS to initialize LS, and the
solution of LS to initialize GeS. The optimal solution has
been used to compare the performance between simulation
based only on inputs u(t) and prediction using the Kalman
filter based on the outputs y[L]. The dynamical model
used for both the simulation and the Kalman predictor
was obtained using the PBSIDopt algorithm with three
inputs chosen based on the greedy algorithm described in
the previous section. Figure 4 shows the real temperature
of a sensor not included in the 5 outputs y[L] used by the
Kalman filter and the corresponding yu and ŷ given by the
open-loop simulation based only on the input u and the
Kalman predictor, respectively. The improvements given
by the Kalman filter are evident, in fact the use of only 5
sensors is sufficient to reconstruct the temperature of all
57 sensors with high precision.

Figures 5 (single sensor output) and 6 (mean square error)
show that the prediction error improves as the number
of sensors increase, in particular during the transient
period. However, even with only two sensors the mean
square error is smaller than half a degree during transient
period and smaller than a tenth of degree at steady-
state. Of course, such a small error is also a consequence
of the specific experimental conditions, i.e. high sensor
density and unpopulated building. However, it suggests
that the linear model identified by the PBSIDopt algorithm
is rather effective to describe the behavior of building
thermodynamics, in particular when paired with Kalman
filtering.

12 24 36 48 60 72 84

27.5

28

28.5

29

29.5

time (hour)

te
m

p
e
ra

tu
re

 (
°

C
)

 

 

y

simulation

prediction

Fig. 4. Temperature y measured by one internal sensor not
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the PBSIDopt model and ŷ predicted by the Kalman
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Fig. 5. Output y of a single sensor (not in the set L) vs.
the predicted output ŷ obtained from Kalman filter
based on 2 and 5 outputs in the set L.

Finally, Figure 7 show the mean square error using the
3 best output sensors selected by the three strategies
described above. The LS algorithm always offered great
enhancements while the GeS presented some problems
connected to the parameters calibration. We also noticed
that sometimes the application of a random starting solu-
tion to the local search produced better results if compared
with the ones given by the solution of greedy algorithm.

The previous results are based on the metric Jd(L),
however we observed that there was substantial agreement
with the empirical cost Jf (L).

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of WSNs in combina-
tion with subspace methods for identification of building
thermodynamics. In fact, WSNs provide a mean to rapidly
and inexpensively collect measurements from hundreds
of temperature, humidity and light radiation sensors for
long period of times. Although such a great wealth of
data potentially provide fine-grained information about
building thermodynamics, it also poses novel challenging
problems, in particular in terms of model identification. In
fact, the number of inputs and outputs provided by WSNs
are at least an order of magnitude larger than the number
than traditional identification tools for building thermo-
dynamics can handle (AA. VV. (1994)). In this paper we
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Fig. 6. Average prediction error for all sensors not included
in the set L during transient period (top) and at
steady-state (bottom). Predicted output ŷ(t) using the
Kalman filter with 2 and 5 outputs.
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Fig. 7. Predictive performance (on a single output) of
Kalman filter with subsets selected by different heuris-
tic algorithms.

proposed to address this problem by adopting subspace
identification tools which have been recently developed for
identifying large scale MIMO systems. Indeed, we believe
that identification of building thermodynamics can be a
very useful test bed to evaluate and possible improve
subspace identification algorithms. In this work we tested
a standard subspace method (the Matlab n4sid.m) and a
recently developed subspace method (PBSIDopt, Chiuso
(2007)) and we observed that the latter systematically
outperformed the former, however a deeper investigation
is still required. Also we found that these tools did not
perform well when the number of inputs and outputs was
very large, mainly due to the fact that inputs and out-
puts were highly correlated. Therefore we proposed some

heuristic for input selection for identification purposes,
however more systematic and mathematically sound tools
are necessary; we envision that systematic extension of
principal component regression (PCR) and Partial Least
Squares (PLS) might give significant improvements and
hence will be subject of future research.

The simulation and prediction performance obtained by
using only a properly chosen subset of inputs and outputs
are remarkable. Although this is also a result of the
special experimental conditions of the building, we believe
that the subspace identification is a viable and effective
solution, and we are currently performing more realistic
experiments.

Summarizing, this paper poses more questions than an-
swers, mainly due to the fact that WSNs open up new
problems and challenges to the identification building ther-
modynamics community. However, we also believe that
major improvements and advancements are to come.
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