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Abstract: A biologically inspired model for a biped robot is developed. Each leg is modeled as
a massless spring equipped with one radial and one angular actuator. The two legs in the model
are attached to a point mass. The biped locomotion is modeled as a hybrid dynamic system
that switches between four operation phases, with distinct dynamic behavior in each phase. A
novel, simple yet robust control law that utilizes symmetry is developed to control the robot’s
speed, hopping height and balance during forward motion. The controller utilizes a feedforward
artificial neural network, trained offline, to find approximate symmetric touchdown angles that
are used by the control algorithm to determine actuator corrections. Simulation results show
that the controller is able to maintain reference forward speed while maintaining balance during
forward motion.

1. INTRODUCTION

To date, the most significant research on dynamic legged
locomotion was led by Raibert at the Carnegie-Mellon Uni-
versity (CMU) and Massachusetts Institute of Technology
(MIT) Leg labs in the 1980s and 1990s Poulakakis and
Smith (2005). He decomposed control of running into three
parts-hopping control, forward speed control, and balance.
Raibert’s legged robots generally consisted of a point mass
at the end of an actuated, compliant prismatic leg(s).
These controllers resulted in a fast and stable dynamic run-
ning. Buehler and his students in the Ambulatory Robotics
Laboratory (ARL) at McGill University in Montreal, Que-
bec, Canada designed and constructed ARL monopod I ,
ARL monopod II, Scout I, and Scout II Buehler (2002);
Ahmadi and Buehler (1999). As in Raibert’s robots, these
robots had compliant prismatic legs except for Scout I
which had stiff legs. The robots at ARL were powered by
standard electric actuation, instead of tethered hydraulic
actuation citeARL. ARL monopod I and II were able to
run at up to 1.2m/s Ahmadi and Buehler (1999). Scout II,
a four-legged robot, achieved dynamically stable running
of up to 1.3m/s on flat ground Poulakakis and Smith
(2005). Rhex, a hexapedal robot inspired by research in
cockroach locomotion, had six compliant legs and six ac-
tuators - one actuator per leg.

This paper presents a new simple and robust control strat-
egy for bipedal running. The robot model used in this work
is similar to ARL monopods. It has two compliant legs
prismatic legs. Each leg is equipped with two actuators. As
in Raibert’s controllers symmetry plays a significant role
in designing stable running gaits. We have presented the
theoretical ground for the empirical observations that the
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symmetry-based running control is based. Experiments of
forward speed profiles tracking show promising results.

The remaining of this paper is organized as follows. In
section 2 we describe the mathematical model of the
biped robot. Section 3 is devoted to the development
of the control laws. It begins with an discussion about
the importance of symmetry in legged locomotion. It
also presents the formal problem definition for forward
speed control. It then discusses the theoretical ground
for the running control laws . Finally, it presents the
arguments that lead to the development of the form of
the forward speed controller. Section 4 summarizes the
results of the different experiments performed. Results
of forward speed tracking experiments are given in this
section. Section 5 presents the conclusion of the paper
in which we highlight the contributions of the paper and
future research directions.

2. THE MODEL

The SLIP (Spring Loaded Inverted Pendulum) models for
running accurately predict the mechanics of running gaits
C. T. Farley and McMahon (1993). The model consists
of a massless, spring leg attached at a frictionless pin-
jointed hip to the center of mass (COM) of a massive
rigid body, as shown in Figure ??n this study, rigid
body rotations are ignored; only point-mass dynamics are
considered. During locomotion, the SLIP model alternates
through two phases: the stance phase, when the foot is
on the ground, and the fight phase, when the foot is
in the air. Transitions between the two phases occur at
discrete touch-down (TD) and lift-off (LO) events, when
the governing equations change instantaneously, making
the SLIP system a hybrid dynamic system. TD occurs
when the leg strikes the ground, which is assumed to be
a horizontal plane rough enough to prevent the foot from
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Fig. 1. Planar biped SLIP

sliding during locomotion. After TD, the leg compresses
to a point of maximum compression (which is called the
bottom) and then unloads until LO, which occurs when
the leg has completely unloaded. The mass then travels
freely under the influence of gravity until TD occurs again
Seipel and Holmes (2005). A single step or stride is defined
as the period between two subsequent TD or LO events.

2.1 Bipedal Spring Mass Model

The biped robot model used in this study has two leg
springs with equal stiffness constants and rest lengths
attached to a point mass representing the body of the
robot, as shown in Figure 1. The two legs can freely
rotate around the hip joint. The movement of the robot
is constrained to the sagittal plane (the longitudinal plane
dividing the body into symmetric right and left sections),
thus making the robot a planar biped. The two leg springs
act independently. During locomotion, each leg passes
through two phases – flight and stance. Consequently, the
biped robot can be in one of three phases – single-stance,
double-stance, or flight. From a systems engineering point
of view, the biped robot model can be studied as a
switched nonlinear system. A switched system is composed
of subsystems and rules that govern the switching among
the subsystems. It can be mathematically described as,

δx (t) = fσ (x (t) , u(t), d(t)) , x(t0) = x0 (1)

y(t) = gσ(x(t), w(t)) (2)

where x(t) represents the state, u(t) the control inputs,
and y(t) the measured outputs, and d(t) and w(t) stand
for external signals such as perturbations. σ, whose value
determines which subsystem is active at a given instant,
is a piecewise constant signal taking values from an index
set M , {1, . . . ,m}. fk, k ∈ M , are vector fields, and
gk, k ∈ M , are vector functions, while the symbol δ
denotes the derivative operator in continuous time (i.e.,
δx(t) = d

dtx(t)) and the shift forward operator in discrete
times (i.e., δx(t) = x(t+ 1)).

The switched system representation of the planar biped
model comprises four subsystems – the left stance subsys-
tem, the right stance subsystem, the double-stance subsys-
tem, and the flight subsystem. The value of σ is chosen so

that σ = 1, 2, 3, and 4 for the flight, left stance, right stance
and double-stance subsystems, respectively. Tables 1 and
2 summarize the states and control inputs of the dynamic
model for the planar biped. In these tables and in the
rest of this document, variables with subscripts 1 and 2
represent quantities pertaining to the left leg and the right
leg, respectively. In general, the problem of locomotion
control for the biped robot is equivalent to finding values
for the control inputs (which are summarized in Table 2)
that, when applied, achieve a desired locomotion behavior.
The following sections describe each subsystem in detail.

Table 1. States and their descriptions for the
biped robot

State Description

ζi Length of the left/right (i = 1/2) leg

ζ̇i Time rate of expansion for the left/right (i = 1/2) leg

ψi Angle of the left/right (i = 1/2) leg with vertical axis

ψ̇i Time derivative of ψi

by Horizontal displacement of the COM

bz Height of the COM

ḃy Horizontal speed of the COM

ḃz Vertical speed of the COM

Table 2. Control inputs to the biped robot and
their descriptions

Input Description

υi Radial speed of the left (i = 1) or right (i = 2) leg

ωi Angular speed of the left (i = 1) or right (i = 2) leg

2.2 Flight Subsystem

The dynamics of the robot in the flight phase is that
of a point mass under the action of gravitational force.
Mathematically, the dynamics of the flight subsystem can
be written as 

b̈y
b̈z
ζ̇1
ζ̇2
ψ̇1

ψ̇2

 =


0
−g
υ1

υ2

ω1

ω2

 . (3)

2.3 Single-Stance Subsystems

The robot can be in one of two different single-stance
phases – the left stance phase and the right stance phase
– depending on which leg is on the ground. The dynamic
equations governing both phases are identical except for
the subscripts distinguishing left from right.

For the left stance phase, If DU(ζ1) represents the spring
force exerted by the the left leg on the COM when the
length of the spring is ζ1, applying Newton’s second law,
we have:

ζ̈1
ψ̈1

ζ̇2
ψ̇2

 =


ζ1ψ̇

2
1 − g cos(ψ1)− 1

m
DU(ζ1)

g sin(ψ1)− 2ζ̇1ψ̇1

ζ1
υ2

ω2

 . (4)
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Similarly for a the right stance phase, we have:
ζ̈2
ψ̈2

ζ̇1
ψ̇1

 =


ζ2ψ̇

2
2 − g cos(ψ2)− 1

m
DU(ζ2)

g sin(ψ2)− 2ζ̇2ψ̇2

ζ2
υ1

ω1

 . (5)

The challenge in control of the running biped robot comes
from the single-stance phase. The time profile of the value
of the state vector from TD to LO is called the stance
map.

Despite its simple structure, the SLIP model presents
difficulties when one wishes to pursue formal analysis
and control since it is a hybrid system with nonlinear
stance dynamics, which is not closed-form integrable.
There has been considerable research aimed at finding an
approximate closed-form equivalent of the stance dynam-
ics (see Shih (2000) for a summary). Seipel and Holmes
present an approximate stance map by neglecting the force
of gravity during the stance phase Seipel and Holmes
(2005). The choice to ignore gravity during stance is not
uncommon in the robotics literature Shih (2000). This
choice is made primarily to simplify the analysis and relies
upon the assumption that the spring force dominates the
gravitation force and that angular momentum is nearly
constant during stance. Due to the high discrepancy be-
tween the approximate models and the exact models, the
exact model is used in this study.

2.4 Double-Stance Subsystem

The double-stance subsystem is active when both legs are
fixed to the ground. Most studies involving biped control
concentrate on the single-stance phase because it is the
predominant phase of locomotion. In our work, running
gaits are generated in such a way that double-stance
phases are avoided at all times.

Applying Newton’s second law in the vertical and horizon-
tal directions to the free body diagram in Figure 2 gives
the following equations of motion for the double-stance
phase:[

b̈y
b̈z

]
=

[
0
−g

]
+

[
−DU(ζ1)

(
by−f1
mζ1

)
−DU(ζ2)

(
f2−by
mζ2

)
−DU(ζ1)

(
bz
mζ1

)
−DU(ζ2)

(
bz
mζ2

) ]
. (6)

Since neither leg is in the air, the control inputs do not
have any effect. The behavior of the robot in double-stance
is determined solely by the initial state handed to the
subsystem when it becomes active.

In summary, the dynamics of the biped robot can be
compactly written as:

ẋ = fσ(x, u) (7)
where σ = 1, 2, 3, or 4. The value of σ changes at TD
and LO. The following section discusses switching between
subsystems in detail.

2.5 Switching Conditions

The switching signal determines which subsystem is active
at any time. Leg i is on the ground if the following
condition is satisfied.

Fig. 2. FBD of the bipedal spring mass system in double-
stance

|bz − ζi cos(ψi)| ≤ ε AND
(
ζi < ζ0 OR ζ̇i ≤ 0

)
,

(8)
where ε is a very small positive number that serves as a
measure of tolerance, and ζ0 is the unstretched length of
the leg spring. If the function σs(bz, ζ, ψ, ζ̇) is defined as

σs(bz, ζ, ψ, ζ̇) =

 1
if |bz − ζ cos(ψ)|≤ε
AND

(
ζ < ζ0 OR ζ̇ ≤ 0

)
0 Otherwise

then the switching signal for the overall system can be
formulated as:

σ(bz, ζ1, ψ1, ζ̇1, ζ2, ψ2, ζ̇2) (9)

= 2σs(bz, ζ2, ψ2, ζ̇2) + σs(bz, ζ1, ψ1, ζ̇1) + 1. (10)

TD occurs when one of the two legs goes from a flight to a
stance phase. Mathematically, for leg i, TD occurs at time
t if

σs(bz(t−), ζi(t−), ψi(t−), ζ̇i(t−)) = 0 (11)

AND σs(bz(t), ζi(t), ψi(t), ζ̇i(t)) = 1. (12)
where t− denotes a time earlier than t by a vanishingly
small amount. Similarly, LO happens when one of the two
legs goes from a stance to a flight phase. Therefore, LO
occurs at time t if

σs(bz(t−), ζi(t−), ψi(t−), ζ̇i(t−)) = 1 (13)

AND σs(bz(t), ζi(t), ψi(t), ζ̇i(t)) = 0. (14)
Since the switching signal depends only on the state
variables, it is a case of pure-state-feedback switching.

3. LOCOMOTION CONTROL

Control of running can be decomposed into controlling
hopping height, forward speed and balance. The controller
presented here rely heavily on symmetry. For the legged
robot to keep its forward running speed fixed over the
duration of a stance phase, the torques and horizontal
forces exerted on the body by the legs must integrate to
zero. This is true for both running machines and animals
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Raibert (1986). Study of animal locomotion shows that,
when animals are running at constant speed, the stance
leg reaches maximum compression when it is in a vertical
posture C. T. Farley and McMahon (1993), which is a
requirement for a symmetric stance map.

3.1 Forward Speed Control

Each stride in running is composed of a single-stance phase
and a flight phase. Since the horizontal speed of the COM
does not change during the flight phase, the horizontal
speed can only be controlled by adjusting the TD state
of the TD leg so that the horizontal speed of the COM
at the next LO is as close as possible to the reference
horizontal speed. The straightforward way to achieve this
is to find an expression for the horizontal speed at the
next LO in terms of the TD parameters. This method is
impractical for a number of reasons. The first one is that,
since the equations that define the dynamics of the single-
stance subsystem (viz., Equations 4 and 5) are not closed
form integrable, it is difficult, if not impossible, to find a
closed form expression of the TD state in terms of the LO
horizontal speed. Furthermore, the mapping from the LO
horizontal speed to the TD state is not one-to-one ( i.e.,
there are more than one set of values for the TD state that
result in the same horizontal speed at LO).

The problem of forward speed control can be formulated
as follows.
Problem 1. Given a reference horizontal speed at LO,
ḃyr(t), where 0 6 t 6 T, determine a control input,
u(t) , [ υ1(t) υ2(t) ω1(t) ω2(t) ]T that, when applied to
the switched system, comprised of the four subsystems
defined by Equations 3, 4, 5, and 6, with the initial
state x = x0 and the switching rule given by Equation 9,
minimizes the tracking error p defined by

p =
1
N

∑
t
lo

∣∣∣ḃy(t)− ḃyr(t)
∣∣∣ for 0 6 t 6 T (15)

where tlo is the time when lift-off, defined by Equation 13,
occurs, and N is the number of LO events fired during the
interval 0 6 t 6 T.

Generally, the horizontal speed of the COM changes only
during a stance phase. For certain values of the TD
parameters, however, the horizontal speed of the COM at
TD equals the horizontal speed of the COM at LO. These
TD states are of particular interest for two main reasons.
First, they represent steady-state operating points. Under
normal operating conditions, the robot is most likely
required to travel at a constant horizontal speed. This
operation mode requires TD conditions that result in zero
net horizontal acceleration. Secondly, operating the robot
around those points implies an upright posture for the
robot during motion. This is very important in avoiding
stumbling and maintaining balance.

The length of the leg spring at TD is assumed to be equal
to the rest length of the leg spring. Under this assumption,
Theorem 1 below states that checking whether the spring
leg angle at TD is the negative of the spring leg angle at LO
or not is a sufficient test for symmetry of the stance map.
Therefore, as an implication of Theorem 1, solving for TD
angles that result in symmetry is reduced to solving for TD

angles that result in opposite leg spring angles at TD and
LO. Once those TD angles are found, assuming an ideal
angular actuator that can rotate the leg at any angular
speed at any time during flight, it is always possible to
deploy the leg at the symmetric TD angle. It can be shown,
however, that it is not always possible to find a TD angle
that results in a symmetric stance map. More specifically,
for speeds of the COM greater than a certain value, the
leg spring cannot generate enough resistance against the
inertia and weight of the robot’s mass to prevent it from
hitting the ground before LO. According to Theorem 2, if
the speed of the COM is less than a certain value, there
exists a TD angle (called the symmetry angle) that satisfies
the condition of Theorem 1.
Theorem 1. Given a SLIP, assuming that the length of the
leg spring at TD equals the rest length of the leg spring,
if the TD angle and the LO angle are the negatives of
each other, then the horizontal speed of the COM at TD
equals the horizontal speed of the COM at LO. Also, under
the same condition, the vertical speed of the COM at TD
and the vertical speed of the COM at LO are equal in
magnitude but opposite in sign, i.e.,

ḃytd = ḃylo (16)

ḃztd =−ḃzlo, (17)

where ḃytd, and ḃylo are the horizontal speeds of the
COM at TD and LO, respectively, while ḃztd and ḃzlo,
respectively, are the vertical speeds of the COM at TD
and LO.
Theorem 2. For a given SLIP with a rest spring length ζ0,
body mass m, and leg spring stiffness constant k, for any
speed of the COM at TD less than a value vmax, there
exists a TD angle ψsym such that the horizontal speed of
the COM at TD, ḃytd, is equal to the horizontal speed of
the COM at LO, ḃylo.
Theorem 3. Given a SLIP with TD speed less than vmax

(as in Theorem 2), the partial derivative of the horizontal
speed at LO ḃylo w.r.t. the TD angle ψt evaluated at the
symmetric TD angle ψsym is always positive, i.e.,

∂

∂ψt
ḃylo

∣∣∣∣
ψt=ψsym

> 0 (18)

By Theorem 3, a SLIP with given velocity strikes the
ground at an angle slightly greater than the symmetric TD
angle corresponding (by Theorem 2) to the TD velocity,
then the LO horizontal speed will be slightly greater than
the horizontal speed at TD.

Touchdown Control The implementation of the touch-
down control algorithm is based on Theorem 3, with the
forward speed of the robot controlled using the TD angle.
Increasing (decreasing) forward speeds are achieved by
touching the ground at angles greater (less) than the sym-
metry TD angle. Figure 3 shows a horizontal speed stance
map of the three qualitatively different scenarios: TD angle
less than, equal to and greater than the symmetry TD
angle. The vertical coordinate corresponding to the start
point in each graph represents the horizontal speed at TD,
and that of the end point represents the horizontal speed
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Fig. 3. Effect of asymmetry on horizontal speed

at LO. It can clearly be seen that the middle plot in Figure
3 is symmetric about a vertical axis that passes through
the point of lowest horizontal speed. The result presented
in Figure 3 confirms Theorem 3.

Let us define f as

f : vtd × φtd × ψtd 7−→ ψlo, (19)

where vtd is the speed of the COM, φtd is the angle
the velocity of the COM makes with the vertical axis
measured clockwise, ψtd is the TD angle, and ψlo is the
LO angle. Practically, f represents a solution to the set of
differential equations defining the single-stance subsystem
(viz., Equations 4 or 5). Finding the symmetric TD angle
is equivalent to solving the following equation for ψtd.

f(vtd, φtd, ψtd) + ψtd = 0 (20)

for given values of vtd and φtd. As mentioned, a closed-
form analytic solution of Equation 4 or 5 does not exit, so
one must resort to numerical methods. Finding a solution
to Equation 20 is computationally expensive, but the
controller relies heavily on the solution. In this work, a
root-finding tool that uses a combination of bisection,
secant, and inverse quadratic interpolation methods is
used. The convergence speed is satisfactory for offline
calculation but too slow for real-time application. As a
work-around to the problem, Equation 20 is numerically
solved offline for equally spaced values of vtd and φtd, and
the result is used to train a feedforward neural network.
The controller then uses the trained neural network to find
approximate values of the symmetric TD angle for different
TD velocities. Figure 4 shows a plot of the corresponding
symmetric TD angle for different combinations of TD
speed and velocity angle. The forward speed controller is
a feedback controller that adjusts the speed of the robot
by changing the TD angle relative to the symmetric angle.
If the horizontal speed at TD is equal to the reference
horizontal speed, the TD angle must be equal to the
symmetric angle. If it is less (greater) than the reference
horizontal speed, then the TD angle must be less (greater)
than the symmetric TD angle. At the same time, the
deviation from the symmetric angle must be kept small
to avoid stumbling.

The control law has the following form.

k= 1 + k1
ḃytd − ḃyr

ḃyr
(21)

ψtd = kψsym, (22)

Fig. 4. Symmetric surface for speed range of 1.5 to 4m/s.

where k1 is the feedback gain and ḃyr is the reference
forward speed at LO. In Equation 21, k becomes 1 if ḃytd =
ḃyr; substituting 1 for k in Equation 22 gives ψtd = ψsym.
And, if ḃytd < ḃyr in Equation 21, then k < 1. Since
running with positive forward speed results in negative
symmetric TD angles, k < 1 implies ψtd > ψsym . A TD
angle greater than the symmetric angle results in a net
positive horizontal acceleration (as expected), minimizing
the difference between ḃytd and ḃyr. Using similar logic,
when ḃytd > ḃyr, we have ψtd < ψsym.

Prediction of symmetric TD angles is very sensitive to
the values of the SLIP parameters used in training the
neural network. In any real-time control system, there
is always some amount of external noise. To reduce the
effect of noise, the control algorithm needs some feedback
correction mechanism. It is assumed that the symmetric
TD angle in the presence of noise is some positive constant
times the noise-free symmetric TD angle. i.e.,

ψsym(noise) = kcψsym(ideal) (23)
where kc is the correction factor.

Therefore, while controlling the speed of the robot, the
control algorithm tries to estimate the value of kc. The
noise rejection algorithm uses error information from a
previous stride to estimate the value of kc. If the symmetric
TD angle is predicted correctly, the LO horizontal speed at
a current stride must have moved towards the reference LO
horizontal speed in reference to a previous stride. A case
otherwise shows an error in the prediction of the symmetric
TD angle. Based on this information, the correction factor
kc is adjusted in a way that minimizes the effect of the
noise. The following iterative algorithm is used to adjust
kc. Initially, kc = 1.

if{ḃyr − ḃy}i > 0 AND {ḃyr − ḃy}i > {ḃyr − ḃy}i−1

kc = kc ∗ k2

if{ḃyr − ḃy}i < 0 AND {ḃyr − ḃy}i < {ḃyr − ḃy}i−1

kc =
kc
k2

where i represents the index of the current stride and k2

is positive constant slightly less than 1. The TD control
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Fig. 5. Structure of forward speed controller

algorithm given in Equations 21 and 22 is modified to
include the disturbance rejection algorithm as follows:

k= kc + k1
ḃytd − ḃyr

ḃyr
(24)

ψtd = kψsym, (25)

The fractional change in horizontal speed behaves similarly
for different horizontal speeds around the symmetry point.
This observation is used in determining the form of the
control law. Instead of the absolute error in horizontal
speed, the control law uses the fractional error in speed.
With this choice, the same value for the feedback gain
constant works for a wider range of values of speed.
Simulations confirm that this choice results in a better
performance. Comparison of the two methods is presented
in a subsequent section.

Off-Turn Leg Controller The main purpose of the off-
turn leg controller is to keep the foot of the off-turn leg as
far away from the ground as possible to avoid collision. The
controller generates input values for the angular actuator
of the off-turn leg so that, when TD occurs for the other
leg, the position of the off-turn leg is upwards As soon as
the flight subsystem is active, the approximate flight time,
tflight, before TD for the active leg is calculated using the
following formula.

tflight =
ḃz +

√
ḃ2z − 2g (ζ0 cos (ψsym)− bz)

g
(26)

The control input ωi for the off-turn leg is then calculated
as

ωi =
(π − ψi)
tflight

, (27)

where ψi is the current leg angle for the off-turn leg.

Figure 5 shows a flow chart for determining the action of
the two components of the forward speed controller. The
off-turn leg controller is active on a leg when the other
leg is on the ground. Alternation between the two legs is
achieved using the flow chart illustrated in Figure 5.

4. SIMULATION RESULTS

The results reported here are based on the value of the
SLIP parameters shown in Table 3. A two-layer feedfor-

Table 3. SLIP parameter used in experiment

Parameter Symbol Value

Spring stiffness constant k 5000N/m

Mass of robot m 7Kg

Unstretched leg spring length ζ0 0.17m

Fig. 6. Speed tracking with a step input reference

ward neural network with 10 neurons in the hidden layer
is trained for equally spaced values of the TD speed in
the range [1.5m/s, 4m/s] and velocity angle in the range
[-π2 , 0] for 200 epochs. The training set has 176 points.
The MSE of the neural network on the training set after
training is 5.0 × 10−5. The performance of the forward
speed controller using the trained neural network in track-
ing different references was tested.

The initial value of the state vector for all the experiments
is

X0=[0.1700,0.1700,0,0,−0.8000,3.1416,0,0,0,0.2679,0.6662,−3.0276].

(28)
At this initial state, the robot is in the flight phase.
Figure 6 shows the result of a speed reference tracking
experiment for a step input. As shown in the figure, the
horizontal speed came within 2% of the desired value in
just two steps. The mean absolute error for the time range
0 < t < 40sec is less than 0.05m/s. Figure 7 shows a result
of a speed reference tracking experiment for a time varying
reference speed. Comparing the result of this experiment
to that of a similar experiment presented in Figure 2.13,
page 49 of Raibert (1986) clearly shows that this controller
gives a closer performance. We believe that this is mainly
due to the crude assumption made by the author that
the symmetric TD angle depends only on the horizontal
speed at TD. This is stated on page 42 of the same book,
which reads, ”For each forward speed there is a unique foot
position that results in zero net forward acceleration. We
call this the neutral point.” Figure 8 shows the result of
a speed tracking experiment using absolute error instead
of fractional error. Comparing Figure 7 with Figure 8
clearly shows that using fractional error results in a better
performance than using absolute error. Figure 9 shows the
operation region for the biped robot with parameter values
shown in Table 3. The vertical axis shows hopping height
while the horizontal speed at LO is represented by values
on the horizontal axis.
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Fig. 7. Forward speed control and inputs w1 and w2

Fig. 8. Controller performance using absolute error

Fig. 9. Operation region for the biped robot

A closer look at the TD control algorithm shows that the
control law has both closed-loop and open-loop character-
istics. The open-loop behavior is a result of the assumption
that the symmetric TD angles calculated using the trained
neural network are error-free. The TD control law does not
compensate for disturbances in the calculated symmetric
TD angles that come from different sources. On the other
hand, the control law is a closed-loop controller because it
does not assume the magnitude of horizontal acceleration
due to deviation from the symmetric TD angle. Due to its

open-loop component the controller shows high sensitivity
to system disturbances.

5. CONCLUSION

Experimental results of forward speed control have shown
improved performances over those reported by Raibert in
his book. The major contributions of this work are (a)
development of a new control law that uses fractional
errors instead of absolute error and, (b) the use of neural
networks in approximating values of symmetric TD angles.
Recognition that the symmetric TD angle depends not
only on the horizontal component of the TD velocity but
also its vertical component is also a contribution of this
work, (c) laying the theoretical ground for symmetry-based
running control.
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