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Abstract: A new approach to coordination of multiple mobile robots is presented in this paper.
The approach relies on the notion of constraint forces which are used in the development of
the dynamics of a system of constrained particles with inertia. A familiar class of dynamic,
nonholonomic robots are considered. The goal is to design a distributed coordination control
algorithm for each robot in the group to achieve, and maintain, a particular formation while
ensuring navigation of the group. The theory of constraint forces is used to generate a stable
control algorithm for each mobile robot that will achieve, and maintain, a given formation. The
advantage of the proposed method is that the formation keeping forces (constraint forces) cancel
only those applied forces which act against the constraints. Another feature of the proposed
distributed control algorithm is that it allows to add/remove other mobile robots into/from the
formation gracefully with simple modifications of the control input. Further, the algorithm is
scalable. To corroborate the theoretical approach, simulation results on a group of six robots
are shown and discussed. Copyright c©2008 IFAC
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1. INTRODUCTION

Cooperative control of multiple robots has received con-
siderable attention in the last decade due to its wide ap-
plications such as moving a large number of objects, envi-
ronmental monitoring, rescue missions, distributed trans-
portation, and multi-point surveillance. Such tasks gener-
ally cannot be accomplished by a single individual robot.
The robots are spatially distributed and work together
based on either commands given by a supervisor in a cen-
tralized control or following some rules and communication
strategy designed in advance in a distributed scheme. In
many applications, a group of robots is required to follow a
predefined trajectory, while maintaining a desired spatial
pattern.

The concept of formation control with application to the
coordination of multiple mobile robots has been studied
extensively in the literature. Some of the existing meth-
ods of formation control include potential field methods
(Leonard and Fiorello [2001] and Olfati-Saber and Murray
[2002]) and optimization-based approaches (Dunbar and
Murray [2006]). In the potential function approach, the
basic idea is to create an energy like function in terms of
the distance constraints between the robots. The negative
gradient of the potential function is used as a restoring
force on each robot to achieve coordination. In Leonard
and Fiorello [2001], an approach for distributed control of
multiple agents by using artificial potential functions and
virtual leaders was given. The individual agent behaves
according to the interaction forces generated by sensing
the positions of neighboring agents. In Olfati-Saber and

Murray [2002], a specific potential function which is a
function of the distance constraints of the desired forma-
tion is used. The artificial potential function for obstacle
avoidance to multiple vehicles with kinematic models can
be found in Dimarogonas et al. [2006]. Instead of relying
on repelling potential forces, Chang et al. [2003] present
a control law for multiple systems based on gyroscopic
forces for collision and obstacle avoidance; the gyroscopic
forces were used for obstacle avoidance without affecting
the global potential function. Collision avoidance for multi-
agent systems using the avoidance control approach was
discussed in Stipanovic et al. [2007].

Since the motion of many common mobile robots in prac-
tice are subject to nonholonomic constraints, the coor-
dination problem is generally more complicated. Coop-
erative control of multiple mobile robots with nonholo-
nomic constraints has been addressed in Tanner et al.
[2004], Loizou et al. [2004], Liang and Lee [2006], Lawton
et al. [2003]. In Tanner et al. [2004], the motion of a
group of nonholonomic mobile agents is controlled in a
distributed fashion to exhibit flocking behavior. In Loizou
et al. [2004], a decentralized navigation function method
together with a dipolar potential field is used to stabi-
lize multiple agents with nonholonomic kinematics from
an initial configuration to a final configuration. In Liang
and Lee [2006], a decentralized formation control scheme
for a group of nonholonomic mobile robots based on the
potential function method is presented. In Lawton et al.
[2003], the mobile robot dynamics are feedback linearized
into a double integrator dynamics with output as the robot
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hand position; a behavior-based approach is proposed to
formation maneuvers.

In this work, the notion of constraint forces is used to
build a formation from arbitrary initial conditions for
multiple mobile robots. The idea of constrained dynamics
is that the description of the system includes not only
the external forces acting on the particles, but also the
constraint forces which limit the motion of the system. An
approach to imposing geometric constraints on a system
of particles is to add a set of constraint forces to the
particles’ governing equations which keep the constraints
satisfied for all time (see Goldstein [1953] and Udwadia
and Kalaba [1996]). The structural distance constraints
for a desired formation are converted to constraint forces
such that the desired formation can be maintained when
the constraint forces are added to the dynamics of the
robots. The key idea of the proposed work is to use the
notion of constraint forces to determine the total forces
required on each robot to achieve, and maintain, the
distance constraints of the formation. A centralized control
strategy with full information for formation of a group of
vehicles using the notion of constraint forces was given in
Zou et al. [2007]. In this work we give a distributed control
strategy for coordination of multiple mobile robots.

In the potential (or penalty) function approach, the square
of the constraint function (or some other appropriate
positive function of constraints) is treated as potential
energy and a formation keeping force that is proportional
to the gradient of the potential energy is used. Since
these restoring forces, which rely on displacements, are
regular forces, they compete with every other applied
force. The advantage of the constraint force approach is
that the calculated constraint forces cancel only those
applied forces that act against the constraints. The main
contribution of this paper is in the development of a
stable, distributed control algorithm for multiple robots
using constraint forces that will simultaneously achieve,
and maintain, a given formation together with tracking
of a desired group trajectory. Moreover, a safe distance
between communicating robots is maintained at all times
by using a specific form of the constraint function.

The rest of the paper is organized as follows. Section 2
gives the problem statement. In Section 3, the distributed
constraint force approach for the coordination of multiple
mobile robots is developed for the hand position dynamics.
First, to illustrate the method, a stable control algorithm
that will achieve and maintain a desired distance between
two robots is designed based on the notion of constraint
force between them. Then, a stable, distributed control
algorithm is proposed for an arbitrary number of mobile
robots with a given information flow pattern between
robots. Section 4 gives simulation results on an example of
six mobile robots. Conclusions and future work are given
in Section 5.

2. PROBLEM STATEMENT

Consider the dynamic model of a mobile robot i (see
Figure 1):

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi (1)

v̇i =
Fi

mi

ω̇i =
τi

Ji

where (xi, yi) is the inertial position of the i-th robot, θi

is the orientation, vi is the translational velocity, ωi is the
angular velocity, Fi is the applied force, τi is the applied
torque, mi is the mass, and Ji is the moment of inertia.

L i

x

y

o

θ i

xi   yi(          )

(             )x      yhi       hi 

Fig. 1. Mobile Robot

The formation structural topology of the mobile robots
can be defined as a formation graph, which will allow us
to study the relative position of robots in the group by
applying graph theory.

Definition 1. The formation graph of n robots is an
undirected graph G = (V , E), where V = {1, 2, . . . , n} is
a finite set of vertices (nodes) in correspondence with n
robots in the group and E ⊆ V × V is a set of edges (i, j)
representing inter-robot position specifications.

The neighborhood set of the i-th robot, Ni = {j | (i, j) ∈
E , j 6= i}, includes all the robots which communicate
with the i-th robot. The information flow graph and the
formation graph are assumed to be identical.

The goal of the paper is to construct a distributed control
algorithm for each robot, which depends only on the
information available to the robot via the information flow
graph, that is capable of driving the group of n robots from
any initial configuration to a desired configuration given
by the formation graph. Further, we will also require that
the group follow a desired navigation trajectory.

3. DISTRIBUTED CONTROL DESIGN

The mobile robot dynamics can be feedback linearized
to a two dimensional double integrator, if only an off-
wheel axis point of the robot is required to be maintained
in formation (see Lawton et al. [2003]). The robot hand
position is defined as a point located at a distance Li > 0
from the center of the robot and on the robots’ axis of
orientation. The coordinates of the hand position (xhi

, yhi
)

are

xhi
= xi + Li cos θi, (2)

yhi
= yi + Li sin θi. (3)

Differentiating Eqs. (2) and (3) twice and using the mobile
robot model (1) gives the relation between the hand
position and the applied force/torque on the robot as
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[

ẍhi

ÿhi

]

= Gi + Hi

[

Fi

τi

]

(4)

where Gi =

[

−viωi sin θi − Liω
2
i cos θi

viωi cos θi − Liω
2
i sin θi

]

and Hi =
[

cos θi/mi −Li sin θi/Ji

sin θi/mi Li cos θi/Ji

]

.

Since det(Hi) = Li

miJi
6= 0, choosing the output feedback

linearizing control as
[

Fi

τi

]

= H−1
i

([

uxi

uyi

]

− Gi

)

(5)

gives the following double integrator dynamics for the
hand position:

r̈i = ui (6)

where ri = [xhi
, yhi

]T ∈ R
2, and ui = [uxi

, uyi
]T ∈ R

2.

We will use the hand position dynamics (6) to describe
the distributed control algorithm. First, we will derive the
constraint force between a pair of communicating robots;
the application of such a force on each robot, in addition
to the external forces, will ensure that the constraint is
satisfied between the two robots. Then, the distributed
control algorithm for the whole group of robots will be
developed based on the given information flow graph.

3.1 Constraint Force Between a Pair of Mobile Robots

Consider a pair of robots i and j which share an edge
in the information flow graph, i.e., (i, j) ∈ E . Denote
the constraint corresponding to the (i, j) edge in the
formation graph G = (V , E) by φij(ri, rj) = 0 for any
(i, j) ∈ E and i 6= j, with φij(ri, rj) in some specific
form, for example, the form that corresponds to the
Euclidean distance between the two robot hands. Define
the composite hand position vector of two communicating
robots by rij = [rT

i , rT
j ]T ∈ R4. The constraint function is

defined as

φij(rij) =
‖ri − rj‖ − dij

‖ri − rj‖ − rs

, ∀ (i, j) ∈ E , (7)

where dij is the length of the edge (i, j) which is the desired
distance between the hand positions of the two robots in
the formation and rs is the safe distance between any two
communicating robots. The structural constraint for this
pair of robots can be expressed as

φij(rij) = 0. (8)

Differentiating Eq. (7) once, we get the constraint velocity
as

φ̇ij(rij , ṙij) =
∂φij(rij)

∂rij

ṙij := Aij(rij)ṙij (9)

where Aij(rij) =
∂φij(rij)

∂rij
is a specially structured 1 × 4

matrix called the constraint matrix, which is given by

Aij(rij) = [aij , −aij ] (10)

with aij =
(dij−rs)(ri−rj)

T

(‖ri−rj‖−rs)2‖ri−rj‖
.

Differentiating φ̇ij(rij , ṙij), we get the constraint acceler-
ation as

φ̈ij(rij , ṙij , r̈ij) = Ȧij(rij , ṙij)ṙij + Aij(rij)r̈ij (11)

where Ȧij(rij , ṙij) =
∂φ̇ij(rij ,ṙij)

∂rij
.

Assuming that the configuration rij and the velocity
ṙij both have the desired initial values, i.e., φij(r

0
ij) =

φ̇ij(r
0
ij , ṙ

0
ij) = 0, the velocity and acceleration, respectively,

that are consistent with the constraint are given by

φ̇ij(rij , ṙij) = 0, φ̈ij(rij , ṙij , r̈ij) = 0. (12)

That is, if the two robots, i and j, begin their motion at
the position and velocity that is initially consistent with
the constraint, subsequent motion of the robots satisfies
the position and velocity constraints if we ensure that
the acceleration constraint equation in (12) is satisfied.
Now, the pertinent question is, how do we ensure that
the acceleration constraint equation is met for all time?
The answer lies in finding the constraint forces to make
this possible. The constraint forces will limit the motion
of the system such that the constraints are satisfied. In
addition to depending on the state of the system, the
constraint forces also depend on the other applied forces.
The dynamics of the constrained system can be written as

r̈ij = Fnij
+ Fcij

(13)

where Fcij
= [FT

ci
, FT

cj
]T is the constraint force that

keeps the accelerations consistent with the acceleration
constraint equation and Fnij

= [FT
ni

, FT
nj

]T is a composite
vector of applied forces on the two robots. The constraint
force satisfies the following equation:

Aij(rij)Fcij
= −Ȧij(rij , ṙij)ṙij − Aij(rij)Fnij

. (14)

Equation (14) alone does not uniquely determine the
constraint force, since we have only one equation and four
unknowns (the 4 components of Fcij

). The widely used
procedure in dynamics is to use the principle of virtual
work (Goldstein [1953]) to obtain the constraint forces,
which states that the constraint forces do not add or
remove energy. Therefore, to ensure that the constraint
force does no work, we require that FT

cij
ṙij be zero for

every ṙij satisfying φ̇ij(rij , ṙij) = 0, that is,

FT
cij

ṙij = 0, ∀ ṙij ∈ {ṙij | Aij(rij)ṙij = 0}. (15)

From Eq. (15), it is clear that Fcij
must be orthogonal

to the velocity vector ṙij . Since ṙij must lie in the null
space of Aij(rij), the constraint force Fcij

must lie in the
null space complement of Aij(rij). Thus, the vector Fcij

satisfying Eq. (15) can be expressed in the form

Fcij
= AT

ij(rij)λij (16)

where λij is the Lagrange multiplier, which is obtained by
substituting (16) into (14),

Aij(rij)A
T
ij(rij)λij = −Ȧij(rij , ṙij)ṙij − Aij(rij)Fnij

. (17)

The constraint force for robots i and j are then given
by Fci

= [I2, Ø2]Fcij
and Fcj

= [Ø2, I2]Fcij
where I2

and Ø2 are the identity and zero matrices, respectively, of
dimension two.

The discussion on the development of constraint forces
so far was based on the assumption that at the start of
the motion of the robots, the constraint equations are
satisfied. To consider arbitrary initial conditions for the
robots, which do not satisfy the constraint equations, we
will use the notion of feedback in the constraint acceler-
ation equation; this will account for the mismatch in the
initial condition and appropriately compute the constraint
force. This idea was used to prevent numerical drift in
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the simulation of dynamic equations with constraints in
Witkin et al. [1990]. In the application of cooperative
control of a group of robots, we generally require desired
formation of the group as well as navigation. Instead of
solving for φ̈ij = 0 to determine the constraint force, as it
was done earlier, the following equation will be used:

φ̈ij = −kdφ̇ij + gij (18)

where kd is a positive constant and the function gij is
included to couple the constraint force and constraint
acceleration; note that gij acts like a force on a robot with
position given by φij . Therefore, the constraint force vector
for the two robots is calculated based on the following
equations:

Fcij
= AT

ijλij , (19)

AijA
T
ijλij = −Ȧij ṙij − AijFnij

− kdφ̇ij + gij . (20)

Next, we will derive the function gij based on the two
robots achieving, and maintaining, a formation with a
desired navigation trajectory. The navigational feedback
control Fni

acting on the i-th robot is chosen as

Fni
= r̈di

− c1ei − c2ėi (21)

where c1 and c2 are positive constants, ei = ri − rdi
and

ėi = ṙi − ṙdi
are navigational tracking errors, and rdi

, ṙdi

and r̈di
are the desired position, velocity, and acceleration,

respectively. The navigational force and tracking errors for
the j-th robot are given by replacing the index i with j.

The constraint forces Fci
and Fcj

are calculated using (19)
and (20). The overall control input ui for the i-th robot in
Eq. (6) is given by

ui = Fni
+ Fci

. (22)

We select the function gij in (18) based on whether this
control input tracks the desired navigation trajectories and
achieves, and maintains, the desired distance between the
two robots. We consider the following Lyapunov function
candidate

Eij =
1

2
k1e

T
ijeij +

1

2
k2ė

T
ij ėij +

1

2
φ̇2

ij (23)

where k1 and k2 are positive constants and eij = [eT
i , eT

j ]T .
The derivative of Eij with respect to time is given by

Ėij = k1ė
T
ijeij + k2ė

T
ij ëij + φ̇ij φ̈ij

= k1ė
T
ijeij + k2ė

T
ij(Fnij

+ Fcij
− r̈dij

) + φ̇ij(−kdφ̇ij + gij)

= −k2c2ė
T
ij ėij − kdφ̇

2
ij − (−k1 + c1k2)ė

T
ijeij

+ k2ṙ
T
ijFcij

− k2ṙ
T
dij

Fcij
+ φ̇ijgij .

Choosing k1 = k2c1 we obtain

Ėij = −k2c2ė
T
ij ėij − kdφ̇

2
ij − k2ṙ

T
dij

AT
ijλij

+ k2ṙ
T
ijA

T
ijλij + φ̇ijgij .

Since ṙdij
= [ṙT

di
, ṙT

dj
]T is the desired navigation velocity,

it must satisfy ṙT
dij

AT
ij = 0. Further, choosing

gij = −k2λij (24)

we get

Ėij = −k2c2ė
T
ij ėij − kdφ̇

2
ij ≤ 0. (25)

Therefore, Eij is a Lyapunov function. As a result, eij , ėij ,

and φ̇ij are bounded. From (23) and (25), we can conclude

that ėij and φ̇ij are square integrable signals. Further, from
the dynamics of the constraint and the tracking error,

φ̈ij = −kdφ̇ij − k2λij (26)

ëij = −c1eij − c2ėij + AT
ijλij , (27)

we can conclude that both φ̈ij and ëij are bounded. There-

fore, ėij and φ̇ij converge to zero asymptotically by in-
voking Barbalat’s lemma. Further, we can show via direct
calculation that

...
φ ij and

...
e ij are bounded by differentiat-

ing Eqs. (26) and (27). Therefore, the signals φ̈ij and ëij

asymptotically converge to zero. From Eqs. (26) and (27),
we can conclude that λij and eij converge to zero asymp-
totically. Moreover, from the definition of the constraint

vector φij(rij) =
‖ri−rj‖−dij

‖ri−rj‖−rs
=

‖(ei−ej)+(rdi
−rdj

)‖−dij

‖ri−rj‖−rs
,

asymptotic convergence of eij to zero implies asymptotic

convergence of φij(rij) to
‖(rdi

−rdj
)‖−dij

‖ri−rj‖−rs
, which is zero.

Furthermore, since φ̇ij is bounded and

lim
‖ri−rj‖→rs+

φ̇ij(rij , ṙij) = ∞, ∀ (i, j) ∈ E , (28)

any pair of communicating robots will never enter the
unsafe region given by Ω = {rij : ‖ri − rj‖ ≤ rs}.

Note that the choice of gij = −k2λij will result in the
constrained force to be given by

Fcij
= AT

ijλij , (29)

λij =
1

k2 + AijAT
ij

(

−Ȧij ṙij − AijFnij
− kdφ̇ij

)

. (30)

The constraint force for robots i and j are then given by
Fci

= [I2, Ø2]Fcij
and Fcj

= [Ø2, I2]Fcij
. Note that the

constraint forces on the two robots satisfy Fci
= −Fcj

,
that is,

[I2, Ø2]A
T
ijλij = −[Ø2, I2]A

T
ijλij . (31)

Since they are internal forces, addition of the i-th and j-th
dynamics will result in the cancelation of these forces for
the two robots case.

3.2 Distributed Algorithm for Multiple Mobile Robots

As in the previous section, we consider the navigational
feedback control Fni

acting on the i-th robot to be given
by (21). The constraint force acting on the i-th robot is
chosen as the total of the constraint force contribution
from all the robots which directly communicate with it,
i.e., Fci

is given by

Fci
=

∑

(i,j)∈E

[I2, Ø2]A
T
ijλij , (32)

λij =
1

k2 + AijAT
ij

(

−Ȧij ṙij − AijFnij
− kdφ̇ij

)

. (33)

For example, consider the formation shown in Fig. 2. The
constraint force applied on robot 2 is the summation of
the constraint forces contributed from robots 1, 3, 4, and
5, that is,

Fc2 = [I2, Ø2] (Fc21 + Fc23 + Fc24 + Fc25).

The overall control input ui for the i-th robot in Eq. (6)
is given by

ui = Fni
+ Fci

. (34)
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654

32

Fig. 2. Delta formation of a group of six robots

To show that this control input tracks the desired navi-
gation trajectories and achieves, and maintains, the given
formation, we consider the following composite Lyapunov
function candidate:

E =
1

2

n
∑

i=1

k2c1e
T
i ei +

1

2

n
∑

i=1

k2ė
T
i ėi +

1

2

n
∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij .

(35)
The derivative of E with respect to time is given by

Ė = k2c1

n
∑

i=1

ėT
i ei + k2

n
∑

i=1

ėT
i ëi +

n
∑

i=1

∑

(i,j)∈E,j>i

φ̇ij φ̈ij

Substituting the control law (34) and the dynamics of the
robots (6), with Fci

given by (32) and Fni
given by (21),

into Ė, and simplifying, we get

Ė = k2c1

n
∑

i=1

ėT
i ei + k2

n
∑

i=1

ėT
i (Fni

+ Fci
− r̈di

)

+

n
∑

i=1

∑

(i,j)∈E,j>i

φ̇ij(−kdφ̇ij − k2λij).

Upon simplification, we can write Ė as

Ė = −k2c2

n
∑

i=1

ėT
i ėi − kd

n
∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij − k2

n
∑

i=1

ṙT
di

Fci

+ k2





n
∑

i=1

ṙT
i Fci

−
n

∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij



 . (36)

In Eq. (36) , we can show that the third and fourth terms
are identically equal to zero. Note that

n
∑

i=1

ṙT
i Fci

−
n

∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij =

n
∑

i=1

ṙT
i

∑

(i,j)∈E

[I2, Ø2]A
T
ijλij −

n
∑

i=1

∑

(i,j)∈E,j>i

Aij ṙijλij .

Since the constraint force components between any pair of
robots satisfy (31), and since Aij = −Aji and λij = λji,
we have

[ṙT
j , Ø2]A

T
jiλji = −[Ø2, ṙT

j ]AT
jiλji = [Ø2, ṙT

j ]AT
ijλij .

Then,
n

∑

i=1

ṙT
i

∑

(i,j)∈E

[I2, Ø2]A
T
ijλij =

n
∑

i=1

∑

(i,j)∈E,j>i

ṙT
ijA

T
ijλij .

Thus, we have
n

∑

i=1

ṙT
i Fci

−
n

∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij = 0. (37)

Further, since ṙdi
is the desired velocity, it must sat-

isfy ṙT
dij

AT
ij = 0 for any i 6= j. Hence,

∑n

i=1 ṙT
di

Fci
=

∑n

i=1

∑

(i,j)∈E

j>i

ṙT
dij

AT
ijλij = 0.

Therefore,

Ė = −k2c2

n
∑

i=1

ėT
i ėi − kd

n
∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij ≤ 0. (38)

Using the same arguments as in the previous section, we
can conclude asymptotic convergence of ei, ėi, φij and φ̇ij

to zero. Further, any pair of communicating robots will
never enter the unsafe region, under the assumption that
the initial distance between any pair of communicating
robots is larger than the safe distance. The results of this
section are summarized in the following theorem.

Theorem 1. For a group of mobile robots given by the
dynamics (1), the choice of the following control algorithm:
[

Fi

τi

]

= H−1
i (ui − Gi) (39)

ui = Fni
+ Fci

(40)

Fni
= r̈di

− c1ei − c2ėi (41)

Fci
=

∑

(i,j)∈E

[I2, Ø2] A
T
ij

k2 + AijAT
ij

(

−Ȧij ṙij − AijFnij
− kdφ̇ij

)

(42)

will ensure that all signals are bounded and the signals ei,
ėi, φij , and φ̇ij asymptotically converge to zero.

Remark 1. Note that if new robots are added to the
formation with new edges in the formation graph, the
constrained force Fci

given by (42) will include additional
terms according to the new edge set.

4. SIMULATIONS

This section presents simulation results for a group of
six robots to achieve and maintain a delta formation
as shown in Fig. 2. The distributed control law given
in Theorem 1 with constraint functions of the form (7)
is applied with a safe distance of rs = 0.22 m. Each
robot in the group starts from an arbitrary location which
does not satisfy the constraint equations. The desired
distance of each edge in the delta formation is chosen
as 1 m. The inertial parameters are selected as mi =
10 kg, Ji = 0.13 kg-m2 and Li = 0.1 m. The initial
positions of the six robots are given by [x1(0), y1(0)] =
[−1, 1.4], [x2(0), y2(0)] = [−0.7,−0.9], [x3(0), y3(0)] =
[−0.2, 0.3], [x4(0), y4(0)] = [1, 2], [x5(0), y5(0)] = [0.1, 1],
[x6(0), y6(0)] = [−0.18, 0], where the distance units are
all in meters; the starting orientation θi, linear speed vi

and angular speed ωi of the six robots is chosen to be
zero. The desired navigation trajectory for each robot
within the delta formation is taken as a straight line with
constant velocity. The control gain parameters for each
robot in the distributed control algorithm are selected as
c1 = 0.4, c2 = 0.6, kd = 1.8, and k2 = 5. The result
is shown in Fig. 3; each robot in the group starts at the
initial position denoted by ◦ and the robots reach a desired
delta formation while approaching the desired navigation
trajectory (dotted line). The corresponding inter-robot
distance is shown in Fig. 4, which indicates that the
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safe distance between two communicating robots is always
maintained.
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Fig. 3. Delta formation of six robots
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5. CONCLUSIONS

Based on the notion of constraint forces, we have developed
a stable, distributed control algorithm for coordination of a
group of mobile robots. The dynamics of each mobile robot
with nonholonomic constraints is feedback linearized with
the output as the off-wheel axis position (hand position)
along the longitudinal orientation of the robot. Given a
formation, an information flow pattern, and a desired
trajectory, the distributed control algorithm developed
for each robot in the group is capable of achieving and
maintaining the formation along the desired trajectory
while maintaining a safe distance between communicating
robots. The algorithm is modular and scalable. Simulation
results on an example formation of a group of six mobile
robots were shown to corroborate the proposed algorithm.

Potential future work includes the use of a sensing region
around each mobile robot in which the robot is capable
of sensing the presence of other robots. This will facilitate
introducing the safe distance notion to all the robots which
come within the sensing region.
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