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Abstract: In this paper, we present a software architecture, based on RTAI-Linux, for the real-
time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim
is to simplify the testing phase of digital controllers by providing the real-time simulation of the
plant with the same interface used for the communication between the control applications and
real plant. This unified interface, based on the COMEDI library, allows to switch the controller
from the simulated to the real plant without any modification of the control software. Moreover,
a set of tools for helping the users in the development of the real-time simulation tasks of the
plants have been developed. A great attention has been posed in the automatic generation
of symbolic kinematic and dynamic models of robotic manipulators from a description of the
robot in terms of kinematic parameters and inertia/center of mass of each link. The system,
besides being useful for rapid prototyping of mechatronic control systems, may be used for fault
detection, and also as a teaching tool in Mechatronic/Digital Control Courses. A case study,
the real-time simulation and control of the PUMA 560 manipulator, is presented and discussed.

Keywords: Real-Time Systems, Programming Environments, Control Systems Design,
Teaching Tools, Simulators.

1. INTRODUCTION

Rapid control prototyping represents an indispensable tool
for the simulation of complex dynamic systems and the
design of digital controllers, since it allows the validation
of the modeling and the control algorithms before any
practical implementation on a real plant. Within this
context and with the aim of improving the reliability and
the performance of the controller, real-time simulation
environments can be used to test and modify theoretical
models and control strategies, which have been developed
under the assumption of a perfect knowledge of the system.

In the last years, the issue of rapid control prototyping
has been addressed in several works, see (Bonivento et al.
[2000], Bona et al. [2002], Chen et al. [2004]) among
others, and it is a research topic both in the industrial
and academic field. In particular, this kind of simula-
tion/validation techniques may be of great interest in con-
trol educational environments for undergraduate/graduate
levels of study (Palli and Melchiorri [2006, 2007]).

In Mechatronic and Digital Control Courses, standards
CACSD 1 tools (e.g. Scilab/Scicos, Mathematica, Mat-
lab/Simulink) are commonly used for the analysis of dy-
namic systems and for the synthesis of an appropriate
control architecture. CACSD tools also offer packages (e.g.
RTW 2 of Matlab/Simulink) that are able to convert the
control law from the simulation environment to a real-
time implementation written in a standard programming

1 Computer Aided Control System Design.
2 Real-Time Workshop.

language, like C, with different RTOS 3 as target platform.
Moreover, CACSD tools can implement the interface be-
tween the simulation environment and an I/O device that
directly communicates with the real dynamic system. In
general, the I/O device is a Data Acquisition Board (DAQ
board) which is basically composed by several sub-devices,
like digital/analogical converters (DAC and ADC), digital
I/O signals, encoders and others. The control applications
can be made independent from the specific DAQ board
by using the COMEDI 4 library that provides an unified
API 5 for control applications and that supports real-time
Linux extensions, i.e. RT-Linux and RTAI 6 .

In this paper, we present a software architecture, based on
the RTAI-Linux open source environment, that allows the
monitoring of the behavior of both the controller and the
plant without really connecting the control system to the
real process. Our aim is to create a rapid control prototyp-
ing system for both industrial applications and educational
purposes so that the designer can test the control schemes
even in critical or faulty conditions before applying the
control to the real process. This architecture has the
advantage that, once the controller has been tested, no
more changes have to be done on the control software
so that no new errors are introduced. Our architecture
is based on an extension of the COMEDI library and it

3 Real-Time Operating Systems.
4 COntrol and MEasurement Device Interface (Schleef [Online]).
5 Application Programming Interface.
6 Real-Time Application Interface (Beal et al. [April 2000], Cloutier
et al. [2000]).
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is summarized in Fig. 1. In particular, in the left part
of the figure, a general scheme of connection between a
controller and a real plant is depicted: the controller is
implemented in user-space and, through a proper kernel
space driver, it communicates with the DAQ board and,
then, to the real plant. On the other hand, the scheme
in the right part of Fig. 1 depicts the architecture that we
are proposing in this work. We have exploited COMEDI to
implement the interface between user and kernel space so
that, once the control law has been designed for the real-
time simulation, it can be directly applied to the real time
system without changing the code and/or adding other
software parts. This grants that no new error sources are
introduced. A similar approach to real-time simulation is
proposed in (Ferretti et al. [2005]): in this work, a RTAI
application for the simulation of dynamic system has been
derived directly from a model of the plant made with
Modelica (Fritzson and Engelson [1998]).

User space

Kernel space

Plant

Control

Driver

DAQ

Plant

Control

COMEDI

Real-Time
Simulation

DAQ

Fig. 1. Left: typical software structure; Right: software
structure with the COMEDI library.

A crucial point in the proposed architecture is to ensure
the real-time execution of the basic integration algorithm
in the simulation task. For this purpose, we use the GNU
Scientific Library (Galassi et al. [2003]) since, besides being
open-source, it provides the necessary functions for the
implementation of the simulation algorithms.

Motivated by the advantages that such a real-time sim-
ulation environment can introduce in automatic control
educational activities, we have also developed a set of
Simulink blocks for helping the students in the design of
real-time simulation of generic dynamic systems and, in
particular, robotic manipulators.

The paper is organized as follows: the real-time simulation
algorithm for linear and non-linear systems is discussed
in Sec. 2. Sec. 3 describes the implementation of the
COMEDI driver for real-time simulation driver. A case
study is discussed in Sec. 5, while conclusions and plans
for future activities are reported in Sec. 6.

2. REAL-TIME SIMULATION OF DYNAMIC
SYSTEMS

In this work, the real-time simulation of the plant is
implemented with a periodic RTAI task, which performs
all the necessary operations for the computation of the
state evolution over time.

In the linear stationary case, the evolution of the plant
can be described by using the standard discrete-time state
space representation:

x(k + 1) = Adx(k) + Bbu(k), x(0) = x0 (1)

y(k) = Cdx(k) + Ddu(k) (2)

where Ad, Bd, Cd, Dd are matrices of proper dimensions
and k is the discrete-time variable. Eq. (1)-(2) are very
simple to be implemented with a periodic real-time task,
and the required computational effort is very low.

In the generic non-linear case, the dynamics of the plant
can be described by the classic state space representation:

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (3)

y(t) = g(x(t), u(t), t) (4)

where x, u, y are, respectively, the state, input and output
vectors, t is the time variable, f(·) is the state velocity
vector, g(·) is the output function and x0 is the initial
state. In order to compute the time evolution of the
plant, the ordinary differential equation system (ODE)
defined by Eq. (3) must be solved by means of a numerical
integration algorithm over the period of the real-time
task. This may require a very high computational effort,
especially if a variable step integration algorithm is used.

In general, the integration algorithms can be characterized
by either fixed or variable time step. In the fixed step
integration case, the time step has to be chosen by con-
sidering the computational capabilities of the calculator
and by taking into account that, in general, the error on
the solution increases as the step size increases. In our
implementation, the period of the simulation task corre-
sponds to the integration time step. The experiments show
that the execution time of the algorithm is almost constant
during the simulation and that it mainly depends on the
order of the system and on the computational capabilities
of the computer. On the other hand, in the variable step
case, at the beginning of the execution, the integration
time step is initialized to the same period of the simulation
task in order to estimate the first candidate solution.
Then, the step doubling error checking method (Press
et al. [1992]) is applied in order to evaluate the relative
integration error and, in case, to subdivide the integration
time step until the required error is achieved. In this case,
the computational effort can be very high, especially if
non-smooth dynamic functions are considered, but the
reliability of the solution is considerably improved.

Controls on the integration error, on the integration step
size and on the execution time are introduced in order
to avoid the system starvation and to satisfy the real-
time constraints. Therefore, it is possible to require the
simulator to solve the dynamic equations with a given
precision, in terms of relative or absolute error: if the
period of the simulator task is too small to allow the
computation of a solution with the prescribed error, the
algorithm is stopped and the last available solution is
returned. In Fig. 2 the flowchart of the real-time integra-
tion algorithm is reported. In general, the period of the
simulation task must be grater or, at least, equal than the
controller period. In the case of variable step algorithms,
the simulation task period can be chosen equal to the
period of the controller: the error checking procedure can
refine the integration step to satisfy the specifications on

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14613



yes
yes

yes

yes

no

no

no

no

Integration step start

Save the state of the system

Compute the new
state of the system

Evaluate the integration error
and adjust the integration step interval

The integration step
has been decreased?

Integration time
> Simulation step time?

Integration time
> Simulation step time?

Initial time
≥ Final time?

Initial time + = Integration step time

Restore the state of the system

Return the new system state

Fig. 2. Flowchart of the real-time integration algorithm.

the integration error. The use of fixed step algorithms can
introduce a large error drift in the solution of the system
because there is no control on the integration error.

The period of the simulation task has to be chosen large
enough to allow the solver to compute at least a possible
solution of the ODE system. If necessary, the time scale
of the simulation and of the controller can be expanded
to fit the computational capabilities of the hardware
platform. On the other hand, if the time required by the
integration algorithm is small enough with respect to the
simulation step, it is possible to compress the time scale to
evaluate the behavior of the controller in a shorter time,
recovering, in some sense, the features of other simulation
environments, but performing the simulation using the
final control application.

In this work, we have used different functions of the GNU
Scientific Library (GSL) for the implementation of the
numeric integration methods for solving the differential
equations describing the plant. Since GSL is an user space
library, we had to introduce proper modifications to the
source code in order to use this library in kernel space
together with the COMEDI board drivers and in order
to grant the real-time execution. With this changes, we
can use all the fixed/variable step integration algorithms
available in GSL in the implementation of the plant.

3. THE COMEDI REAL-TIME SIMULATION DRIVER

In order to implement the dynamic equations of the plant
in the real-time simulator, it is required to write these
equations using a programming language, like C. In gen-
eral, the generation of the C code for dynamical equation
can be easily obtained by using CACSD systems like
Mathematica or Modelica. Once the C code is available,
it is possible to enclose it into a generic real-time sim-
ulation COMEDI driver. For this purpose, a Real-Time
Simulator Target for RTW has been created together with
a suitable component library to allows the generation of
real-time simulation drivers of dynamic systems directly
from Simulink models.

The COMEDI library is a standard interface for DAQ
boards. It provides a set of functions, the API, that al-
low the communication with all the different sub-devices
present on the data acquisition board, the configuration

of these devices and the exchange, the conversion and the
management of all the data. COMEDI supports both syn-
chronous and asynchronous data transfers via buffered or
direct data acquisition instructions. The COMEDI library
is composed by two different parts: a user-space library
that implements the API for user space applications, and
a set of kernel modules, called COMEDI drivers, for the
communication with the hardware. Each kernel modules
implements all the specifics functions for a particular
board or board family.

The COMEDI interface allows to communicate with the
acquisition hardware through characters device files. Since
the association between the board and the file is dynamic
and is specified via command line during the COMEDI
configuration, it is possible to support simultaneously
many DAQ boards on the same system by associating each
of them to a different file.

In this paper, this mechanism is used to create a COMEDI
driver for a virtual board that implements, besides the
necessary functions to emulate the acquisition hardware,
the real-time task for the simulation of the plant. Each
data sent to the DAQ board change the value of the input
variables (or some parameters) of the plant simulation task
and the data read functions get the value of the plant
outputs. Since some properties of the DAQ boards, e.g.
setting time and conversion time, are not taken explicitly
into account by COMEDI, we have to manage this param-
eters in order to simulate also the delays introduced by the
electronic devices.

4. REAL-TIME SIMULATOR DESIGN TOOLS

One of the most important feature of a simulation en-
vironment, from the point of view of the final user, is
the availability of suitable tools, for the simplification of
the design procedure, and component libraries to hide low
level implementation details. Some well-known examples
of these tools are Simulink and Dymola.

On the other hand, the requirements in terms of efficiency
for the implementation of real-time simulation tasks im-
pose the use of dedicated applications. To help the users
in the development of these applications, a set of tools has
been developed with the aim of hiding all the implemen-
tation details needed by the real-time operating system in
which the simulator will run. By exploiting the features
and the flexibility of the Matlab/Simulink/RTW environ-
ment, the attention is focused only in the modeling of
the plant, letting to the underlying system the automatic
generation of the related code for real-time simulation.

Usually, students use Matlab/Simulink/RTW to:

• Analyse the plant model and design the control law;
• Simulate the behavior of the system in both continu-

ous and discrete time domain;
• Generate the real-time control application.

With the proposed environment, the users are also able to:

• Generate the code of the plant real-time simulator;
• Test the behavior of the control application on the

real-time simulated system;
• Compare the response of the real and the simulated

system under the control of the same application.
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Fig. 3. Real-Time Simulator Simulink blocks.

4.1 Generic Dynamic Systems Modeling

For algebraic or discrete time dynamic systems, described
by Eq. (1)-(2), the sub-device blocks shown in Fig. 3 can be
used in Simulink to build the real-time simulation model.
In particular, these blocks are used to connect the input
and output signals to the sub-devices of the virtual DAQ
board used to control the plant. The properties of the sub-
devices (like channels, resolution, data range) can be set
through a dialog box. The real-time simulation application
is then generated by RTW using the Linux Real-Time
Simulation target as target environment.

Continuous time dynamic systems, described by Eq. (3)-
(4), can be modeled in Simulink by using standard blocks
plus the realtime_integrator block (see Fig. 3) in which
the real-time integration algorithm described in Sec. 2 is
implemented. In the realtime_integrator block dialog
box, it is possible to choose the desired stepping method
among all the available in the GSL library, the initial
conditions, the sample time and the amount of time (in
percents over the sample time step) that can be used by
the integrator to compute the solution.

4.2 Generation of Manipulators Dynamic Models

The real-time simulation of the dynamics of a robotic
arm requires the use of a computational-efficient dy-
namic model. Several software packages for the com-
putation of robotic manipulator dynamics are available,
like the Robotic Toolbox (Corke [1995, 1996]) or Robot-
iCAD (Falconi et al. [2006]) for Matlab/Simulink, or like
ROBOOP (Gourdeau [2006]) for the C programming lan-
guage. These tools use the Newton-Euler recursive method
for the computation of the manipulator dynamics. This
approach is justified by the difficulties in the definition of
the Euler-Lagrange closed form dynamic model of robotic
arms when the number of DOF 7 is greater than two.

By using the open source C++ GiNaC 8 library, it is
possible to embed, into custom applications, symbolic
manipulations capabilities of generic mathematical func-
tions. This library has been used for the generation of

7 Degrees of freedom.
8 GiNaC is an iterated and recursive acronym for GiNaC is Not a
CAS, where CAS stands for Computer Algebra System (Bauer et al.
[2002]).
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Fig. 4. Simulink scheme of the robot real-time simulator.

the symbolic Euler-Lagrange dynamic model of robotic
manipulators given its description in terms of Denavit-
Hartemberg parameters (Spong and Vidyasagar [1989])
and the properties of each link (link inertia tensor/mass
and position of the center of mass). Also the gravity
field can be arbitrarily assigned. The algorithm for the
generation of the Euler-Lagrange model is described in
(Yoshikawa [1990]).

Fig. 4 shows the Simulink scheme of a generic robotic arm
real-time simulator. In this figure, the robot_generator
block (see also Fig. 3) receives as inputs the actual ma-
nipulator state x = [q q̇]T , where q is the joint positions
vector, and the vector of joint torques u, while it provides
as output the state time derivative ẋ = [q̇ q̈]T . The
DACs and the encoders of the DAQ board connected to
the robot are collected into two subsystems. The output
function selects only the position information as output of
the robotic system.

5. A CASE STUDY

The software architecture described in the previous Sec-
tions has been used for the simulation and the control
design of a number of mechatronic devices. The Unimation
PUMA 560 6-DOF manipulator is considered here as a
case study to show the ability of the proposed environment
in the generation of the dynamic model of the system and
to compare the responses of the real-time simulator and of
the real plant.

Fig. 5 depicts the PUMA 560 robotic manipulator together
with the reference frames of all its links. The parameters
and the explicit dynamic model of the PUMA 560 are not
here reported for brevity but they can be found, among
others, in (Armstrong et al. [1986], Corke and Armstrong-
Helouvry [1994]).

5.1 The Control System

The control platform is based on a PC-104 industrial
computer, with a AMD Elan520 processor (486 compat-
ible) at 133 MHz, 32 MB of RAM and two Sensoray
526 DAQ board. The operating system is Debian-GNU
Linux SID with kernel 2.6.19.5, RTAI 3.5 and GCC 3.3.4.
The COMEDI library has been obtained from the CVS 9

archive. Note that this software platform has been chosen
because all its components are open source. The control
system of the PUMA 560 manipulator has been modified
to allows a direct control of the system. The TRC-041
(Robotics and Inc. [2007]) card set has been used to
directly connect the DAQ boards to the power unit of the
robot. The TRC-041 provides the encoder signals, the po-
tentiometer signals (for absolute position references) and
the current control input of each axis of the manipulator.

9 Concurrent Versions System, an open source tool to manage the
distributed development of software projects (Fogel and Bar [2003]).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14615



y2 z2

x2

y1

z1x1

z0

y0

z3 z5
z6

x3x4
x5

y3y5

z4

y4

Fig. 5. Scheme of the PUMA 560 robotic arm and link
reference frames.

To verify the behavior of the robot, a joint PD controller
with gravity compensation (Sciavicco and Siciliano [1996])
has been used. The gravity terms are computed according
to the model reported in (Armstrong et al. [1986]). The
control application has been generated from the Simulink
scheme using RTW. The details about the implementation
of the robot controller are not reported here for brevity
and because is not the focus of this discussion. Note
that this control application has been used, without any
modification, for the control of both the real manipulator
and the simulated one. The response of these two systems
are reported and compared in Fig. 6-7. Fig. 6 shows the
positions of the arm joints 2 and 3 (the most affected by
the gravity terms) and of the wrist joint 5 while in Fig. 7
the tracking error of the same joints of both the real and
the simulated robot. In particular, from these latter plots,
it is possible to note that the behavior of the two systems
is almost the same. The small differences in the response
between the real and the simulated robot can be ascribed
to the large uncertainty on the joint static friction effects.

5.2 The Simulation Platform

The simulation platform is based on a Intel Centrino
1.6 GHz Notebook equipped with 512 Mb of RAM. The
operating system is Debian-GNU Linux SID with kernel
2.6.17.11, RTAI 3.5 and GCC 3.3.4. The COMEDI library
has been obtained from the CVS.

With the aim of making available to students or not-skilled
users this software platform without any software installa-
tion or configuration requirements, a Knoppix-based Linux
Live-CD distribution called RTAI-Knoppix 10 has been
developed (Knopper [Online]). This live distribution con-
tains all the necessary tools like IDE 11 , editors, libraries,
examples and source code for the development of real-
time applications and other tools for office, Internet, etc.
RTAI-Knoppix provides also an auto-configurable GUI 12

10RTAI-Knoppix is available for download at: http://www-
lar.deis.unibo.it/people/gpalli/files/rtai-knoppix.iso
11 Integrated Development Environment.
12Graphic User Interface.
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with xrtailab (Bucher and Dozio [2003, 2004]), the graphic
interface for RTAI applications.

6. CONCLUSIONS AND FUTURE WORK

In this paper, some innovative tools for the real-time
simulation of dynamic systems have been presented. This
environment, based on RTAI-Linux and on the COMEDI
library, allows to the control system designer to execute
the real-time control application and to simulate in real-
time the plant to be controlled. When the behavior of
the system is satisfactory, the control application can be
simply switched from the simulated to the real process
without any change in the software. Although being some-
how limited to the RTAI-Linux environment, the system
would facilitate the implementation and rapid prototyping
of digital control systems.

The system, besides for design purposes, has also been
used in the last three years as a teaching support in digital
control courses as an alternative to standard laboratory
setups. In this case, the student may be asked to face both
standard control design problems and aspects related to
implementation of multi-task real-time software.
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Note that, if a proper model of the plant is available,
with this system it is possible to run simultaneously two
identical controllers, one connected to the plant and one to
the simulator. This could help in the real time evaluation
of the response of the plant to the given commands
before their real application, and also for supervision/fault
detection purposes.

With respect to our previous works, in this paper a great
attention has been posed in the simplification of the design
procedure of real-time simulation tasks. The introduction
of a C++ symbolic manipulation library like GiNaC gives
us the possibility of automatically generating the dynamic
model of complex nonlinear systems, like robotic arms,
directly form a physical description of the device. Future
activities will be focused, other than to improve of these
tools, to the integration of this environment with a 3D
graphic rendering of the plant evolution.
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