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Abstract: In this paper we propose a strategy for fault detection and isolation without any fixed model of the
system to be supervised. The proposed approach is based on the identification of the parameters characterizing
the system without any a priori knowledge. Our contribution consists in developing a specific identification
scheme that is insensitive to a certain type of faults. The identified parameters are then invariant to the
presence of actuator or sensor faults. Thereafter, a fault estimation procedure is proposed in order to detect
sensor or actuator faults. The paper ends with a simulation example which highlights the effectiveness of the
proposed approach.

1. INTRODUCTION

Model based Fault Detection and Isolation (FDI) depends
heavily on the presence of an analytical model of the
process. Based on the concept of analytical redundancy,
a residual signal is generated by comparing the measured
output signal and the estimated one from the nominal
system model. After being processed, this residual can
be used as an indicator of the fault Frank [1990] Gertler
[1998] Chen and Patton [1999] Akhenak et al. [2003]. The
main disadvantage of this class of methods is that, being
based on fixed nominal model of the system, it can be
very sensitive to parameter variations, various operating
conditions, disturbances. In that case, natural changes in
the dynamics could wrongly be interpreted as faults, what
is much penalizing in the case of switching systems.

This problem could be solved by introducing a continuous
update of the model on which the monitoring and diag-
nosis functions rest on. Instead of exploiting the nominal
model, the actual system could be approximated by an
up-to-date model estimated through identification proce-
dures Pekpe et al. [2004]Pekpe and Lecoeuche [2008]. The
diagnosis decision criteria are then based on this up-to-
date model. In a general way, a fault or drift acting on
the system would be characterized by evolutions of the
identified parameters and specific decision rules are built
to discriminate the reasons of the evolutions. The benefit
is that, in the case of non-stationary system, it could be
possible to distinguish natural changes in the dynamics
from faults. The decision thresholds are then more robust
for the fault detection but the fault estimation is made
more complicated Lecoeuche et al. [2006].

In order to improve the fault diagnosis for switching
systems, the presented approach is based on a robust
identification with respect to a certain type of faults. The
key idea is to use, in a first stage, a specific identification
scheme which makes the estimation of the parameters
invariant to sensor or actuator faults. In this case, we have
an up-to-date model where evolutions of its parameters

characterize only changes in the system dynamics (new
operating conditions, non-stationarities...). The proposed
FDI method is dedicated to switched linear systems whose
subsystems are described by state space models. The
switching times, the orders (that are potentially different
from a submodel to another) and the parameters of the
submodels are all assumed to be unknown.

Each submodel is identified by using the Observer Kalman
filter IDentification (OKID) algorithm through an esti-
mation of the Markov parameters Juang [1994]. In or-
der to guarantee that the identification algorithm is not
affected by the sensor or actuator faults, we consider a
projection of the regression equation onto the orthogonal
complement of the space spanned by the faults considered.
These faults are assumed to be constant but the method
developed can also apply to slowly time-varying.

As the identified parameters are insensitive to sensor or
actuator faults, a second stage is required to detect and
to estimate these faults. The adopted approach consists
in synthesizing sensitive residuals. One residual design
procedure is dedicated to each type of fault. The sensor
residual is computed by the comparison between the
actual output of the system and its estimate which is
obtained by aggregating the past inputs and the Markov
parameters on a sliding window of data. The actuator
residual is determined by designing an unknown input
finite memory observer Nuninger et al. [1998] Alessandri
et al. [2005]. The finite memory observer is more efficient
because the estimation is based on a limited number of
data Darouach et al. [1994].

The paper is organized as follows. Section 2 formulates the
problem of identifying a switched system that is subject
to a certain class of faults. The OKID algorithm is used to
identify the orders and the parameters of the constituent
submodels. In Section 3, two methods are proposed for
sensor and actuator faults detection and isolation. The
last section 4 gives a numerical example to illustrate the
effectiveness of the proposed approach.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10142 10.3182/20080706-5-KR-1001.3472



2. SWITCHING SYSTEM IDENTIFICATION

We consider a linear switched system whose global be-
havior results from switches among a number of linear
subsystems. Each subsystem is described by the following
linear, state space model

xs,k+1 = Asxs,k + Bs(uk + ∆u) + vk (1a)

yk = Csxs,k + Ds(uk + ∆u) + ∆y + wk (1b)

where the process noise vk ∈ R
ns and the measurement

noise wk ∈ R
l of the s-th local model are white noise and

uncorrelated with the input uk ∈ R
m. The components

∆u and ∆y refer respectively to actuator and sensor
faults that are assumed to be unknown constant additive
numbers. xs,k ∈ R

ns and yk ∈ R
l represent respectively

the state and output vector of s-th model. Each local
model is assumed to be stable and active during a minimal
time τ .

Given input-output measurements from a system such
as (1), our objective in this section is to work out an
identification scheme that would be insensitive to a certain
class of faults (sensor or actuator faults). By identification
of the switched system, we mean that we estimate the
order, the parameters of each local linear model and
the number of the constituent submodels of (1). Then,
without knowing the faults components ∆u and ∆y, the
discrete state s, the dimension ns of the state vector as
well as the the system matrices (As, Bs, Cs, Ds) have to
be estimated.

To begin with the identification procedure, assume that
the s-th local model is active on a time window [k−α, k]
of width α < τ . Then, an input-output description of the
above system can be obtained from equation (1) as:

yk = CsA
α
s xs,k−α +

k−1∑

i=k−α

CsA
k−i−1
s Bsũi

+Dsũk + ∆y +

k−1∑

i=k−α

CsA
k−i−1
s vi + wk, (2)

where the notation ũk
.
= uk + ∆u has been used. By

assuming that the system is stable, the influence of the
term CsA

α
s xs,k−α on the output yk at time instants k > α

can be neglected. But, for this approximation to hold, α
need to be chosen all the larger as the system dynamics
are slow.

To make up for this difficulty, the OKID algorithm Phan
et al. [1995] introduces, under the assumption that (1)
is observable, an observer gain Gs ∈ R

ns×l in order to
transform the system (1) into an observer structure whose
eigenvalues are close to zero. This results in the following
equation:

{
xs,k+1 = Āsxs,k + B̄szk + vk + Gswk

yk = Csxs,k + Dsũk + ∆y + wk,
(3)

where

Ās = As + GsCs ∈ R
ns×ns ,

B̄s = [ Bs + GsDs −Gs ] ∈ R
ns×(l+m),

zk =

[
ũk

yk − ∆y

]
∈ R

(l+m).

(4)

The vector zk is an extended input vector to the modified
system expressed by (3).

2.1 Estimation of the Markov parameters of the modified
system

In this section, we estimate the Markov parameters of the
modified system (3). The s-th local model being active on
a time window [k − α, k] of width α < τ , its output can
be expressed (see relation (2)) as:

yk = CsĀ
α
s xs,k−α + H̄s,αz̄k,α + H̄v

s,αvk,α + wk + ∆y, (5)

where

H̄s,α =
[
Ds CsB̄s · · · CsĀ

α−1
s B̄s

]
∈ R

l×((m+l)α+m),(6a)

H̄v
s,α =

[
Cs CsĀs · · · CsĀ

α−1
s

]
∈ R

l×ns(α), (6b)

z̄k,α =
[
ũ⊤

k z⊤k−1 · · · z⊤k−α

]⊤
∈ R

((m+l)α+m), (6c)

vk,α =
[
v⊤k−1 · · · v⊤k−α

]⊤
∈ R

ns(α). (6d)

Recall that the gain Gs (that need not be known) is
designed to make the eigenvalues of the matrix Ās close
to zero. As a consequence of that, the matrix Āp

s , for some
p satisfying α > p > ns, can be neglected. Therefore,

CsĀ
p
sxs,k−p ≃ 0 and CsĀ

j
sB̄s ≃ 0, ∀j ≥ p.

Hence, the Markov parameters matrix H̄s,α can be re-
placed by H̄s,p, so that the relation (5) becomes:

yk = H̄s,pz̄k,p + ∆y + ek, (7)

where all the terms related to the noise have been gathered
in ek = H̄v

s,pvk,p + wk.

In order to identify the Markov parameters, we consider
a sliding window of size F . We assume that F and p
are such that F + p < τ , making it thus possible to
collect the input-output data involved in (7) from the
same submodel s. Hence, by stacking Eq. (7) on the sliding
window [k − F + 1, k], we have:

Ȳ F
k = H̄s,pZ̄

F
k,p + ∆Ȳ F + ĒF

k , (8)

with

Ȳ F
k = [yk−F+1 yk−F+2 · · · yk] ∈ R

l×F ,

ĒF
k = [ek−F+1 ek−F+2 · · · ek] ∈ R

l×F ,

Z̄F
k,p = [z̄k−F+1,p z̄k−F+2,p · · · z̄k,p] ∈ R

((m+l)p+m)×F ,

∆Ȳ F = [∆y · · · ∆y] ∈ R
l×F .

Recall from the equation (4) that

zk =

[
uk

yk

]
+

[
∆u
−∆y

]
,

so that the matrix Z̄F
k,p can be written as:

Z̄
F
k,p =




uk−F+1 · · · uk[
uk−F

yk−F

]
· · ·

[
uk−1

yk−1

]

.

.

.

.

.

.

.

.

.[
uk−F−p+1

yk−F−p+1

]
· · ·

[
uk−p

yk−p

]




︸ ︷︷ ︸
¯̄ZF

k,p

+




∆u · · · ∆u[
∆u

−∆y

]
· · ·

[
∆u

−∆y

]

.

.

.

.

.

.

.

.

.[
∆u

−∆y

]
· · ·

[
∆u

−∆y

]




︸ ︷︷ ︸
∆ΨF

that is,

Z̄F
k,p = ¯̄ZF

k,p + ∆ΨF .

Now, let us define

∆z̄ =
[
(∆u)⊤

[
(∆u)⊤ (−∆y)⊤

]
· · ·

· · ·
[
(∆u)⊤ (−∆y)⊤

]]⊤
∈ R

((m+l)p+m),

(9)
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and
ϕF = [1 · · · 1]

⊤
∈ R

F . (10)

Then, by noting that

∆ΨF = ∆z̄ϕ⊤
F and ∆Ȳ F = ∆yϕ⊤

F ,

Eq. (8) can be rewritten as

Ȳ F
k = H̄s,p

¯̄ZF
k,p +

(
H̄s,p∆z̄ + ∆y

)
ϕ⊤

F + ĒF
k . (11)

In order to remove the unknown faults ∆u and ∆y from
(11), we multiply it on the left by

Π⊥
ϕ = IF −

ϕF ϕ⊤
F

ϕ⊤
F ϕF

= IF −
1

F
ϕF ϕ⊤

F .

This is equivalent to projecting (11) onto the orthogonal
complement of the space spanned by the row vector ϕ⊤

F .
The equation (11) becomes

Ȳ F
k Π⊥

ϕ = H̄s,p
¯̄ZF

k,pΠ
⊥
ϕ + ĒF

k Π⊥
ϕ . (12)

As the noises vk and wk are zero mean processes, an
estimate of H̄s,p can be derived as

H̄s,p = E

[
Ȳ F

k Π⊥
ϕ

(
¯̄ZF

k,pΠ
⊥
ϕ

)†
]

, (13)

where E [·] refers to the mathematical expectation op-
erator. Note that the existence of the pseudo-inverse of
¯̄ZF

k,pΠ
⊥
ϕ requires this latter matrix to be full row rank.

This is related to the sufficiency of excitation of the
submodel s within the data acquisition window that is
of size F . Therefore, the input uk must be rich enough

and ¯̄ZF
k,pΠ

⊥
ϕ must have a much larger number of columns

than rows, that is, (m + l) × p + m ≪ F .

2.2 Estimation of the Markov parameters of the system

This part consists in determining the Markov parameters
Hs,p of the system (1) from those H̄s,p of the modified
system (3). The parameters H̄s,p are written as follows:

H̄s,p =
[
Ds CsB̄s · · · CsĀ

p−1
s B̄s

]

=
[
h̄s,0 h̄s,1 · · · h̄s,p

]
, (14)

with
h̄s,0 = Ds,

h̄s,j = CsĀ
j−1
s B̄s, j = 1, · · · , p

=
[

h̄
(1)
s,j −h̄

(2)
s,j

]
,

h̄
(1)
s,j = Cs (As + GsCs)

j−1
(Bs + GsDs)

h̄
(2)
s,j = Cs (As + GsCs)

j−1
Gs.

(15)

By using a similar decomposition as in (15), one can easily
obtain that:

hs,0 = h̄s,0 = Ds (16a)

hs,1 = CsBs = h̄
(1)
s,1 − h̄

(2)
s,1Ds

hs,2 = CsAsBs = h̄
(1)
s,2 − h̄

(2)
s,1hs,1 − h̄

(2)
s,2Ds

and generally, one can establish:

hs,j = h̄
(1)
s,j −

j∑

i=1

h̄
(2)
s,jhs,j−i, j = 1, · · · , p (17a)

hs,j = −

j∑

i=1

h̄
(2)
s,jhs,j−i, j = p + 1, · · · ,∞. (17b)

As it is apparent from (17), only the first p < F Markov
parameters need to be computed. At any order j ≥ p + 1,
hs,j appears to be a linear combination of these first p
Markov parameters. Thus, OKID algorithm presents the
advantage of reducing significantly the number of Markov
parameters that are necessary for the whole identification
procedure.

2.3 Identification of a realization As, Bs, Cs and Ds

The aim here is the estimation of the order ns and a
realization (As, Bs, Cs, Ds) of the system (1) from the
Markov parameters. This is achieved by making use of the
Eigenvalue Realization Algorithm (ERA) Juang [1994].
Given the Markov parameters estimated above, this al-
gorithm determines the order together with a minimal
realization of the submodel indexed by s.

(1) With the definitions

Cs
.
=

[
Bs AsBs · · · Ap−1

s Bs

]
∈ R

ns×mp

Γs
.
=

[
(Cs)

⊤ (CsAs)
⊤ · · · (CsA

p−1
s )⊤

]⊤
∈ R

lp×ns ,

notice that

Hs
.
=




hs,1 · · · hs,p

...
...

...
hs,p · · · hs,2p−1


 = ΓsCs. (18)

(2) Compute an SVD of the matrix Hs in (18) as

Hs = [ Us,1 Us,2 ]

[
Ss,1 0
0 Ss,2

] [
V ⊤

s,1

V ⊤
s,2

]

≃ Us,1Ss,1V
⊤
s,1,

(19)

where the singular values contained in Ss,2 are ne-
glected.

(3) Then, the order ns of the system can be obtained
as the number of singular values in Ss,1. We can also
retrieve the extended observability matrix Γs and the
extended controllability matrix Cs as:

Γs = Us,1S
1/2
s,1 and Cs = S

1/2
s,1 V ⊤

s,1. (20)

(4) Now, by exploiting the A-invariance property of Γs,
the system matrices can finally be computed as
follows 




As =
[
Γ↑

s

]†
Γ↓

s,

Bs = Cs(:, 1 : m),

Cs = Γs(1 : l, :),

Ds = hs,0,

(21)

where Γ↑
s = Γs(1 : (p−1)l, :) and Γ↓

s = Γs(l+1 : pl, :).

3. FAULT DETECTION AND ISOLATION

From the previous section, we can correctly extract the
parameters of the system in (1) although this latter is
subject to unknown faults. Now, by using the estimates
in (21), we will, in this section, focus on generating
residuals that reflect the faults acting on the system
(1). An ideal residual signal should remain zero in the
fault-free case and nonzero when faults occur. But data
collected in physical systems are generally corrupted by
noise, and so, the residuals are different to zero even if
there is no fault. Therefore, decision techniques such as
the Geometric Moving Average (GMA) or the Cumulative
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Sum (CUMSUM) Basseville and Nikiforov [1993] can be
used to detect the apparition of faults. The decision task
is not tackled here, but the fault detection procedure is
limited to the generation of appropriate residuals.

Once a fault has been detected, it must be estimated.
The estimate of the fault will provide information about
the type of fault, its duration, its amplitude and even its
probable evolution. We first discuss (Subsection 3.1) the
case of sensor faults and then propose in Subsection 3.2 a
method to deal with actuator faults.

3.1 Sensor fault detection and estimation

To restrict our attention on the estimation of sensor fault,
we consider that the actuator is faultless, that is, ∆u = 0.
Then, the system (1) becomes:

{
xs,k+1 = Asxs,k + Bsuk + vk

yk = Csxs,k + Dsuk + ∆y + wk.
(22)

The output is approximated by the Finite Impulsion
Response model (FIR) defined by Eq. (2) where the term
CsA

α
s xs,k−α is considered to be negligible. Consequently,

an estimate of the output is given by:

ŷk =
[
Ds CsBs · · · CsA

f−1
s Bs

]



uk

uk−1

· · ·
uk−f


 . (23)

As the estimates of the Markov parameters are not
influenced by the faults under consideration (see Eq. (12)),
residuals for diagnostic can be generated by a comparison
between the measured and the estimated outputs. Hence,
the residual

rk = yk − ŷk (24)

is expected to reflect the potential occurrence of a sensor
fault ∆y as represented in (22).

Remark 1. In the case of MIMO systems (l outputs), the
residual is composed of l components. Each component
rk(i) of rk reflects the fault that potentially affects the
i-th output of the system (1). 2

3.2 Actuator fault detection and estimation

Let us now turn to the challenging problem of detecting
and estimating an actuator fault in a switching context.
Similarly to the previous case, we consider this time that
the sensor is faultless, meaning that ∆y = 0 in (1). To
deal with this problem, an unknown input finite memory
observer is proposed for the identification of the actuator
fault. Based on the matrices (21), the observer structure
is carried out by treating the unknown component ∆u as
part of an augmented state vector Hocine et al. [2005]. In
this procedure, an assumption is made that the actuator
fault is constant or slowly time varying on the sliding
window of size F .

The augmented system is written as:
{

x′
s,k+1 = Ãsx

′
s,k + B̃suk + v′k

yk = C̃sx
′
s,k + D̃suk + wk,

(25)

where

x′
s,k =

[
xs,k

∆u

]
, v′

k =

[
vk

0

]
,

Ãs =

[
As Bs

0 I

]
, B̃s =

[
Bs

0

]
,

C̃s = [ Cs Ds ], D̃s = Ds.

For future use, we define

Ls,F =
[
(C̃s)

⊤ · · · (C̃sÃ
F−1
s )⊤

]⊤
∈ R

lF×(ns+m),

Ts,F =
[
ÃF−1

s B̃s ÃF−2
s B̃s · · · B̃s

]
∈ R

(ns+m)×mF ,

Λs,F =




D̃s 0 · · · 0

C̃sB̃s D̃s · · · 0
...

...
. . .

...

C̃sÃ
F−2
s B̃s C̃sÃ

F−3
s B̃s · · · D̃s


 ∈ R

lF×mF ,

Ωs,F =




0 0 · · · 0

C̃s 0 · · · 0
...

...
. . .

...

C̃sÃ
F−2
s C̃sÃ

F−3
s · · · 0


 ∈ R

lF×(ns+m)F .

The evolution of the augmented system (25) on the sliding
window [k − F, k] can be summarized in the equation

ȳk,F = Ls,F x′
s,k−F + Λs,F ūk,F + η̄k,F , (26)

where
ȳk,F =

[
y⊤

k−F · · · y⊤
k−1

]⊤
,

and the vectors ūk,F , w̄k,F and v̄′k,F are defined in a

similar way. Here, the noise term ηk,F is defined as η̄k,F
.
=

w̄k,F + Ωs,F v̄′k,F .

As the noises wk and vk are zero mean processes, an
estimate x̂′

s,k−F of the state at time step k−F , can easily
be obtained as the solution of the following Least Squares
criterion Hocine et al. [2005]:

Jk =
∥∥Ls,F x′

s,k−F + Λs,F ūk,F − ȳk,F

∥∥2

2
,

subject to x′
s,k−F . This results in

x̂′
s,k−F = L

†
s,F (ȳk,F − Λs,F ūk,F ) , (27)

and finally, an estimate of the state at time k can be
computed as

x̂′
s,k = ÃF

s x̂′
s,k−F + Ts,F ūk,F . (28)

The actuator fault ∆̂uk is estimated directly from x̂′
s,k

since, as defined in (25), x̂′
s,k =

[
x̂⊤

s,k ∆̂uk

⊤
]⊤

.

Remark 2. For the solution (27) to be consistent, the
observability matrix Ls,F must be full column rank. 2

Summary. The whole identification based fault detec-
tion and isolation technique is implemented online. On
any time window [k − F, k], k = F + 1, . . . ,∞, the steps
of the eventual algorithm may be as follows

(1) Estimate H̄s,p by Recursive Least Squares using
(12) and deduce the impulse responses hs,j for j =
0, . . . , 2p − 1.
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(2) Obtain the matrices (As, Bs, Cs, Ds) from (21) as
described in Subsection 2.3.

(3) Recognize switches as the events that originate
abrupt changes in the estimates of the Markov pa-
rameters.

(4) Fault detection and isolation:
4-a Detect sensor faults by inspecting the residual

∆̂y = yk − ŷk given in (24).
or
4-b Detect actuator faults by inspecting ∆̂u ob-

tained through (27) and (28).

4. SIMULATION EXAMPLE

In order to demonstrate the performance of the proposed
method, let us consider an example of MIMO (two inputs
and two outputs) switched system, composed of three sub-
models, subject to sensor or actuator faults as described
by (1). The switches that drive the system from a sub-
model to another are such that: the first, second and third
submodels are active respectively on the time intervals
[1, 499], [500, 1799], and [1800, 2499]. On [2500, 4000],
we let the submodel 3 vary slowly in parameters. The vari-
ation concerns the dynamics matrix A3 and the variation
rate is chosen to be linear with respect to time and is
such that A(to) = A3 and A(t1) = A1 for to = 2500 and
t1 = 4000.

We also let the submodels be of different orders, that
is, n1 = 3, n2 = 2 and n3 = 3, where in the notation
nj , j represents the discrete state of the system. This
requires that the transition matrices (the A-matrices) in
(1) to be rectangular at the switching times. The matrices
Ai, Bi, Ci, Di, i = 1, 2, 3 are given by:

A1 =

[
0.64 0.62 0

−0.64 0.62 0

0 0 −0.36

]
, A2 =

[
0.2 −0.8

1 −0.8

]
, A3 =

[
0.1 0.4 0

−0.5 0.4 0

0 0 −0.26

]

B1 =

[
0.90 −0.70

0.71 −0.50

0.80 0.47

]
, B2 =

[
0.1 −0.6

0.32 −0.66

]
, B3 =

[
0.1 −0.6

0.32 −0.66

0.3 0.82

]

C1 =

[
−0.55 0.2 0.8

0.45 0.3 0.58

]
, C2 =

[
−0.8 −0.1

0.3 0.48

]
, C3 =

[
−0.8 −0.1 0.7

0.3 0.48 0.9

]

D1 =

[
0.97 0.63

−0.32 0.95

]
, D2 =

[
0.5 0.3

−0.2 −0.5

]
, D3 =

[
0.5 0.3

−0.2 −0.5

]
.

The excitation input uk applied to the system is chosen as
a white Gaussian zero-mean noise of variance unity. The
simulation is run with an additive output white noise in
the proportion of SNR = 35 dB.

4.1 Identification of the system subject to the sensor and
actuator faults

As argued in Section 2, we can correctly estimate the
parameters of the switched system despite the possible
faults that could affect it. This is illustrated in this
subsection. Under the sensor and actuator faults plotted
on Figure 1, data are collected from the switched system
defined and the method of Section 2 is used for the
identification.

The results obtained then are presented on Fig. 2 and Fig.
3. Figure 2 represents the magnitude of the system poles

while the estimate of the order is depicted on Figure 3.
These figures show that our algorithm (See Section 2) is
robust with respect to the faults considered. Indeed, the
presence of sensor or actuator faults in the form given in
(1) does not affect the estimation of the order ns and the
parameters that characterize the switched system.

At each switching time we can notice that the estimated
order increases suddenly up to (l × p : number of rows of
the Markov parameters matrix Hs, (see Eq.(18)) even if
there is no change in the order. This phenomenon can be
attributed to the presence of mixed data coming from two
different local models.
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Figure 1. Simulation faults
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Figure 2. Eigenvalues in absolute value
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Figure 3. ns and its estimate

4.2 Actuator fault detection and estimation

We consider in this subsection only actuator faults (as
in Subsection 3.2). The faults occur on two different
intervals: ∆T1 = [800, 1500] (during the activation of
the local model 2) and ∆T2 = [2600, 3500]. The width F
of the sliding window is set to be F = 30.

We use, as described in Subsection 3.2, an unknown input
finite memory observer to estimate the actuator fault. The

results obtained for ∆̂uk are given in Figure 4 and Figure
5. The actuator fault that was injected at time-steps t
(t = 800 and t = 2600) respectively, are detected with a
delay that is approximately equal to F .

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10146



0 500 1800 2500 4000
−0.5

−0.3

0

0.3

0.5

Dc1 Du1 

Figure 4. ∆u1k and ∆û1k
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Figure 5. ∆u2k and ∆û2k

4.3 Sensor fault detection and estimation

Now, we consider only the sensor fault (see Eq. (22)), the
actuator being fault-free, i.e., ∆u = 0. The sensor faults
occur on the same intervals of time ∆T1 and ∆T2 defined
previously.
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Figure 6. r1k = y1k − ŷ1k
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Figure 7. r2k = y2k − ŷ2k

To identify the sensor fault, we compare the output
vector of the system (22) and its estimate by the Markov
parameters (23). The simulation results are shown in
Figures 6 and 7. The residual vector rk = yk − ŷk is used
to detect and estimate the sensor faults due to the fact
that the proposed identification algorithm is robust with
respect to the faults injected on the system.

In this simulation, we have shown how to identify, from
the input-output data, the order and the parameters of
the switched system. Thereafter, from these identified
parameters, we have implemented a strategy for sensor
and actuator fault detection and isolation. In order to
detect and estimate these faults, we use the diagnosis
procedures developed separately in Sections 3.1 and 3.2.

However, each of these two procedures is valid only if
one type of faults is injected on the system. When the
system is simultaneously subject to sensor and actuator
faults, the presented strategy permits to detect the fault
on the system without giving anymore indication about
the source of the fault.

5. CONCLUSION

In this work, we have proposed a strategy for fault de-
tection and isolation without any a priori knowledge of
the system to be supervised. The key idea is to use, as a
first stage, a specific OKID identification algorithm which
makes the estimation of the parameters insensitive to
sensor or actuator faults. Therefore, the parameters iden-
tified characterize only changes in the system dynamics.
As the identified parameters are insensitive to sensor or
actuator faults, a second stage is required to detect and
to estimate these faults. The approach followed consists
in synthesizing sensitive residuals. The sensor residual is
computed by the comparison between the actual output
of the system and its estimate which is obtained by
aggregating the past inputs and the estimated Markov
parameters on a sliding window of data. The actuator
residual is determined by designing an unknown input
finite memory observer. The simulation results show good
performance of this approach.
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