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Abstract: The development of real-time control systems is a complex process which has to
face often conflicting requirements, especially those related to the performance of the control
methods and the real-time behaviour of the system. The ASSERT Virtual Machine provides a
reliable execution platform for such systems, which allows developers to cope with functional
and real-time aspects separately. In order to guarantee the required real-time properties, the
virtual machine only accepts software components which have a predictable temporal behaviour
which can be analysed at system design time. Such components can be automatically generated
from a high-level description of a system which embodies the functional components (e.g.
control algorithms) into a set of containers providing the appropriate concurrent and real-
time behaviour. The ASSERT Virtual Machine has been implemented in Ada 2005, using a
predictable tasking subset of the language known as the Ravenscar profile. A prototype has
been validated on several pilot-scale spacecraft control systems, with good results.
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1. INTRODUCTION

Real-time control systems have complex, and often con-
flicting requirements. On one side, control algorithms have
to be designed and tuned for the required performance
metrics. On the other side, the execution of control al-
gorithms on the chosen computer platform must exhibit
an appropriate temporal behaviour, e.g. with respect to
periodic execution, limited jitter, etc. Additional require-
ments may refer to dependabilty or security properties,
power consumption, or overall cost. This complexity often
makes the development process of such systems extremely
difficult to manage, and results in added cost and long
development times.

A common approach to real-time system development is
based on the concept of separation of concerns. Control
algorithms and other functional parts of the software are
developed from scratch or, more often, with the help of
some model-based tool such as Simulink. Support for con-
currency and real-time is added at a later stage, usually by
hand, using a cyclic executive or better a real-time kernel
[see e.g. Liu 2000]. Although there are indeed interactions
between the design of control algorithms and the real-
time aspects of the system [Albertos and Crespo, 2001,
Cervin et al., 2003], in many cases the separation approach
provides a convenient way to ensure the desired control
and real-time performance in an industrial framework. Its
main problem is the difficulty of decoupling the functional
? This work has been partially funded by the Spanish Ministry of
Education, project no. TIC2005-08665-C03-01 (THREAD), and by
the IST Programme of the European Commission under project IST-
004033 (ASSERT).

algorithms from the design of concurrent and real-time
features of the system.

The ASSERT 1 project is aimed at developing enhanced
development processes for a particular kind of real-time
control systems, embedded on-board aerospace systems.
The project has been carried out by a consortium of 29
industrial and academic partners led by the European
Space Agency (ESA) 2 . Since the application domain is
representative of control systems with hard real-time and
high-integrity requirements, its results may be expected
to be applicable to other domains as well. The approach
adopted relies on the development of a set of building
blocks which can be used in open frameworks in order to
develop software for system families, i.e. sets of related
system products with a common architecture. Software
component models and formal methods are used when
appropriate in order to verify the correctness of the soft-
ware. To this purpose, a new software development process
has been devised, based on the separation principle: func-
tional code is embedded into containers which provide the
required concurrency and timing elements (e.g. threads
and synchronization mechanisms). Containers undergo a
series of transformations until they are in a form that
can be directly executed on a specialised platform, the
ASSERTVirtual Machine, which guarantees that the be-
haviour of the synchronization and timing mechanisms is
correct.

1 Automated proof-based System and Software Engineering for Real-
Time systems.
2 http://www.assert-project.net
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This paper focuses on the concept and the characteristics
of the ASSERT Virtual Machine (VM), especially those
related to real-time performance. The general framework
provided by the ASSERT development process is intro-
duced in section 2. The design of the Virtual Machine
is described in detail in section 3. Section 4 contains a
description of the VM implementation, and section 5 de-
scribes its validation on a pilot industrial project. Finally,
conclusions of the work, as well as some ideas for future
work are given in section 6.

2. THE ASSERT DEVELOPMENT PROCESS

The ASSERT development process for embedded real-time
systems [Vardanega, 2006, Bordin and Vardanega, 2007] is
a model-driven process based on the following principles:

• Definition of a specific meta-model that enables the
relevant properties (e.g. timing parameters) to be
included in system models;

• separation between functional ad concurrency and
real-time aspects in system models;

• formal definition of properties and model transforma-
tions guaranteeing the preservation of the temporal
behaviour of the system.

The meta-model provides a precise definition of the el-
ements that can be used to build models of computer
systems in a specific domain [OMG, 2003]. The ASSERT
meta-model is a formalization of the Ada Ravenscar Profile
[Burns et al., 1998], a subset of the Ada concurrency
model [ISO/IEC, 2007] for high-integrity real-time systems
exhibiting a predictable, analysable time behaviour. This
meta-model is called the Ravenscar computational model
(RCM), and its main elements are [ISO/IEC, 2005]:

• A static set of periodic and sporadic concurrent tasks,
with a bounded and known execution time.

• Communication between tasks by means of static
shared objects with mutually exclusive access.

• Fixed priority scheduling of tasks, with immediate
ceiling priority inheritance access to shared objects
[Sha et al., 1990]

Separation between functional and temporal aspects is
implemented by containers. A container is a generic com-
ponent in which functional code is embedded in such a way
that non-functional properties, especially real-time prop-
erties, are guaranteed by construction. Two different kinds
of containers are used in ASSERT, with two corresponding
levels of abstraction (figure 1):

• Application-level containers (APLC) are used to de-
fine the components of a system (e.g. sensors or con-
trollers), and the interfaces between them, in an ab-
stract way. Interfaces provide the functional interac-
tion between components, i.e. the operations or meth-
ods that can be performed on a component (provided
interfaces), or that a component may require from
others (required interfaces). Non-functional proper-
ties are defined by means of a specially-defined inter-
face grammar [Bordin and Vardanega, 2007].

• Virtual-machine-level containers (VMLC) define the
components that are directly executed on top of
the execution platform, i.e. the ASSERT Virtual
Machine.Examples of VMLC include periodic and

sporadic tasks, and shared data objects, which are
instances of the Ravenscar Computational Model.

Containers provide support for concurrency, synchroniza-
tion, and real-time to the embedded functional code, let-
ting control systems designers concentrate on the design
of control algorithms and specify temporal properties only
at a high level of abstraction. For example, the functional
code for a PID algorithm can be embedded in an AP-
level container with a periodic behaviour specification,
including a deadline in the production of the control action
in order to limit the effect of output jitter. The APLC can
then be transformed into one or more VM-level containers,
depending on how it interfaces with other components.
One of the resulting VMLC will provide a periodic task
ensuring that the control algorithm is executed with the
requested period, and that it finishes within deadline in
each period. Ada code for such a task can then be auto-
matically generated.

An important characteristic of this scheme is that the
semantics of all components is based on a single meta-
model, the RCM. This formal basis enables models to be
transformed into each other while still preserving their
real-time properties. Model transformations are the basic
element of the ASSERT software development process,
in which higher-level models (functional and interface
models, based on APLC) are transformed to lower-level
models (based on VMLC), which are directly executed on
the ASSERT VM [Panunzio and Vardanega, 2007].

3. THE ASSERT VIRTUAL MACHINE

3.1 Run-time entities

The ASSERT Virtual Machine (VM) is the execution plat-
form for the run-time components of a real-time system. In
order to guarantee that the real-time properties which are
specified in the upper abstraction levels are preserved, the
VM only accepts entities which are “legal” with respect to
the computational model, i.e. the RCM. These entities are
built from a reduced set of archetypes:

• Active components: periodic and sporadic tasks. Pe-
riodic tasks execute an action which repeats every
period, e.g. a control algorithm. Sporadic tasks exe-
cute an action whenever an activation event occurs,
e.g. a change of settings.

• Protected components contain data objects that are
shared by two or more active components, and are
only accessible by means of a specific set of operations
or methods. In order to protect shared objects from
being corrupted by concurrent access, mutual exclu-
sion is enforced on the execution of their operations.

• Passive components, which contain data object that
are only used by a single active component. Passive
objects are only accessible trough a set of operation
which are part of the object definition.

Ada code running on top of the virtual machine can be
automatically generated in such a way that conformity
with the computational model is preserved. For such pur-
pose, as above stated, functional code is embedded into
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Fig. 1. ASSERT component model.

VM-level containers, 3 built from the previously defined
archetypes, which provide mechanisms for encapsulating
the associated temporal attributes (period, worst-case ex-
ecution time, deadline, etc.). Containers may also include
monitoring mechanisms for detecting possible timing er-
rors occurring at run-time, so that corrective actions may
be taken whenever possible. As an example, listing 1 shows
a simplified archetype of a periodic container performing
a control action, possibly imported from a model-based
design tool. Listing 2 shows a slightly more complex con-
tainer archetype, also including execution-time monitoring
in order to detect possible WCET overruns. If such an
error occurs, a procedure (Overrun Hander in listing 2)
is automatically started, which can be used to perform
some appropriate error-correcting action, e.g. a system re-
configuration.

3.2 Functionality of the Virtual Machine

The main characteristic of the ASSERT Virtual Machine
is that it provides run-time support for preserving the
temporal properties that have been specified for the sys-
tem components built from the basic VMLC archetypes.
Since the underlying model for these archetypes is the
Ravenscar Computational Model, the central component
of the Virtual Machine is a Ravenscar-compliant real-time
kernel, i.e. one that provides basic functionality for the
execution of a static set of concurrent tasks with the
following characteristics:

• Periodic activation of periodic tasks;
• event-based activation of sporadic tasks, enforcing a

minimum separation between two consecutive activa-
tions;

3 Embedded functional code does not have to be written in Ada.
Any language that can be interfaced with Ada (e.g. C, C++ or even
Fortran) can be used.

Listing 1. Periodic task.
ta sk body Pe r i o d i c Ta s k i s

Nex t A c t i v a t i o n : Ada . Real Time . Time := Epoch ;
beg in

loop
de l ay u n t i l Nex t A c t i v a t i o n ;
Con t r o l A c t i o n ; −− impor ted f u n c t i o n a l code
Nex t A c t i v a t i o n :=

Ne x t A c t i v a t i o n + My Per iod ;
end loop ;

end Pe r i o d i c Ta s k ;

Listing 2. Periodic task with WCET overrun detection.
My Id en t i t y : a l i a s e d constant Task Id :=

Pe r i od i c Ta sk ’ I d e n t i t y ;
WCET Timer : Ada . Execut ion Time . Timers . Timer

( My Iden t i t y ’ Access ) ;

ta sk body Pe r i o d i c Ta s k i s
Nex t A c t i v a t i o n : Ada . Real Time . Time := Epoch ;

beg in
loop

WCET Timer . S e t Hand l e r
( In Time =>

My WCET Budget ,
Hand le r =>

My Monitor . Over run Hand le r ’ Access ) ;
de l ay u n t i l Nex t A c t i v a t i o n ;
Con t r o l A c t i o n ; −− impor ted f u n c t i o n a l code
Nex t A c t i v a t i o n :=

Ne x t A c t i v a t i o n + My Per iod ;
end loop ;

end Pe r i o d i c Ta s k ;
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• mutual exclusion in the execution of protected object
operations;

• scheduling the execution of periodic and sporadic
tasks in a predictable way, so that all tasks deadlines
can be guaranteed whenever possible; 4

• monitoring the processor time used by a task and
detect violations of the specified worst-case execution-
time.

By providing such basic functionality, the VM real-time
kernel only accepts the execution of legal run-time compo-
nents as defined in 3.1 above. Furthermore, if the kernel is
used in conjunction with an Ada 2005 compiler, the pro-
filing facilities of the language [ISO/IEC, 2007, app. D.13]
can be used to force the compiler to accept only Ravenscar-
compliant Ada programs, thus making sure that the tem-
poral behaviour of the source code can be analysed with
respect to the model requirements.

3.3 Architecture of the Virtual Machine

Although this paper concentrates on non-distributed sys-
tems, the ASSERT VM also supports distributed execu-
tion on a set of computer nodes linked by a predictable
communication network. To this purpose, a hierarchical
architecture has been designed that includes additional
subsystems for communication and distribution (figure 2).
The main elements of the full virtual machine are:

• A real-time kernel supporting the Ravenscar compu-
tational model (see 3.2 above).

• A set of communication drivers and protocols ensur-
ing bounded transmission times. The SOIS standard
for spacecraft communications [CCSDS, 2006] has
been adopted as a basis for this subsystem.

• A middleware layer providing distribution trans-
parency and reliable replication schemes for critical
software components.

As above stated, the real-time kernel is the critical compo-
nent for guaranteeing the real-time behaviour of a system.
The next section describes the main features of its design
and implementation.

4. IMPLEMENTATION

The choice of the Ravenscar Computational Model in
ASSERT immediately suggests using Ada as the imple-
mentation language of the ASSERT VM. The Ravenscar
profile is part of the last Ada 2005 standard [ISO/IEC,
2007], which also includes a complete set of timing and
monitoring mechanisms that can be used to implement
the above requirements [Pulido et al., 2007]. An instance
of the ASSERT VM has been built based on ORK+, an
evolved version of the Open Ravenscar Real-Time Kernel
(ORK), which was developed by UPM as a dedicated
operating system platform for spacecraft on-board systems
[de la Puente et al., 2000, Zamorano and Ruiz, 2003].
The kernel is targeted to LEON2, a radiation-hardened
implementation of the SPARC V8 architecture [SPARC
International, 1992], and is integrated with a development
4 The RCM specifies fixed-priority pre-emptive scheduling with
ceiling-locking (i.e. immediate ceiling priority inheritance) access to
protected objects.

computer hardware

communication

drivers

RT kernel
communication

services

middleware

automatically generated code

Fig. 2. ASSERT Virtual Machine Architecture.

version of GNAT for LEON, an industrial-grade Ada 2005
compilation system. It fully supports the Ada Ravenscar
profile and the execution-time monitoring mechanisms.

The current version of the virtual machine also in-
cludes communication drivers and a protocol stack for the
SpaceWire bus [ECS, 2003] and the SOIS message trans-
fer service (MTS)[CCSDS, 2006], as well a high-integrity
version of the PolyORB middleware layer [Hugues et al.,
2006], called PolyORB-HI. The communication subsystem
has been implemented in C, and compliance with the
Ravenscar computational model has been provided by rig-
orous coding restrictions. The PolyORB-HI middleware is
written in Ada with high-integrity restrictions [ISO/IEC,
2000], including the Ravenscar profile for tasking.

5. VALIDATION OF THE APPROACH

In order to validate the methods and tools developed in the
ASSERT project, three pilot projects have been defined,
lead by the main industrial partners of the project. The
pilot projects are based on previous industrial develop-
ments, and focus on different aspects of spacecraft control
systems. The projects are:

• HRI (Highly Reliable Infrastructure) is oriented at
long-duration satellites with no possibility of mainte-
nance;

• MPC (Multiple-Platforms and Cooperation) is ori-
ented at distributed systems and satellite fleets;

• MA3S (Multi-domain Advanced Available Auto-
mated System) is centred on mission-critical control
systems embedded in unmanned spacecraft.

The ASSERT VM has been used to support the develop-
ment and execution of real-time software in the HRI and
MPC projects, led respectively by Thales Alenia Space
and Astrium Satellites. The HRI software includes typi-
cal spacecraft control subsystems, such as guidance and
navigation control (GNC), battery management, thermal
control, and telemetry-telecommand (TMTC). It also in-
cludes a couple of payload applications, an altimeter and
an image processing application.

The functional code for the HRI system has been devel-
oped using a variety of modelling tools, including UML
and Matlab/Simulink, targeting different programming
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languages such as C, C++ and Ada. The code has been
embedded into a number of application-level containers,
from which a set of virtual-machine level containers has
been derived using automatic transformation tools devel-
oped within the project. The generated Ada code runs on
an embedded computer platform with two LEON2 com-
puters connected by a SpaceWire network, each of them
hosting an instance of the ASSERT Virtual Machine. The
demonstration prototype also includes some additional
computers which simulate a ground station and provide
debugging and execution control utilities.

The MPC demonstrator simulates a constellation of three
observation satellites. It also includes some real building
blocks, such as attitude and orbit control (AOCS) and
communications, as well as advanced coordination man-
agement modules. The system has also been developed
with the help of transformation tools developed in the
project, and the resulting code runs on a distributed sys-
tem built with LEON2 computers as SpaceWire links, as
before. The ASSERT virtual machine has been used as the
run-time platform on all the system nodes.

The results of these experiments are encouraging and show
that the code implementing the concurrency, synchronisa-
tion and real-time aspects of the system can be automat-
ically generated from a high-level description embodying
the control code coming from a model-based simulation
and design environment. The resulting software has been
exhaustively tested, showing that the specified real-time
behaviour is indeed ensured by the Virtual Machine. Sim-
ilar results have been obtained from a third experiment
performed at ESA/ESTEC, 5 in which software for a typ-
ical spacecraft platform has been developed and run on a
LEON2 simulator.

6. CONCLUSIONS

The approach to real-time software development described
in this paper is based on the following principles:

• Separation between functional (control algorithms)
and synchronization and timing aspects of a system;

• definition of a formal computation model based
on well-known principles that ensure a predictable,
analysable timing behaviour;

• software development process based on models and
model transformations preserving the real-time prop-
erties of the system;

• software execution on top of a spetialized platform,
the ASSERT Virtual Machine, that guarantees the
real-time properties at run time and detects any
possible violations of it.

This approach has shown its feasibility by the build of
an instance of the ASSERT Virtual Machine, which has
been successfully used in several industrial-grade projects
involving sophisticated spacecraft control functions. Func-
tional code developed with modelling tools commonly
used in the spatial control systems domain, such as Mat-
lab/Simulink and UML, has been seamlessly integrated
into so-called containers, which embody all the concur-
rency, synchronization, and real-time complexity.

5 European Space Research and Technology Centre.

Some recent additions to the ASSERT Virtual Machine
which are still being assessed include:

• Logical partitions, enabling several applications to
run on the same computer platform in such a way
that faults arising in one of them do not propagate to
the rest of the system.

• Full integration with the Ada 2005 object-oriented
programming model;

A basic set of graphical tools supporting model devel-
opment and transformation, as well as automatic code
generation for systems running on the ASSERT Virtual
Machine, has been built by other project partners. Most
of the tools are integrated into well-known environments
such as Eclipse, 6 Stood, 7 , and TOPCASED. 8
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and Karl-Erik Årzén. How does control timing affect
performance? IEEE Control Systems Magazine, 23(3):
16–30, June 2003.
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