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Abstract: A large-scale 1000 MW once-through type ultra super-critical boiler power plant, requires 
investigation for the development of an analyzable model for use in the development of an intelligent 
control system. Using data from the power plant, a model is realized using dynamically recurrent neural 
networks. For proper operation, the plant must be broken into smaller subsystems that are each modeled by 
a separate neural network. Modified predictive optimal control is then used to drive the plant to desired 
states. Due to the computational intensity of modified predictive optimal control, it was rendered unviable 
by the computation time required for each time step of the controller. As an alternative, a reference 
governor was implemented along with a PID feedback control system that utilizes intelligent gain tuning. 

 

1. INTRODUCTION 

Ultra super-critical (USC) boiler power plants are currently 
being developed to increase the efficiency of standard fossil 
fuel power plants. The modelling and control of a large-scale 
1000 MW once-through type ultra super-critical boiler power 
plant is investigated here. Larger more complicated power 
plants require more sophisticated methods to streamline the 
modelling process as well as more sophisticated control 
schemes that can be used to further enhance plant efficiency. 

The development of large capacity power plants requires new 
approaches to analyze plant dynamics for control purposes. In 
practice, many utility companies utilize simulation programs, 
such as Modular Modelling Systems (Leavesley, et al., 1996) 
or their own simulation tools for modelling. However, it is a 
challenge to extend current models to model larger capacity 
plants, and to design new models without component 
specifications. To design a control system for a power plant, 
a model must be developed in advance. Recently, the study of 
Neural Networks (NN) has become important in designing 
system identification and control systems in the power 
systems area. With system data, the NN can be trained to 
approximate highly nonlinear functions. Since the NN 
strongly depends on the input/output data but not on the 
physical structure of the system, it is flexible and can easily 
be adapted to different types of power plants. 

Accurately modelling such a system with a single NN is 
theoretically possible, but it was discovered that in practice, 
the training of such a network was not practical. Instead, the 
individual subsystems of the power plant were modelled with 
separate NN that were combined to form the power plant 

model. This type of approach is covered in detail in (Lee, et 
al.,2007a). Only the higher level details will be covered to 
show the differences required to deal with a new power plant. 

It was desired to use a modified predictive optimal control 
scheme with this plant to track unit load demand in order to 
provide adaptive control that optimized certain functions of 
the power plant. This scheme was developed successfully, 
but turned out to be more computationally intensive than 
desired for an actual controller. To overcome this difficulty, a 
reference governor was developed to provide feed forward 
controls in conjunction with a simple PID feedback control 
system that utilizes intelligent gain tuning. Both approaches 
are presented with a focus on the reference governor and  
intelligent gain tuning. 

2. 1000 MW USC POWER PLANT 

In this report, the USC boiler power plant consists of four 
processes which are air/flue gas, pulverizer, water/steam, and 
turbine/generator. However, for modelling purposes, the 
number of detailed subsystems will be nineteen. Fig. 1 shows 
the 1000 MW USC boiler power plant. Most blocks are 
subsystems, which will be represented by a NN-based 
subsystem model. The proposed scheme will be applicable to 
other types of plants, including nuclear and fuel cell plants. 

The power plant under investigation is a 1000 MW coal-
pulverized, once-through type, boiler-turbine-generator unit. 
There are three economizers used to raise the temperature of 
water entering the boiler from the feedwater system. Two 
forced draft fans and two primary air fans provide air to the 
air preheater. The air preheater in turn provides heated air to 
the pulverizers, burners, and furnace. The primary air fans 
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also provide cold air to the pulverizers. The fuel is provided 
to the furnace through the pulverizers and burners. Furnace 
pressure is maintained at the desired value by controlling two 
induced draft fans. The waterwall surrounds the furnace 
vertically and spirally. Flue gas exiting the furnace travels 
through the superheaters and reheaters, economizers, and air 
preheater to raise the temperature of the steam, water or air, 
respectively. There is a separator on top of the furnace which 
supplies high pressure steam to the primary superheater and 
reduces the impurities in the steam. The superheater consists 
of four parts, primary, division, platen, and finish. The 
reheaters reheat the steam after the High Pressure (HP) 
turbine using the primary reheater and the reheater finish. 
Finally, the turbine generates power from the tandem 
compound triple turbines, which consist of three parts: a HP 
turbine, an Intermediate Pressure (IP) turbine, and Low 
Pressure (LP) turbine. 

 
Figure 1. 1000 MW USC Power Plant. 

The model will be focused on boiler, turbine, and generator 
parts. Each subsystem has common inputs and outputs: mass 
flow rate, temperature, pressure, and enthalpy of fluid. In 
addition to these inputs, there are control variables involved 
in driving each subsystem to the desired state, which are 
listed in Table 1. The proposed model, which is based on the 
NN, will use the predefined control action as feedforward 
control.  The four process models which are broken up 
further into subsystems are shown in Table 2. With the 
proposed approach, the utility company is able to investigate 
the dynamic characteristics of power plants with different 
capacities. 

Table 1. Control actions 

Control 
Number Control Description Associated 

Subsystem 

uc1 primary air fan control primary air 
subsystem 

uc2 forced draft fan control secondary air 
subsystem 

uc3
induced draft fan 

control 
gas recirculation 

subsystem 

uc4
hot primary air damper 

control 
pulverizer/burner 

subsystem 

uc5
cold primary air damper 

control 
pulverizer/burner 

subsystem 

uc6 coal feeder control pulverizer/burner 
subsystem 

uc7
feedwater pump control 

 feedwater subsystem 

uc8
superheater division 

spray control feedwater subsystem 

uc9
superheater platen spray 

control feedwater subsystem 

uc10
high pressure turbine 

valve control 
high pressure turbine 

subsystem 

uc11
superheater damper 

control 
gas recirculation 

subsystem 

uc12 reheater damper control gas recirculation 
subsystem 
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Table 2. Process models and subsystems 

Water & steam 
model 

Air & flue 
gas model 

Pulverizer 
model 

Turbine & 
Generator 

model 
Feedwater 

Economizer1 
Economizer2 

Primary Air 

Economizer3 
Waterwall/Furnace 

Separator 

Secondary 
Air 

Intermediate/Low 
pressure turbine

Primary 
Superheater 
Superheater 

Division 
Superheater platen 

Air 
preheater 

Superheater Finish 
Primary Reheater 
Reheater Finish 

Gas 
recirculation 

Pulverizer/ 
Burner 

High pressure 
turbine 

 

3. NEURAL NETWORK COMBINED MODEL 

A neural network (Ku and Lee, 1995) representing each 
subsystem is trained many times with different numbers of 
hidden neurons. The cost function for each training, which is 
the Mean Squared Error (MSE) between the neural network 
output and the target values, is compared with the others for 
different numbers of neurons. The number of hidden neurons 
with the smallest MSE is set as that subsystems hidden 
neuron number. The optimal number of neurons depends on 
the number of inputs and outputs of each subsystem as well 
as the input/output data pattern; therefore, some subsystems 
with few inputs and outputs require more hidden neurons to 
achieve the best performance. The resulting hidden neurons 
for each subsystem are shown in Table 3. The gas 
recirculation system was split into two separate networks 
because there were six inputs and thirty-two outputs. Each 
NN of the two gas recirculation networks uses the six inputs 
to generate half of the outputs. Gas 1 delivers outputs to the 
division superheater, the platen superheater, the primary 
superheater, the final superheater, the primary reheater, and 
the final reheater. Gas 2 delivers outputs to the primary 
reheater, the economizers 1, 2, and 3, and the air preheater. A 
neural network with six inputs and thirty-two outputs will 
cause the computer to run out of memory when training. The 
final result is referred to as the neural network combined 
model (NNCM). 

4. MODIFIED PREDICTIVE OPTIMAL CONTROL 

Modified predictive optimal control has already been used 
successfully in (Lee, et al., 2007b), and was the method 
expected to be used to control this power plant. This 
particular instance of predictive optimal control uses 
recurrent neural networks (RNNs) to implement an online 
identifier that models plant behaviour. Particle swarm is used 
in conjunction with this identifier to test the validity of the 
 

Table 3. Control actions 

Subsystem Inputs Outputs Hidden 
Neurons 

Pulverizers/ 
Burners 11 3 19 

Primary Air 2 4 17 
Secondary Air 2 2 21 

Separator 4 4 11 
High Pressure Turbine 5 5 21 
Intermediate Pressure 

Turbine 4 4 25 

Platen Superheater 10 4 21 
Primary Superheater 7 4 23 

Primary Reheater 7 4 25 
Air Preheater 7 9 17 

Division Superheater 10 4 23 
Economizer1 7 4 23 
Economizer2 7 4 25 
Economizer3 11 4 21 

Feedwater 5 11 17 
Final Reheater 7 4 25 

Final Superheater 7 4 9 
Furnace 10 7 17 

Gas1 6 16 21 
Gas2 6 16 15 

 

 

Fig. 2. MPOC (Neural Network Output) tracking power 
demand (APESS Power Output). 

next control action to see if it moves the power plant to the 
desired states. This is different from standard predictive 
control which evaluates further than just the next time step. 
This was done to reduce overall calculation time. 
Unfortunately, the proposed method still did not achieve 
quick enough results to be used real-time for this application. 
Figs. 2 and 3 show the designed control system successfully 
tracking the desired performance. The online identifier 
(Ghezelayagh & Lee, 2005) is updated so that it can 
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Fig. 3. MPOC (Neural Network Output) tracking pressure 
demand (APESS Power Output).  

 

Fig. 4. Scheme for online identifier with MPOC. 

accurately model current plant behaviour and can be used by 
MPOC to search for the next control action. Fig. 4. details the 
online identifier because the same scheme is used for an 
online identifier in the second control approach. 

4.1 Calculation Time Issue 

The trouble with calculating control actions with MPOC, is 
that the control signal was desired to be updates at least every 
0.25 seconds. It was acceptable, while running in Matlab, for 
the algorithm to generate an update every second, but the 
final speed as closer to 1.5 seconds. While the speed could 

have been easily decreased through the use of parallel 
processing, it was decided against adding this level of 
complexity to the controller.  

5. REFERENCE GOVERNOR AND GAIN TUNING 

Since the MPOC did not generate control actions quickly 
enough, an older method was modified to work with this 
process. Using a two stage system, a reference governor can 
provide feedforward control actions as well as setpoints for a 
feedback controler, and the feedback controller provides the  

 

Fig. 5. Overall control scheme for reference governor and 
feedback control. 

Table 4. Set points 

Set-Points/Demands 
Throttle Pressure Demand 

Feedwater Demand 
Coal Flow Demand 

Final Superheater Temperature Demand 
Final Reheater Temperature Demand 

Furnace Gas Pressure Demand 
Pulverizer Temperature Demand 

Air Flow Demand 
MW Demand 

 
Table 5. Control actions and coupled set points 

Controls Associated Set-points/Demands 
Primary Air Fan Coal Flow Demand 

Secondary Air Fan Air Flow Demand 
Feedwater Pump Feedwater Demand 

Spray 2 Final Superheater Temperature 
Demand 

Spray 3 Throttle Pressure Demand 
HP Turbine Valve MW Demand 
Induced Draft Fan Furnace Gas Pressure Demand 

Air Flow Demand 
Reheater Damper Final Reheater Temperature 

Demand 
Superheater Damper Final Reheater Temperature 

Demand 
Hot Air Damper Pulverizer Temperature Demand 
Cold Air Damper Pulverizer Temperature Demand 

Coal Feeder Coal Flow Demand 
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actual control actions to the plant, or in this case, the NNCM. 
This method is visualized in Fig. 5. For this to work, it was 
required to determine what set points would be used and 
which control actions would be coupled to these set points. 
The results are shown in Tables 4 and 5. 

5.1 Calculation Time Issue 

The reference governor with gain tuning bypasses the issue of 
how quickly the control signal can be updated, because both 
the reference governor and gain tuner work offline, and 
simply provide updates to the controller as required. While 
the reference governor and gain tuner are searching for their 
next results, the controller can be set any feasible sample 
period achievable by the hardware, as only PID control loops 
must be calculated.  

5.2 Reference Governor 

Using a reference governor for providing feedforward control 
actions and set points has been shown many times such as in 
(Garduno-Ramirez & Lee, 2001). As done in previous work, 
a steady state model (Heo & Lee, 2005) of the system was 
trained using a static neural network, and then a heuristic 
search method was used to find the feed forward control 
actions and corresponding set points that would optimize a 
cost function made of weighted objectives.  

For this application, four of the five set points are actually 
held constant regardless of unit load demand, and can 
therefore be eliminated from the neural network, as their 
values will never be changing. These set points are Final 
Superheater Temperature Demand, Final Reheater 
Temperature Demand, Furnace Gas Pressure Demand, and 
Pulverizer Temperature Demand. 

Interestingly, this approach worked poorly at first. With the 
high order of this system, the search algorithm was able to 
find numerous candidate control actions and set points that 
equally satisfied the provided cost function. This was very 
undesirable as ideally, the cost function should be set up so 
that a single set of control actions and set points provide an 
optimal solution, or the reference governor will not know 
which set to choose. Using a scheme where different control 
actions have the same fitness is very noisy and inefficient. To 
cope with this problem, the concept of using nominal control 
actions was introduced. The nominal control actions are 
simply what the conventional control actions would be for a 
given unit load demand if a more sophisticated control 
scheme was not in place. The cost function was then 
modified so that it would optimize specific goals, and then 
choose the candidate control actions that were closest to the 
nominal control actions. This modification served to fix the 
problem and provided good performance. The result was the 
following cost function (1). 

1

2 3

( ) ...

nom

f u ULD PowerOut

CoalFlow u u

α

α α

=

+ −=

− +
 (1) 

Where the variables are as follows: 

α1,α2,α3: Multi-objective weights 

ULD: unit load demand 

PowerOut: actual power output 

CoalFlow: control that determines how much coal is used as 
fuel 

u: feedforward (ff) control actions 

unom: nominal feed forward control actions (what the power 
plant would do without optimization) 

There is a disadvantage to using this approach because it 
assumes that the nominal control actions are available. In this 
case, these nominal control actions were available from 
earlier in the power plants design process. If this is not the 
case, a simple control system would have to be developed to 
create these control actions, which may be more work than 
desired to use this particular approach. 

5.3 Intelligent Gain Tuning 

Intelligent gain tuning is done using an online identifier and a 
heuristic search. The online identifier is similar to the one 
used for MPOC, but different in that it has outputs that are 
used for feedback control. The heuristic search tries different 
gain values and then simulates the system with these gain 
values and the online identifier. It continues to experiment 
with different gain values until it finds the set of gains that 
reduce the error between the set points and the plant outputs.  

It is very similar to MPOC except that instead of choosing the 
control values, it is choosing the gain values. This change is 
made because the gain values do not have to be updated all of 
the time, while control values do. For gain tuning, a large 
window size can be chosen for which to tune the gains. This 
window could range from the size of a few minutes to 
multiple hours, depending on how often it is desired the gains 
be tuned. The gain tuning has exactly the time of the window 
to search for the next set of gains. Once the window time has 
passed, the gain tuner reports the best set of gains it has found 
to the control system, which is then updated with these new 
gain values. Then the gain tuner starts searching again for the 
best set of gains for the next window. This process is 
repeated indefinitely. 

The window size was chosen to be twenty minutes. This is 
not the only window size that can be used, but it was the 
smallest window size that had smooth operation. Smaller 
window sizes can change the gains too often, which causes 
the system to become noisy and if the window size was small 
enough, could actually lead to unstable operation. This is not 
the case for a window size of twenty minutes though. The 
power plant is obviously running for longer than one window 
size, so its operation must be split into multiple windows. 
With a window size T, and total operational time of Tf, the 
operation is split into N = T/Tf windows, with end at T0, 
T1,.. TN. This is shown in Fig. 6. After an optimization 
window ends is when the gain values are updated. 
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Fig. 6. Window operation. 

The algorithm works by searching three different gain 
matrices, one for the proportional control, integral control, 
and derivative control. It takes the possible gain matrices and 
simulates the system for the next twenty minutes (the current 
window size) with those gain values. It repeats this 
simulation for different possible combinations of gains and 
then evaluates the gains by choosing which gain has the 
smallest total error for set point tracking, using the following 
cost function, where setpointn is the nth desired set point, and 
outputn is the nth actual plant output of that setpoint: 

 
9

1

f

o

t

n
n t t

y setpoint output
= =

= −∑∑ n  (2) 

An online identifier, as with MPOC, is continually updated 
and used for the simulation of the different gain values. It 
only needs to be updated once every window, so a large 
window size means the online identifier has to be updated 
less. Shown in Fig. 7 are the results of using the reference 
governor to vary the power plant from 1000 MW to 600 MW 
to 800 MW. Only the setpoints which actually change are 
shown, as the rest simply remain constant.    

6. CONCLUSIONS 

While MPOC was desired for its adaptive capabilities and the 
ability to optimize a cost function, it turned out to be too 
calculation intensive to implement in a real time controller. 
Instead, a reference governor with intelligent gain tuning was 
implemented. To get the reference governor to work, it had to 
favour control actions that were closer to the nominal control 
actions over others. If specialized hardware was used for the 
OLID, mainly, the neural network calculations, MPOC might 
become a viable option as well. 
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