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Abstract: In this paper we propose the application of the Branch-and-Bound search algorithm
to discrete model-based predictive control of greenhouses. The temperature control strategy is
a mixture of temperature integration and difference between day and night temperatures. The
general approach is presented and strategies are proposed in order to achieve a faster coverage of
the solutions search space with reduced probability of loosing the optimal solution. The control
energy requirements depend largely on the cost function coefficients and the evolution of the
external climate. Fixed coefficients do not fully exploit the external climate predicted evolution
in order to reduce energy consumption. A simple method is proposed to adapt on-line the cost
function coefficients in a way that reduces energy consumption without significantly affecting
control accuracy. The methods are briefly described and a subset of experimental and simulation
results are presented.
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1. INTRODUCTION

Greenhouse environmental control (GEC) provides the
means to improve the conditions in which plants are
grown, in order to optimise the plant production process.
GEC methods must take into account the influences of
the outside weather, the actuators and the crop, which is
achieved by the use of models. These are used by control
and optimisation systems in order to compensate and ex-
ploit the external climate characteristics so that crop pro-
duction and yield are favoured. An efficient approach con-
sists in applying model-based predictive control (MBPC).
In this paper we report results, obtained in a greenhouse
and by means of simulations, regarding a MBPC and pro-
duction optimisation system herein proposed, using radial
basis function neural network (RBFNN) models and the
branch-and-bound (B&B) optimisation algorithm. For the
experiments carried out a tomato crop was considered.
The greenhouse has a floor area of 180 m2, a height of
3.5 m, a 200 µm thick polyethylene cover and concrete
floor. It is equipped with motorised lateral windows for
ventilation, a motorised zenital window, a diesel heating
system, two cooling systems, a water fogging system, and
an air extracting ventilator. The latter is actuated simul-
taneously with the coolers in order to extract hotter air
which accumulates in the greenhouse ceiling. The culture
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funding this work with a PhD grant (BD/1236/2000) and a research
project (MGS/33906/99-00). The first author acknowledges partial
support by the European Commission through the Marie Curie ToK
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1 Current address: Unilever R&D Port Sunlight, Quarry Road East,
Bebington, Wirral CH63 3JW, United Kingdom

type is hydroponic where the roots of plants are placed in
a substrate container.

2. PROBLEM FORMULATION

The temperature control strategy will be briefly discussed.
In our formulation humidity will only be controlled by pre-
venting it from becoming smaller or larger than prescribed
day and night lower and upper boundaries. The way this
is accomplished is similar to what is going to be described
regarding temperature, hence will not be further discussed
in this paper.

The notion that the crop integrates temperature, and its
growth and production are insensitive to instant varia-
tions, led to the concept of temperature integration (TI)
[Liebig, 1988], where temperature is allowed to fluctuate
within certain limits as long as its average over the inte-
gration period is maintained. Another factor which has an
impact on plant growth, production, and fruit quality, is
the temperature difference between day and night (TDIF)
Seginer et al. [1994], Willits and Peet [1998]. Given the
average climate conditions in the south of Portugal, which
always impose a certain level of TDIF within the green-
house, and the conclusions by Willits and Peet [1998] for
a similar warm climate, the temperature control strategy
herein proposed is a mixture of TDIF and TI. The former
is desirable by its positive impact on crop production and
fruit quality, the latter is needed to maximise yield by
reduction of energy consumption. The basic idea is to
employ TI over a long-term period (several days) and
TDIF on a short-term (one day) basis. Two allowed tem-
perature bands, [Tnmin, Tnmax] and [Tdmin, Tdmax], are
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Fig. 1. Day-night regimes membership function

defined for night and day regimes, respectively. The bands
limits define the range of values allowed for TDIF, from
Tdmin − Tnmax to Tdmax − Tnmin. This strategy can be
thought as the TI method restricted by a range of allowed
daily temperature patterns imposed by TDIF. The day-
night and night-day transitions are required to be smooth
in order to prevent excessive energy consumption due to
an abrupt change in the temperature regime. An approach,
with potential benefits regarding energy saving, consists
in dynamically make the transition as a function of solar
radiation. Using a common s-shaped function, a regime
membership function, µ, may be defined whose range is
from 0 (night regime) to 1 (day regime). Figure 1 shows
the function µ (SR, 30, 270) considering SR in the interval
[0, 300] W/m2. In practice the average SR over a few
past samples should be provided to µ in order to avoid
high frequency variations which would be reflected in the
computed boundaries. By itself the method will not take
into account the crop source/sinks relation, which may
require higher or lower temperature boundary settings
than those computed from SR. With this in mind, the
boundary values are further corrected using a simple set
of rules in the form of a Mandani type [Mamdani and
Assilian, 1975] fuzzy inference system (FIS) as outlined
in figure 2. µTE and µSR are functions to estimate the
crop sink and source activities over the TI period. The
FIS will output a value from -1 (lower the boundaries) to 1
(raise the boundaries) accordingly to the situation leading
to an improper source/sinks relation, without specifying
the amplitude to lower or raise, (mc), which is simply
multiplied by this value. The corrected temperature lower
(Tlb) and upper (Tub) boundaries are thus given by:

Tlb (k) = Tnmin (k) +

+ [Tdmin (k) − Tnmin (k)]µ (SR (k) , SRp0, SRp1)+

+µBC (µTε
(k, ρ) , µSR (k))mc (1)

Tub (k) = Tnmax (k) +

+ [Tdmax (k) − Tnmax (k)]µ (SR (k) , SRp0, SRp1) +

+µBC (µTε
(k, ρ) , µSR (k))mc (2)

The dependence of the boundaries on k has been made
explicit to emphasise that these values should be set
accordingly to the crop developmental stage, possibly
determined with the aid of crop growth and production
models.

The GEC system manipulates the greenhouse climate in
order to achieve the following goals: maintain an average
temperature considered ideal for the crop over the inte-
gration period; limit temperature and humidity to the
intervals [Tlb (k) , Tub (k)] and [Hlb (k) ,Hub (k)], respec-
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tively; minimise energy consumption and actuator wear
off; and maximise crop growth and production or yield. As
a consequence of the characteristics of some actuators, the
control input space was discretised and a set of allowed
actuating combinations {Ai}

9
i=1 was specified. Windows

may be fully opened or closed, the remaining actuators
are turned on or off during the complete sampling interval.
Given the contradictory nature of some of the goals and
the discrete nature of the control input space, the control
problem can be characterised as a discrete optimisation
problem. At each time instant k, the controller must find
the best Ai, which optimises the goals and/or restrictions.
Considering a TI period having NPTI data points, the
average temperature and the TI error over that period at
time instant k are given by,

T (k) =
1

NPTI

k
∑

i=k−NPT I+1

T (i) (3)

T ε (k) = T (k) − RT (k) (4)

where RT (k) is the reference value for T (k). The abso-
lute value of T ε (k) is to be minimised, considering the
restrictions imposed by the temperature and humidity
boundaries mentioned above. The goals and restrictions
are articulated in an objective function reflecting the cost
of choosing the jth control profile, u (k) = Aj , at time
instant k:

J (k) = λ1

∣

∣µT

(

T ε (k) , Tε1, Tε2

)∣

∣+

+
λ2

NAT

NA
∑

i=1

[ui (k − 1) − ui (k − 2)] +

+
λ3

NAC

NA
∑

i=1

ui (k − 1) ωi +

+ λ4µTV (VT (k) , Tεv) +

+ λ5µHV (VH (k) ,Hεv) (5)

The values of the λi parameters weigh the corresponding
normalised (to the unit interval) terms, hence determining
their relative contribution to J (k). The first term includes
µT to map T ε (k) into the [−1, 1] interval: values smaller
than Tε1 and larger than Tε2 are mapped to -1 and
1, respectively; values between these thresholds may be
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mapped linearly or by means of any convenient smooth
function, to [−1, 1]. The second and third terms account
for energy consumption and actuator wear-off. NA is the
number of actuators, NAT and NAC are scaling factors
allowing for normalisation. The last two terms describe
penalties for the violation of temperature and humidity
boundaries. µTV and µTH are defined in a similar way to
µT , mapping the absolute values of the violations in the
intervals [0, Tεv] and [0,Hεv] to [0, 1]. Values larger than
Tεv or Hεv are mapped to 1. The cost function may be
simplified by removing these two penalty terms which may
be used as restrictions to the optimisation problem. RT (k)
should be obtained by optimising the crop production
model or a formulation of the crop yield.

Considering the application of MBPC, a sequence of
control actions must therefore be determined over the
prediction horizon PH,

U (k) = [u (k) ,u (k + 1) , · · · ,u (k + PH − 1)] , (6)

U (k) ∈ UPH

where UPH is the set of all sequences of size PH formed as
combinations of the control alternatives. The accumulated
cost from time instant k to k+PH−1, due to a particular
choice of U (k) is given by J1:PH (k). The GEC problem
may be formulated as in equation 8, that is, as the search
for the particular sequence U (k) that minimises the cost
function J1:PH (k):

J1:PH (k) =

(

k+PH
∑

i=k+1

Ĵ (i)

)
∣

∣

∣

∣

∣

U(k)

(7)

min
U(k)∈UP H

J1:PH (k) (8)

As the system operates, a new optimisation problem is
solved at every iteration k and only the first component
of U (k), u (k), is actually applied to the actuators, fol-
lowing the receding horizon principle. The computation of
J1:PH (k) requires the use of predictive models in order

to estimate the quantities involved in the calculus of Ĵ (i).
The climate and greenhouse environment models are non-
linear auto-regressive (NAR) and NAR with exogenous
inputs on-line adapted RBFNN models. Details about the
neural network training and structure identification meth-
ods, and partially about the identification of these models
may be found in Ferreira and Ruano [2000], Ferreira et al.
[2002, 2003], Ruano et al. [2005]. A complete publication
regarding the climate, environmental, and crop modelling
aspect of this work, is currently in preparation.

3. APPLICATION OF BAB MBPC TO GEC

The application of MBPC to GEC problems usually focus
air temperature regulation problems [Tap et al., 1996,
Gonzalez and Leyris, 1996, Tzafestas et al., 2001, Piñón
et al., 2002, Ghoumari et al., 2005, Piñón et al., 2005,
Coelho et al., 2005] and less frequently multivariable con-
trol, for example temperature, CO2 and relative humidity
[Cunha et al., 2000]. The combination of a particular cost
function and model(s) type define the optimisation prob-
lem to be solved. In the studies referred above, the minimi-
sation of the cost functions employed is accomplished by

means of sequential quadratic programming methods, lin-
ear matrix inequalities methods, gradient descent methods
and the particle swarm optimisation method. When the
control input space is discrete or has been discretised, the
optimisation problem may be solved by means of discrete
optimisation methods. BaB methods have been proposed
[Sousa et al., 1997] and applied in practice to discrete (or
discretised) non-linear MBPC problems [Roubos et al.,
1999, Berenguel et al., 2004, Mendonça et al., 2004]. In
summary, this method implements a structured search
over a tree structure, using bounds to restrict branching
thus preventing an exhaustive search to occur. For fur-
ther details on this technique please consult any of the
referred studies above and the references therein. These
studies point out some advantages of the BaB method over
other non-linear optimisation techniques when applied to
MBPC:

• The optimal solution is always found. This guarantees
that the controller is optimal in the discrete space of
control alternatives. No assumptions need to be made
on the formulation of the cost function.

• The method implicitly deals with constraints without
being negatively affected. Constraints may even im-
prove the efficiency of bounding by eliminating those
alternatives that lead to constraint violation.

• As opposed to other iterative optimisation methods,
the algorithm outcome is not negatively influenced by
a poor initialisation, although the time spent to find
the optimum may be greater.

As formulated in Sousa et al. [1997], two bounds are
employed: an upper bound on the total cost from instant
k+1 to k+PH, and a lower bound on the cost from instant
k+i to k+PH. Before the minimisation problem is solved
by the BaB method, the upper bound on the cumulative
cost is computed by successive minimisation of (5) from
i = 1 to i = PH:

J U
1:PH (k) =

k+PH
∑

i=k+1

min
u(i−1)=Aj

{

Ĵ (i)
}nao

j=1
(9)

In equation 9 Ĵ (i) denotes the fact that model predicted
quantities are used to estimate J (i). This value, also called
the incumbent value, is the initial estimate of the minimum
of J1:PH (k). Taking into account that no branching will
be performed beyond the control horizon CH, equation 9
may be decomposed and rearranged as,

J U
CH+1:PH (k) = J U

1:PH (k) − J U
1:CH (k) (10)

which gives the initial estimate of the optimal cumulative
cost from step CH + 1 to PH. When the BaB algorithm
is in one node at level i < CH and it must decide if a
particular branch j should be searched in more depth or
not, the estimate of the lower bound on the cumulative
cost from step i to PH, J L

i:PH (k), must be computed.
Using the result from equation 10 this estimate may be
given by:

J L
i:PH (k) = Ĵ (k + i)

∣

∣

∣

u(k+i−1)=Aj

+ J U
CH+1:PH (k) (11)

This formulation equals the cost of creating the new
branch corresponding to the control action Aj , plus the
current estimate of the cumulative cost from step CH + 1
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to PH. An accurate lower bound estimate from step i + 1
to CH is very hard to achieve and it is preferable to make
it implicitly zero in equation 11 in order to prevent the
search from not exploring parts of the tree, which may
contain the optimal solution, due to a bad estimate. With
the aim of saving some additional computing time when
evaluating the branching rule, the first term in the right
hand side of equation 11 may be further decomposed as,

Ĵ (k + i)
∣

∣

∣

u(k+i−1)=Aj

=

=
(

Ĵe (k + i) + Ĵm (k + i)
)∣

∣

∣

u(k+i−1)=Aj

(12)

Ĵe (k + i) accounts only for the actuator wear-off and
energy consumption terms in the cost function (5).

Ĵm (k + i) accounts only for those terms of the cost func-
tions that need the process models to be evaluated, which
is the relevant time consuming task. Using this decompo-
sition the branching rule at step i due to the control action
Aj may be done in two steps by first computing the lower
bound estimate of the cumulative cost from step i = 1 to
step i = PH as,

J L
1:PH (k) =J1:i−1 (k) + Ĵe (k + i)

∣

∣

∣

u(k+i−1)=Aj

+

+J U
CH+1:PH (k) (13)

and then evaluating the following conditions in the order
presented:

J L
1:PH (k) <J U

1:PH (k) (14)

J L
1:PH (k) + Ĵm (k + i)

∣

∣

∣

u(k+i−1)=Aj

<J U
1:PH (k) (15)

In the first condition only the contribution of Ĵe (k + i)
is accounted in J L

1:PH (k). If the result of the evaluation
of (14) is not true then the optimisation over branch j
is stopped because this branch will not lead to a better
solution than the current best. In this case the computing
time needed to evaluate Ĵm (k + i) is spared, thus con-
tributing to a faster traversal of the tree of solutions. If
condition (14) evaluates to true then the second condition,

given in (15), which adds the contribution of Ĵm (k + i),
is evaluated in order to decide if the solution search will
follow this particular branch.

When the BaB method is in one node at level i = CH, in
order to choose the best control input u (k + CH − 1) and
a particular control alternative, Aj , is being tested, if the
two branching conditions, (14) and (15), evaluate to true
it means that a better solution than the current one has
been found. Denoting the control trajectory corresponding
to the particular path followed from i = 1 to i = CH
by U∗

1:CH (k), the new value of the best solution is
recomputed using,

J U
1:PH (k) = J1:CH (k)|

U∗

1:CH(k) + J U
CH+1:PH (k) (16)

where the second term in the sum is recomputed in a sim-
ilar way as the initial estimate of J U

1:PH (k) in equation 9,
but starting from step i = CH+1 and assuming the newly
found control solution, U∗

1:CH (k). At this stage the values
of the best solution found (the incumbent), J U

1:PH (k), and
the upper bound on the cumulative cost from i = CH + 1

to i = PH, J U
CH+1:PH (k), are stored and the algorithm

resumes its operation on the remaining branches of the
current node and then on other nodes still unexplored.
As better solutions are found by the BaB method the
branching operation becomes more restrictive, thus having
a higher probability of eliminating more branches from
the search. When there are no branches to explore in
the current node and no unexplored node remains, the
optimisation stops and the best solution stored is the
optimal one.

Considering the GEC problem formulation using the cost
function defined in equation 5 but with the last two terms
implemented as restrictions, the implementation requires
some minor changes. During algorithm initialisation, when
computing the upper bound of the optimum solution, and
when a new best solution is found and J U

CH+1:PH needs
to be recomputed, violations to the restrictions should
be checked and predefined control alternatives should be
enforced when restrictions are predicted to be violated
irregardless of the control alternative applied. When some
of the control options do not violate restrictions, than the
one that minimises the cost function is chosen among these
in the usual way. When the BaB algorithm is in one node
of the tree of solutions, no branching is performed for
those control alternatives that lead to the violation of at
least one restriction, thus pruning the sub-tree that would
originate from the candidate branch. Due to this reason, it
may be expected that the restricted problem formulation
will be computationally cheaper when compared to the
unrestricted formulation.

Reduction of the control inputs space Another approach
to reduce the search space, thus reducing the time needed
to find the optimal control input, consists in dynamically
adapting the matrix of control alternatives, A, so that only
a reduced number of alternatives need to be tested for
branching. This may be accomplished by specifying a set
of if-then rules that will decide for the removal of certain
control alternatives provided certain requirements are met.
Four rules were implemented that allow the reduction of
A from 22.2% to 66.6%. In order not to loose the optimal
solution in a removed branch, the only requirement is that
the predicted average greenhouse temperature should be
above or below its set-point during the complete prediction
horizon.

On-line adaptation of the λ parameters Assume a for-
mulation involving the cost function (5) having the last
two terms implemented as restrictions. It may be desirable
to have the coefficients, λ1, λ2 and λ3, changing as the
system evolves in time. When T is considerably far away
from RT , it is desirable to let the control system spend
more energy in order to decrease T ε by decreasing the
values of λ2 and λ3. In this situation, if λ2 and λ3 are too
high, the reduction of T ε becomes highly dependent on
the future weather conditions. When T ε is small enough,
λ2 and λ3 may have larger values to prevent the control
system from controlling T in a tight way and spending
possibly unnecessary energy. In this case it might be worth
to let the control system depend on the outside weather,
and, if it is favourable, sparing some energy. Let λ1, λ2

and λ3, be such that,

λ1 + λ2 + λ3 = 1.0 (17)
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By reflecting the different nature of the first three terms
in the cost function (5), from equation 17 λ1 may be
expressed as:

λ1 = 1 − λe (18)

λe = λ2 + λ3 (19)

λ2 = λeλet, λet ∈ [0, 1] (20)

λ3 = 1 − λ2 (21)

Given a value of λe, λet establishes a trade-off between
actuator wear-off (λ2) and energy consumption (λ3). The
value of λe (k + i) is given by:

λe (k + i) =



















λemax ,
∣

∣T ε (k + i − 1)
∣

∣ ≤ T ε2

λemin ,
∣

∣T ε (k + i − 1)
∣

∣ ≥ T ε1

λemin − λemax

T ε1 − T ε2

(∣

∣T ε (k + i − 1)
∣

∣− T ε2

)

+

+λemax , otherwise

λemin and λemax are, respectively, the minimum and
maximum values that λe can take at any given instant
k + i. λemin should be attained when the absolute value
of T ε (k + i − 1) reaches a specified threshold, T ε1, re-
flecting that T (k + i − 1) is sufficiently far away from
RT (k + i − 1), and corresponds to the value of λe that en-
forces the highest energy consuming regime of the control
system. λemax should be attained when the absolute value
of T ε (k + i − 1) reaches a specified threshold, T ε2, reflect-
ing that T (k + i − 1) is sufficiently close to RT (k + i − 1),
and corresponds to the value of λe that enforces the lowest
energy consuming regime of the control system. Although
not discussed here, it is possible to show that the contri-
bution of the second and third terms in the cost function
must be smaller than the reduction obtained by choosing
a determined control alternative, otherwise that particular
alternative may not be chosen. Using this result and the
first term of the cost function, it is possible to estimate
the required λ values in order to achieve different levels of
actuation by the controller.

4. RESULTS AND DISCUSSION

An experiment was carried out in the greenhouse in or-
der to test the functionality and global behaviour of the
proposed control system. The cost function (5) was em-
ployed and the results obtained constituted the motivation
for the improvements presented in the previous section.
Figure 3 illustrates the weather conditions to which the
greenhouse and the control system were exposed to. The
sampling frequency was 2.5 minutes, corresponding to
576 points per day. The temperature integration period
was set to 6 days, the prediction horizon to 3 hours
(72 points), and the control horizon to 10 minutes (4
points). A time limit of 20 seconds was established for
the execution of the BaB algorithm in order to keep the
time-delay between sensor reading and actuation small.
If the 20 seconds limit is reached then the best solu-
tion found that far is applied to the greenhouse actu-
ators. RT (k) was set to 16oC, the day and night al-
lowed temperature intervals were set to [10oC, 15oC] and
[16oC, 26oC], and the day and night allowed relative hu-
midity intervals were set to [40%, 95%] and [35%, 80%].
In equations 1 and 2, SRp0, SRp1, and mc, were set

Solar

radiation

Temperature

Humidity

Fig. 3. Outside weather conditions

to 30Wm−2, 250Wm−2, and 1oC, respectively. The cost
function parameters Tε1, Tε2, Tεv, and Hεv, were made
equal to −4oC, 4oC, 5oC, and 10%, respectively. {ωa}

6
a=1

and {λi}
5
i=1 were set to {0.5, 0.2, 0.15, 0.05, 0.05, 0.05} and

{

0.8192, 9e−5, 9e−5, 9e−3, 9e−3
}

. The actuator cost pa-
rameters, ωa, correspond to the cooler, heater, fog, lateral
windows, and zenital window, respectively. The cost func-
tion λ parameters, correspond to those that were employed
most of the time, although these were sometimes varied in
order to analyse the control system response in view of the
changes made.

Due to an error in the parameterisation of the models
on-line training set adaptation algorithm, the models had
to be reset to their initial state a few times during the
experiment. This fact is highlighted in figure 4 by means
of red arrows pointing to those instants where the model
should have responded to the heating device and blue
arrows indicating the instants where the model reset oc-
curred. In figure 4, two black solid lines in the upper
part of the graph show the upper and lower temperature
boundaries, the blue line corresponds to the greenhouse
inside air temperature, the black dashed line shows the
average temperature reference, and the solid red line de-
picts the average temperature over the integration period.
In the lower part of the figure, three lines illustrate the
actuation signals corresponding to the cooling, heating and
fog systems, as indicated. At about time step 1750 the
average temperature reaches its set-point and until the
end of the experiment the system was able to maintain its
value close to the reference. It is evident that the control
effort is much larger before reaching the set point and
clearly decreases after this. Once the temperature set-point
has been reached, the unique situation where the heater
is intensely actuated is during the last night period in
order to keep the greenhouse temperature above its lower
boundary. Approximately during the first 800 time steps,
there is an excessive actuation on the cooling system due to
the relation between the values of λ2, λ3 and λ4. When the
value of λ4 (temperature boundary violation term weight)
is large enough when compared to the sum of λ2 and λ3

and the greenhouse temperature is predicted to violate its
upper boundary, the control system chooses to counteract
the predicted violation by turning the cooling system on,
because the reduction in the cost function value will be
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S0 S1 S2 S3 S4

t 13.7 8.9 8.6 5.2 4.1

nodes 1374 717 624 513 365

Nns 1.9 1.1 0.8 0.9 0.6

T ε (k) 0.13 0.14 0.14 0.14 0.15
∑

k

∑

i
ui (k)

8760 7257 6563 6941 6177
100% 82.8% 74.9% 79.2% 70.5%

λ1, λ2

(

×104
)

2.749 5.249 2.749 5.249

Table 1. Results from simulations of the re-
stricted and unrestricted formulations

significant due to the large value of λ4. After lowering the
value of λ4 (k ≈ 800) this behaviour was corrected and the
cooling system actuation was considerably decreased. This
becomes apparent in the temperature response over the
last four days which tends to stay close to its boundaries
without showing an excessive ripple effect as in the first
two days of operation. From this instant (k ≈ 800) onwards
the cooling system is actuated because it is really needed
to maintain the greenhouse temperature below its upper
boundary or due to temperature prediction errors which
unnecessarily drive the control system to turn the coolers
on.

Table 1 presents averaged results from a set of 5 simu-
lations denoted from S0 to S4. An overline indicates the
average operation. t denotes the computing time taken to
find the optimal solution, nodes stands for the number of
nodes visited, Nns is the number of new solutions found
when searching the tree, and T ε (k) is the TI error. The
following row shows a total sum of all the actuation during
the simulation. The last row details the values of λ2 and
λ3 for simulations S1 to S4 (λ1 = 1 − (λ2 + λ3). S0 corre-
sponds to a simulation using the unrestricted formulation
(equation 5), the remaining, S1 to S4, are all related to sim-
ulations employing the restricted cost function (equation 5
without the last two terms which have been implemented
as restrictions). Different values of λ2 and λ3 were used for
the pairs (S1,S3) and (S2,S4), setting a higher actuation
cost on the latter. S3 and S4 also implement the rule-
based reduction of the control inputs space (RRCIS) when
∣

∣T ε (k)
∣

∣ < 0.05oC, a value believed to guarantee that the

sign of T ε (k) will not change over the prediction horizon.
When comparing the three types of simulations, it may be

S5 S6 S7 S8

t 4.7 3.3 1.9 2.7

nodes 382 258 168 217

Nns 0.7 0.5 0.4 0.4

T ε (k) 0.14 0.16 0.34 0.21
∑

k

∑

i
ui (k)

6572 5991 4744 5354
75.0% 68.4% 54.2% 61.1%

λemin

(

×104
)

5.498 10.498 12.998 10.498

λemax

(

×104
)

10.498 15.498 17.998 17.998

Table 2. Results from simulations with on-line
adaptation of the λ parameters

seen that both versions employing the restricted cost func-
tion present significant improvements, being the version
using the RRCIS the best overall. The actuation results
show that the restricted formulation has a high impact on
the actuation profile, the RRCIS adding a further smaller
improvement. Regarding the computing times and nodes
visited, the restricted version with the RRCIS presents the
best results. Even for S1, only in 6.5% of the iterations the
20 seconds limit was reached whereas for S0 the limit was
reached in 32% of the simulation (not shown on the table).
The different λ settings show the importance of these
coefficients, given the significant difference in actuation at
almost no expense in TI regulation. To this respect the
results are similar, with S4 showing the biggest decrease
(0.02oC) in temperature regulation.

Table 2 presents the results from a series of four simula-
tions, denoted by S5 to S8, where the on-line adaptation
of the λ parameters has been included in addition to the
restricted problem formulation and the RRCIS. The values
of λet, T ε1 and T ε2 were set to 0.5, 0.5oC and 0.05oC,
respectively. The values of λemin and λemax were varied
and are shown at the bottom of the table. In S5, λemin

and λemax have values corresponding to λ2 +λ3 in S3 and
S4, respectively. As expected, the results may be found
in the range from those of S4 to those of S3. For S6,
the value of λemin was set to that of λemax in S5 and
the value of λemax to λemin + 0.0005, hence setting up
the highest energy costs when compared to all previously
presented simulations. T ε is 0.16oC, 0.02 and 0.03 higher
than in S5 and S0, respectively. The actuation total is
decreased almost by 9% when compared to S5 and almost
32% when compared to S0. Globally, the results show that
the greenhouse MBPC algorithm is capable of displaying
behaviours anywhere between two extremes, depending
mostly on the values of the λ parameters. If these are made
extremely small, the algorithm performs a tight control of
the average temperature by compensating the temperature
value at the beginning of the integration period with that
achieved at time instant k + 1 resulting from the choice
of control alternative that instantly minimises the error.
In this situation the predicted climate over the integra-
tion period has little or none influence over the actions
chosen, and the control system approximates a one-step-
ahead average temperature pure tracking system. On the
contrary, if the λ parameters are made extremely large,
the solution that is always chosen is not to actuate at
all unless at least one boundary restriction is violated.
This results in a control scheme totally dependent on
the course of the outside weather in what respects the
greenhouse average air temperature. In fact it corresponds

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2942



to the most frequently found in practice form of control,
where actuation only occurs to counteract prespecified
climate boundary violations. The S7 simulation demon-
strates this last control behaviour by specifying higher
λemin and λemax parameters, although not extremely high,
resulting in a controller much more dependent on the
outside weather (specially under the operation of λemax)
and where a larger proportion of actions taken serve only
the purpose of maintaining the greenhouse temperature
and/or humidity within the specified boundaries. In S8,
λemin and λemax were set to the values adopted in S6
and S7, respectively. The aim is to bring together the
best of two worlds: higher energy consumption profiles
when needed and lower ones so that the external weather
may be exploited while sparing energy. As expected the
results are in between of those obtained by S6 and S7.
When compared to S0 (highest consumption) a reduction
of about 39% is achieved in the sum of actuations at the
expense of an increase of 0.08oC in T ε.

5. CONCLUSIONS

The application of the branch-&-bound algorithm to
greenhouse model-based predictive control was proposed.
It was shown how the algorithm may be efficiently im-
plemented in order to decrease the computational time
needed to find the optimal control inputs, by introducing a
simpler restricted cost function and an adaptive control in-
puts space reduction methodology. The importance of the
cost function coefficients was made clear, by showing its
impact on energy consumption and average temperature
regulation. By on-line adapting the the three coefficients
as a function of the average temperature error over the
integration period, the control system is able to exploit
the external disturbances predictions, exhibiting signifi-
cant reductions in energy consumption at the expense of a
very small increase in the average temperature regulation
error. Future work will focus on methodologies to increase
the control and prediction horizons and to quantify the
impact on crop yield.
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J. M. Sousa, R. Babuška, and H. B. Verbruggen. Fuzzy
predictive control applied to an air-conditioning system.
Control Engineering Parctice, 5(10):1395–1406, 1997.

R. F. Tap, L. G. Van Willigenburg, and G. Van Straten.
Receding horizon optimal control of greenhouse climate
based on the lazy man weather prediction. Mrs report,
Wageningen University, Department of Agricultural En-
gineering and Physics, The Netherlands, January 1996.

S. G. Tzafestas, E. J. Kyriannakis, K. G. Arvanitis, and
N. Sigrimis. Decentralized predictive control of the heat
dynamics of a greenhouse. In Preprints of the 2nd IFAC-
CIGR Workshop on Intelligent Control for Agricultural
Applications, pages 193–198, Bali, August 2001.

D. H. Willits and M. M. Peet. The effect of night
temperature on greenhouse grown tomato yields in
warm climates. Agricultural and Forest Meteorology, 92:
191–202, 1998.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2943


