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Saša V. Raković
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1. INTRODUCTION

Optimal control of constrained discrete–time systems af-
fected by bounded and unknown disturbances and/or
uncertainties in the underlying system equations is a
well-studied topic. Pioneering contributions in the op-
timal control setup (Witsenhausen, 1968; Glover and
Schweppe, 1971; Bertsekas and Rhodes, 1971) considered
the inf–sup robust optimal control problem and obtained
its solution via dynamic programming. The contempo-
rary research has resulted in the development of sev-
eral control techniques offering meaningful solutions to
problems of robust control synthesis. Fairly reasonable
robust control synthesis methods utilize set–theoretic tech-
niques (Aubin, 1991; Blanchini and Miani, 2008) or an ad-
equate, somehow complementary, game–theoretic frame-
work (Başar and Olsder, 1995). The robust and optimal
control problems for some specific classes of constrained
discrete–time systems have been recently reconsidered by
utilizing parametric programming techniques (Bank et
al., 1983). These recent advances in the synthesis of robust
optimal controllers for constrained discrete time systems
include (Bemporad et al., 2003; Mayne et al., 2006a). An
alternative, notable, robust control synthesis technique
is the design of tube-based model predictive controllers
(Raković and Mayne, 2005; Mayne et al., 2006b).

We consider the optimal control problem for constrained
discrete–time systems subject to the uncertainty in the
case when future realizations of disturbances and uncer-
tain sequences are bounded, while their current realization
is known. This setup covers, for instance, control of linear
parameter-varying systems (Lu and Arkun, 2000; Bessel-
mann et al., 2008), linear time-varying systems, control
of supply chains and multi-inventory systems (Laumanns
and Lefeber, 2006). We aim to promote the point that
when information of the current disturbance/uncertainty
is available to the controller, it is more natural to define
such problems as max–min optimal control problems.

1 Corresponding author.

Outline of the paper: Section 2 introduces prelimi-
naries. Sections 3, 4 and 5 discuss the max–min optimal
control problems for constrained linear: (i) time invariant,
(ii) time-varying, and (iii) parameter-varying systems. Sec-
tion 6 presents concluding remarks.

Notation and basic definitions: The set of non–
negative and positive integers are denoted, respectively,
by N := {0, 1, 2, . . .} and N+ := {1, 2, . . .}. Let N[q1,q2] :=
{q1, q1 + 1, . . . , q2 − 1, q2} for given q1 ∈ N and q2 ∈ N

such that q1 < q2; Nq denotes N[0,q] for q ∈ N. A set of
non–negative real numbers is denoted by R+. The positive
orthant in the d−dimensional Euclidean space is denoted
by R

d
+. For vectors we use the following notation: xi

denotes the ith vector, while x[i] denotes the ith component
of the vector x. In general, we write f(·) or f for a function
and f(x) for its value at the point x. The symbol ∆n

denotes the standard n–simplex: ∆n := {(x1, . . . , xn+1) ∈

R
n+1
+ :

∑n+1
i=1 x[i] = 1}. A polyhedron is a set described by

the intersection of finitely many half-spaces. A polytope is
a closed and bounded polyhedron. A function f : D → R

is a polyhedral function if its epigraph Ef := {(x, γ) : γ ≥
f(x), x ∈ D} is a closed polyhedron. The set of vertices
of a polytope P is denoted as vert(P) and the convex hull
of a set of points V as convh(V). A polytopal complex C
is a finite collection of polytopes such that: (i) the empty
polytope is in C, (ii) P ∈ C implies that the faces of P
are in C and (iii) for P,Q ∈ C the intersection P ∩ Q
is a face of both P and Q. A polytopal subdivision of
a polytope Q is a polytopal complex C = {P0, . . . ,Pn}
such that Q =

⋃q
i=0 Pi. Given a polytope P, a function

f is called continuous piecewise-affine over P (CPWA
over P) if f is continuous and there exists a polytopal
subdivision C = {Pk : k ∈ Nq} of the set P such
that f is affine in each Pk. The Minkowski set addition
and the Minkowski (Pontryagin) difference of two (non–
empty) sets X and Y , such that X ⊂ R

n and Y ⊂ R
n,

are denoted by X ⊕ Y := {x + y : x ∈ X, y ∈ Y } and
X ⊖ Y := {z ∈ R

n : z ⊕ Y ⊆ X}.
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2. PRELIMINARIES

We consider the discrete–time system:

x+ = f(x, u, w), (2.1)

where x ∈ R
n and x+ ∈ R

n are, respectively, the current
and the successor state, u ∈ R

m is the control input,
w ∈ R

p is the disturbance and the current state transition
mapping is f(·, ·, ·) : R

n × R
m × R

p → R
n. The system

variables x, u and w are subject to constraints:

x ∈ X ⊂ R
n, u ∈ U ⊂ R

m, and w ∈ W ⊂ R
p, (2.2)

where state, control and disturbance constraint sets X ,
U and W are compact sets. The state transition function
f(·, ·, ·) is constrained to belong to a set of functions F
given either as a discrete set of a finite number of maps or
as its (closed) convex hull:

f ∈ F with F = F̃ or F = convh(F̃), where (2.3a)

F̃ = {fi(·, ·, ·) : i ∈ Nq}, (2.3b)

and, for each i ∈ Nq, fsi
(·, ·, ·) : R

n × R
m × R

p → R
n.

Hence, xk+1 = fsk
(xk, uk, wk) is the state at time k + 1,

if at time k the state is xk, the applied input is uk, the
state transition mapping is fsk

(·, ·, ·) and the disturbance
is wk (hereafter sk is an indicator at time k associated
with the mapping fsk

(·, ·, ·)). Robust control problems of
our interest are characterized by the following essential
interpretation:

Interpretation 1. When the decision concerning the con-
trol input uk is taken (at time k) the state xk, the dis-
turbance wk and the state transition mapping fsk

(·, ·, ·)
are known, while the only available information of the
future disturbances wk+i, i ∈ N+, and the future state
transition maps fsk+i

(·, ·, ·), i ∈ N+, is that they can
take any arbitrary values in their respective constraint
sets W and F . Furthermore, realizations of the future
disturbances wk+i, i ∈ N+, and the future state transition
maps fsk+i

(·, ·, ·), i ∈ N+, will be known at future times
k + i, i ∈ N+ but are unknown at time k.

We formalize the notion of knowledge available for the
control synthesis from the previous interpretation by intro-
ducing the information vector z(x,w, f) which aggregates
relevant knowledge of the current values of the state x,
the disturbance w and the state transition mapping f with
(x,w, f) ∈ X ×W×F . Consequently, we introduce the set
Z specified by:

Z := {z(x,w, f) : (x,w, f) ∈ X ×W ×F}

and refer to the set Z as the information set. A control
policy, i.e. a sequence of control laws πi : Z → U , over the
horizon of length N ∈ N+ is denoted by ΠN := {πi(·) :
i ∈ NN−1}. The set of all control policies over the horizon
of length N is denoted by ΠN . An admissible disturbance
sequence over the horizon of length N is denoted by wN :=
{w0, w1, . . . , wN−1} where wi ∈ W for all i ∈ NN−1.
The set of all admissible disturbance sequences over the
horizon of length N is denoted by WN . An admissible
state transition mapping sequence over the horizon of
length N is denoted by fN := {fs0

, fs1
, . . . , fsN−1

} where,
as above, fsi

∈ F for all i ∈ NN−1. The set of all admissible
state transition mapping sequences over the horizon of
length N is denoted by FN . Also, let φ(i;x,ΠN ,wN , fN )
denote the solution to (2.1) at time instant i, i ∈ NN−1,
given the initial state x (at time 0), a control policy ΠN

and admissible disturbance and state transition mapping
sequence wN ∈ WN and fN ∈ FN (by convention
φ(0;x,ΠN ,wN , fN ) = x).

The cost VN (x,ΠN ,wN , fN ), for the initial state x, the
control policy ΠN , the disturbance sequence wN and the
state transition mapping sequence fN , is:

VN (x,ΠN ,wN , fN ) := Vf (xN ) +

N−1∑

i=0

ℓ(xi, ui), (2.4)

where, for each i ∈ N, xi := φ(i;x,ΠN ,wN , fN ) and ui :=
πi(z(φ(i;x,ΠN ,wN , fN ), wi, fsi

)) and functions Vf (·) and
ℓ(·, ·), representing, respectively, the terminal and the path
cost, are continuous and non–negative (finite) valued.

Problem 1. (The N–horizon robust control problem).
Given an integer N ∈ N+, characterize the set of states
x ∈ X and the corresponding control policy (possibly a set
of control policies) ΠN ∈ ΠN such that for all wN ∈ WN ,
all fN ∈ FN and all i ∈ NN−1:

φ(i;x,ΠN ,wN , fN ) ∈ X and φ(N ;x,ΠN ,wN , fN ) ∈ Xf ,

where Xf ⊆ X is the terminal set (assumed to be
compact), and, in addition, the control policy ΠN results
in the guaranteed cost specified by:

V 0
N (x) = sup

(wN ,fN )∈WN×FN

inf
ΠN∈ΠN

VN (x,ΠN ,wN , fN ).

We consider Problem 1 as a dynamic game (Başar and
Olsder, 1995). At each time j the first player (the con-
troller) can choose a control uj ∈ U within rules of
the form uj = uj(z(xj , wj , fsj

)) and the second player
(the adversary) can choose a disturbance wj ∈ W and a
state transition mapping fsj

∈ F . At time j, the adversary
declares his choice prior to the controller and hence the
controller can, in view of Interpretation 1, utilize the
information vector z(xj , wj , fsj

) when declaring his control
action uj = uj(z(xj , wj , fsj

)). The controller synthesizes
the control policy in accordance with Interpretation 1 and
aims, in addition, to ensure the solvability of Problem 1
no matter what triplet (xk, wk, fk) occurs at time k when
the control policy ΠN is adopted. As a result of our
setup, the controller is concerned with the sup–inf robust
optimal control problem. The following example illustrates
the value of the information available to the controller.

Example 1. Consider the scalar system:

x+ = x + u + w,

where F = {x + u + w}, with the constraint sets:

X = [−10, 10], U = [−3, 3], W = [−2, 2] and Xf = [−1, 1].

In view of Interpretation 1, the controller employs the in-
formation vector z(x,w) = (x,w) for the control synthesis.
The control law u(x,w) = 3 when x ≤ −3, u(x,w) =
−(x + w) when −3 ≤ x + w ≤ 3 and u(x,w) = −3
when x ≥ 3 ensures that any state x ∈ X reaches the
terminal constraint set Xf in at most 9 time steps (for
any admissible disturbance sequence). Hence, the sup–inf
robust optimal control problem is feasible for any x ∈ X
(for any horizon length N ≥ 9). The inf–sup robust optimal
control problem corresponds to the case when the informa-
tion vector z(x,w) is merely the state x. Since the terminal
constraint set Xf is a proper subset of the disturbance set
W the inf–sup robust optimal control problem is, clearly,
not solvable.
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Essentially, the controller utilizes sup–inf dynamic pro-
graming (DP) in order to obtain the solution to Problem 1.
More precisely, given a horizon length N ∈ N+, the con-
troller is concerned with the computation of the sequence
of partial return functions {V 0

j (·)}N
j=1, the sequence of con-

trol laws {κj(·)}
N
j=1 and the sequence of the controllability

sets {Xj}
N
j=1 specified by, for all j ∈ N[1,N ],:

V 0
j (x) = sup

(w,f)∈W×F

inf
u∈U

{ℓ(x, u) + V 0
j−1(f(x, u, w)) :

f(x, u, w) ∈ Xj−1}, x ∈ Xj (2.5a)

κ0
j (x,w, f) = arg inf

u∈U
{ℓ(x, u) + V 0

j−1(f(x, u, w)) :

f(x, u, w) ∈ Xj−1}, (x,w, f) ∈ Xj ×W ×F (2.5b)

Xj = {x ∈ X : ∀(w, f) ∈ W ×F , ∃u ∈ U such that

f(x, u, w) ∈ Xj−1} (2.5c)

with the boundary conditions X0 := Xf and V 0
0 (x) :=

Vf (x), x ∈ Xf . The control laws κ0
j (·) are employed

to construct the corresponding sup–inf optimal control
policy {π0

i (·) : i ∈ NN−1} via relations π0
N−j(x,w, f) =

κ0
j (x,w, f) (or π0

N−j(x,w, f) ∈ κ0
j (x,w, f) when κ0

j (·) is

set–valued) for all (x,w, f) ∈ Xj×W×F and all j ∈ N[1,N ].

3. LINEAR TIME INVARIANT SYSTEMS

Consider the discrete-time, linear time-invariant, system:

x+ = Ax + Bu + Dw (3.1)

where x ∈ R
n and x+ ∈ R

n are, respectively, the current
and the successor state, u ∈ R

m is the control input,
w ∈ R

p is the disturbance and matrices A, B and D
are of appropriate dimensions. Constraint sets X , U , W
and Xf satisfy the following assumption invoked merely
for computational reasons:

Assumption 1. The state constraint set X is a polytope
in R

n. The control constraint set U is a polytope in R
m.

The disturbance constraint set W is a polytope in R
p. The

terminal constraint set Xf ⊆ X is a polytope in R
n. The

sets X , U , W and Xf all contain the origin.

The cost function is given by (2.4) and, in addition, the
terminal and path functions are specified by:

Vf (x) = ‖Px‖ and ℓ(x, u) = ‖Qx‖ + ‖Ru‖, (3.2)

where ‖ · ‖ denotes a polyhedral norm and matrices P ,
Q and R are of appropriate dimensions. Clearly, in this
setting the information vector z(x,w) is the pair (x,w).

3.1 Exact DP Recursion for Linear–Polytopic Case

The DP recursion (2.5) reduces to, for j ∈ N[1,N ],:

V 0
j (x) = max

w∈W
min
u∈U

{ℓ(x, u) + V 0
j−1(Ax + Bu + Dw) :

Ax + Bu + Dw ∈ Xj−1}, x ∈ Xj (3.3a)

κ0
j (x,w) = arg min

u∈U
{ℓ(x, u) + V 0

j−1(Ax + Bu + Dw) :

Ax + Bu + Dw ∈ Xj−1}, (x,w) ∈ Xj ×W (3.3b)

Xj = {x ∈ X : ∀w ∈ W, ∃u ∈ U such that

Ax + Bu + Dw ∈ Xj−1} (3.3c)

where the endpoint conditions are X0 := Xf and V 0
0 (x) :=

Vf (x), x ∈ Xf and the corresponding max–min optimal
control policy {π0

i (·) : i ∈ NN−1} is obtained via relations

π0
N−j(x,w) = κ0

j (x,w) (or π0
N−j(x,w) ∈ κ0

j (x,w) when

κ0
j (·) is set–valued) for all (x,w) ∈ Xj ×W and j ∈ N[1,N ].

The controllability sets Xj are directly computable by
utilizing the set–theoretic calculus:

Xj = {x ∈ X : Ax ∈ [(Xj−1 ⊕ (−BU)) ⊖ DW]}, (3.4)

where X0 := Xf .

Remark 1. When a control law κf (·, ·) : Xf × W → U
associated with the terminal set Xf is such that the
following invariance condition holds:

∀(x,w) ∈ Xf ×W, Ax + Bκf (x,w) + w ∈ Xf ,

then the controllability sets Xj are all non–empty, nested
(Xj ⊆ Xj+1) and also invariant (in the sense that for all
(x,w) ∈ Xj × W there exists a uj = uj(x,w) ∈ U such
that Ax + Buj(x,w) + w ∈ Xj−1 ⊆ Xj).

The optimization problem Pmin(x,w) associated with the
DP recursion (3.3):

J0
j (x,w) = min

u∈U
{ℓ(x, u) + V 0

j−1(Ax + Bu + Dw) :

Ax + Bu + Dw ∈ Xj−1}, (x,w) ∈ Xj ×W (3.5a)

κ0
j (x,w) = arg min

u∈U
{ℓ(x, u) + V 0

j−1(Ax + Bu + Dw) :

Ax + Bu + Dw ∈ Xj−1}, (x,w) ∈ Xj ×W (3.5b)

can be written transparently as a parametric linear pro-
gramming problem (Bank et al., 1983) whenever Assump-
tion 1 holds, ℓ(·, ·) is as specified in (3.2) and V 0

j−1(·)
is a polyhedral function over Xj−1. Furthermore, it is
also known (assuming that Xj is a non–empty set) that
function J0

j (·, ·) is a polyhedral function over Xj × W
and that there exists a polytopal subdivision (polytopal
complex) Cj := {P(1,j), . . . ,P(qj ,j)} of the polytope Xj×W

and a continuous selection κ̃0
j (x,w) ∈ κ0

j (x,w) affine in
each polytope P(i,j) ∈ C (Bank et al., 1983). Functions

V 0
j : Xj → R+ can be obtained, as the maximum of a

finite number of polyhedral functions as specified by the
optimization problem Pmax(x):

V 0
j (x) = max

w∈vert(W)
J0

j (x,w), x ∈ Xj . (3.6)

Consequently, it follows that V 0
j (·) is a polyhedral function

over Xj (Rockafellar, 1970). Since Vf (·) is a polyhedral
function over Xf = X0 a direct argument based on the
principle of mathematical induction allows us to summa-
rize properties of functions V 0

j (·), j ∈ N[1,N ] and control

laws κ0
j (·, ·), j ∈ N[1,N ].

Proposition 1. Suppose Assumption 1 holds, fix an integer
N ∈ N+ and assume that the controllability set XN , given
by set recursion (3.4), is non–empty. Consider Problem 1
for the system (3.1) with the terminal and path cost
given by (3.2). Then (i) Problem 1 is solvable, (ii) the
partial return functions V 0

j (·) are polyhedral functions
over Xj for all j ∈ N[1,N ], and (iii) there exist control laws

κ̃0
j (·, ·), which are CPWA functions over Xj ×W, such that

κ̃0
j (x,w) ∈ κ0

j (x,w) for all (x,w) ∈ Xj ×W and j ∈ N[1,N ].

Remark 2. Utilizing linearity and convexity and the fact
that functions J0

j−1(·, ·) are polyhedral functions over
Xj−1 ×W, the following parametric optimization problem
yields functions J0

j (·, ·) (and also control laws κj(·, ·)) and
it does not require the explicit computation of functions
V 0

j−1(·) for j ∈ N[2,N ]:
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J0
j (x,w) := min

(u,γ)
{ℓ(x, u) + γ : (u, γ) ∈ D(x,w)} where

D(x,w) := {(u, γ) ∈ U × R+ :

∀w̃ ∈ vert(W), J0
j−1(Ax + Bu + Dw, w̃) ≤ γ,

Ax + Bu + Dw ∈ Xj−1}, (x,w) ∈ Xj ×W.

and, in addition, can be solved by an adequate parametric
linear program. The function J0

1 (·, ·) (and the control law
κ0

1(·, ·)) are directly computable from (3.3) or (3.5). In
addition, the epigraph of a function V 0

j (·) corresponds to
the irredundant representation of the polyhedron:

{(x, γ) ∈ Xj × R+ : ∀w̃ ∈ vert(W), J0
j (x, w̃) ≤ γ}.

Our next example, borrowed from (Laumanns and Lefeber,
2006), illustrates benefits of the adequate utilization of the
information available for control synthesis.

Example 2. Consider the model of a demand-driven sup-
ply network (a variant of the Beer Distribution Game)
which can be described by:

x+ =




1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 x +




0
0
0
1


u +



−1
0
0
0


 w

subject to the state, control and disturbance constraints:

x ≥ 0, u ∈ [0, 8], w ∈ [0, 8].

In addition, the states are restricted to set {x ∈ R
4 :

‖x‖∞ ≤ 100} for computational reasons. The state x
denotes the amount of goods at different stages of the
supply chain, the additive disturbance w models customers
demands and the control input u is the order rate at the
chain input. The control objective is to devise a strategy
for ordering new goods ensuring that the amount of goods
in the chain is minimized while the customers demands are
satisfied. The corresponding control objective is reflected
via the cost function:

V (x0,Π∞,w∞) =

∞∑

i=0

0.5‖xi‖1,

(here xi is, as before, the solution of the underlying state
update equation given the initial state x, the control policy
Π∞ and the disturbance sequence w∞). In (Laumanns
and Lefeber, 2006) the authors utilize a dynamic program-
ming approach to compute the min–max robust optimal
control policy. The information vector z(x,w) employed
in(Laumanns and Lefeber, 2006) corresponds to the state
x and yields the time invariant control law :

πmin−max
∞ (x) = max{32 − ‖x‖1 , 0}.

Utilizing the pair (x,w) as the information vector z(x,w)
leads to the max–min robust optimal control problem and
yields the max–min robust optimal control law:

πmax−min
∞ (x,w) = max{24 + w − ‖x‖1 , 0}.

The min–max and the max–min control laws were tested in
a simulation with uniformly distributed random customers
demands. Figure 1 (a) shows the evolution of the actual
cost ℓ(xi) = 0.5‖xi‖1 over time. It can be seen that utiliz-
ing the information about the current customers demands
when synthesizing the control policy yields an average
cost reduction of about 15%. The set of feasible states
for max–min ordering strategy is “larger” as illustrated
in Figure 1 (b), where projections of the min–max and
max–min feasible sets onto x[1] − x[2] subspace are shown

c
o
s
t

time

Max-min control
Min-max control

0 5 10 15 20
0

5

10

15

20

(a) Cost x[1]

x
[2

]

X
min-max

5
X

max-min

5

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b) Feasibility Sets

Fig. 1. Comparison of the min–max and max–min controls.

in darker and lighter gray (the min–max feasibility set
overlaps partially the max–min feasibility set since it is
its subset).

3.2 Interpolation Based DP Recursion

The exact DP recursion (3.3) requires a solution to a para-
metric linear programming problem in (x,w) space. It is
desirable, from the computational point of view, to obtain
simplified DP procedure (if possible) that operates in lower
dimensional space. When the disturbance constraint set W
is given as the (closed) convex hull of the set:

W̃ := {w̃i ∈ R
p : i ∈ Nq},

where q is a finite integer we consider the modification of
the DP equations (3.3):

V 0
(j,i)(x) = min

u∈U
{ℓ(x, u) + V 0

j−1(Ax + Bu + Dw̃i) :

Ax + Bu + Dw̃i ∈ Xj−1}, x ∈ Xj (3.7a)

ν0
(j,i)(x) = arg min

u∈U
{ℓ(x, u) + V 0

j−1(Ax + Bu + Dw̃i) :

Ax + Bu + Dw̃i ∈ Xj−1}, x ∈ Xj (3.7b)

V 0
j (x) = max

i∈Nq

V 0
(j,i)(x), x ∈ Xj . (3.7c)

Underlying linearity, convexity and polyhedral nature of
involved functions, yield the fact that functions V 0

j (·)
obtained by (3.3a) and (3.7c) coincide (their values are
equal for any x ∈ Xj). Control laws κ0

j (·, ·) and ν(j,i)(·)
are, however, defined over different spaces (Xj ×W and Xj

respectively), but the max–min interpolated control laws,
say νj(·, ·) : Xj ×W → U can be obtained by:

νj(x,w) :=

q∑

i=0

λ0
[i](w)ν̃(j,i)(x), (x,w) ∈ Xj ×W with

λ0(w) := arg min
λ

{λ′λ : w =

q∑

i=0

λ[i]w̃i, λ ∈ ∆q},

(3.8)

and where ν̃(j,i)(·) are CPWA functions over Xj satisfying

ν̃(j,i)(x) ∈ ν0
(j,i)(x) for all x ∈ Xj .

Remark 3. Polyhedral nature of involved functions, the
linearity of the state update equation, polytopic structure
of state, control, disturbance and terminal constraint sets
(sets X , U , W and Xf ) and sets Xj ensures that the max–
min interpolated control laws νj(·, ·), specified by (3.8),
satisfy all the constrains and yield the guaranteed max–
min cost specified by functions V 0

j (·). However, the max–
min interpolated control laws νj(·, ·) are essentially differ-
ent from the max–min exact control laws or their adequate
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selections, say κ̃j(·, ·), (obtained by (3.3b) or (3.5b)) in the
sense that, for all (x,w) ∈ Xj ×W,:

J0
j (x,w) = ℓ(x, κ̃j(x,w)) + V 0

j−1(Ax + Bκ̃j(x,w) + w)

and

J0
j (x,w) ≤ ℓ(x, νj(x,w)) + V 0

j−1(Ax + Bνj(x,w) + w),

where function J0
j (·, ·) is specified by (3.5a).

4. LINEAR TIME-VARYING SYSTEMS

Consider a linear time-varying system when the state
transition equations belong to a discrete set of finite
cardinality:

x+ = f(x, u), f ∈ F = {Aix + Biu : i ∈ Nq}, (4.1)

where q is a (finite) integer. The system (4.1) is subject to
constraints satisfying Assumption 1 where, for simplicity,
we consider the case in which W = {0}. The cost is
specified by (2.4) with the terminal and path cost given
by (3.2).

The integer sk ∈ Nq denotes the indicator, at time k, asso-
ciated with the set of matrix pairs {(A0, B0), . . . , (Aq, Bq)},
i.e. at time k:

xk+1 = Ask
xk + Bsk

uk.

In this case, the information vector z(x, f) is the state–
indicator pair, i.e. z(x, f) = (x, s) with (x, s) ∈ X ×Nq.

A more detailed form of DP equations (2.5), in this case,
is given by, for j ∈ N[1,N ],:

J0
j (x, i) := min

u∈U
{ℓ(x, u) + V 0

j−1(Aix + Biu) :

Aix + Biu ∈ Xj−1}, x ∈ Xj(i), i ∈ Nq, (4.2a)

ν0
j (x, i) := arg min

u∈U
{ℓ(x, u) + V 0

j−1(Aix + Biu) :

Aix + Biu ∈ Xj−1}, x ∈ Xj(i), i ∈ Nq, (4.2b)

Xj(i) := {x ∈ X : Aix ∈ [Xj−1 ⊕ (−BiU)]}, i ∈ Nq,
(4.2c)

Xj :=
⋂

i∈Nq

Xj(i) (4.2d)

V 0
j (x) := max

i∈Nq

J0
j (x, i), x ∈ Xj , (4.2e)

κ0
j (x, s) := ν0

j (x, s), (x, s) ∈ Xj ×Nq, (4.2f)

with boundary conditions: X0 := Xf and V0(x) :=
Vf (x), x ∈ Xf . As before the corresponding max–min
optimal control policy {π0

i (·) : i ∈ NN−1} is obtained via
relations π0

N−j(x, s) = κ0
j (x, s) (or π0

N−j(x, s) ∈ κ0
j (x, s)

when κ0
j (·) is set–valued) for all (x, s) ∈ Xj × Nq and

j ∈ N[1,N ].

Similarly to Proposition 1, we have:

Proposition 2. Suppose Assumption 1 holds, fix an integer
N ∈ N+ and assume that the controllability set XN , given
by set recursion (4.2d), is non–empty. Consider Problem 1
for the system (4.1) with the terminal and path cost given
by (3.2). Then (i) Problem 1 is solvable, (ii) the partial
return functions V 0

j (·) are polyhedral functions over Xj for
all j ∈ N[1,N ], and (iii) for any s ∈ Nq there exist control

laws κ̃0
j (·, s), which are CPWA functions over Xj(s), such

that κ̃0
j (x, s) ∈ ν0

j (x, s) for all x ∈ Xj(s) and j ∈ N[1,N ].

Remark 4. Similarly to Remarks 1 and 2, under Assump-
tion 1 and when the control law κf (·, ·) : Xf × Nq → U
associated with the terminal constraint set Xf is such that:

∀(x, s) ∈ Xf ×Nq, Asx + Bsκf (x, s) ∈ Xf

the controllability sets Xj are non–empty polytopes in
R

n, nested (Xj ⊆ Xj+1) and invariant (for all (x, s) ∈
Xj × Nq there exists a uj = uj(x, s) ∈ U such that
Asx + Bsuj(x, s) ∈ Xj−1 ⊆ Xj). In this case, functions
J0

j (·, ·) and control laws ν0
j (·, ·) can be obtained for j ∈

N[2,N ] as follows. Let, for each j, uj := {u0, u1, . . . , uq}
and Γj := {γ0, γ1, . . . , γq} and consider the following
parametric optimization problem:

L0
j (x) = min

(uj,Γj)
{

q∑

i=0

γi : (ui, γi) ∈ Di(x), i ∈ Nq} where

Di(x) := {(u, γ) ∈ U × R+ :

∀k ∈ Nq, ℓ(x, u) + J0
j−1(Aix + Biu, k) ≤ γ,

Aix + Biu ∈ Xj−1},

whose solution can be obtained from an adequate para-
metric linear programming problem. It is not difficult
to see that, given functions J0

j−1(·, ·), functions J0
j (·, ·)

and control laws ν0
j (·, ·) can be obtained directly from

the optimizer (or its selection) (u0
j (·),Γ

0
j (·)) of the func-

tion L0
j (·). Functions J0

1 (·, ·) and ν0
1(·, ·) are computable

directly by using (4.2). As in Remark 2 it is direct to
obtain, if necessary, the epigraph of functions V 0

j (·) (and

consequently functions V 0
j (·) themselves) given functions

J0
j (·, ·). Control laws κ0

j (·, ·) can be constructed transpar-

ently by utilizing functions u
0
j (·) and (4.2f).

5. LINEAR PARAMETER-VARYING SYSTEMS

Consider linear parameter-varying system with the uncer-
tain state transition matrix:

x+ = A(λ)x + Bu, A(λ) :=

q∑

j=0

λ[j]Aj , λ ∈ ∆q. (5.1)

In this case, according to the Interpretation 1, at time k
values of the scheduling parameters λk ∈ ∆q and the state
xk are available to the controller. The system (5.1) is, as in
the previous subsection, subject to constraints satisfying
Assumption 1 with W = {0} and the cost function is given
by (2.4) and (3.2). Note that, in this setting, the state
transition equation (5.1) remains linear in y := A(λ)x:

x+ = y + Bu where y := A(λ)x, (5.2)

and A(λ) is such that A(λ) =
∑q

j=0 λ[j]Aj , λ ∈ ∆q.

Furthermore, the path cost function ℓ(·, ·) is, clearly, a
separable function in x and u:

ℓ(x, u) = ℓx(x) + ℓu(u) where

ℓx(x) := ‖Qx‖ and ℓu(u) := ‖Ru‖ (5.3)

The linearity of equation (5.1) in A(λ)x and separability
of the path cost ℓ(·, ·) expressed in, respectively, (5.2)
and (5.3) suggest that it is convenient and natural to
consider the information vector z(x, λ) specified by:

z(x, λ) = y with

y = A(λ)x and A(λ) =

q∑

j=0

λ[j]Aj , λ ∈ ∆q.
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Due to the underlying “y–linearity” and convexity (i.e.
polytopic nature of involved constraint sets), DP equa-
tions (2.5) in this case take the following form, for j ∈
N[1,N ],:

J̃0
j (y) := min

u∈U
{ℓu(u) + V 0

j−1(y + Bu) :

y + Bu ∈ Xj−1}, y ∈ Ỹj (5.4a)

κ0
j (y) := arg min

u∈U
{ℓu(u) + V 0

j−1(y + Bu) :

y + Bu ∈ Xj−1}, y ∈ Ỹj (5.4b)

Ỹj := {y ∈ R
n : ∃u ∈ U such that y + Bu ∈ Xj−1}

(5.4c)

Xj := {x ∈ X : ∀λ ∈ ∆q, ∃u ∈ U such that

A(λ)x + Bu ∈ Xj−1}, (5.4d)

V 0
j (x) := ℓx(x) + max

i∈Nq

J̃0
j (Aix), x ∈ Xj (5.4e)

with boundary conditions, as before, X0 = Xf and
V 0

0 (x) = Vf (x), x ∈ Xf . In this case, the corresponding
max–min optimal control policy {π0

i (·) : i ∈ NN−1} is ob-
tained via relations π0

N−j(y) = κ0
j (y) (or π0

N−j(y) ∈ κ0
j (y)

when κ0
j (·) is set–valued) for all y ∈ Ỹj and all j ∈ N[1,N ].

In this case, it is important to observe that sets Ỹj are
convex (polyhedral under Assumption 1) and that not all

points y ∈ Ỹj are of interest to the controller. In fact, given
an x ∈ Xj−1, the controller is merely interested in points y
such that y ∈ Y(x) := convh({Aix : i ∈ Nq}). It is hope-

fully clear that
⋃

x∈Xj
Y(x) ⊆ Ỹj and that the controller

is concerned with functions J̃0
j (·) and control laws κ0

j (·, ·)

only for points y such that y ∈
⋃

x∈Xj
Y(x) ⊆ Ỹj as well

as functions V 0
j (·) for x ∈ Xj . As in Propositions 1 and 2

we have:

Proposition 3. Suppose Assumption 1 holds, fix an integer
N ∈ N+ and assume that the controllability set XN , given
by set recursion (5.4c), is non–empty. Consider Problem 1
for the system (5.1) with the terminal and path cost
given by (3.2). Then (i) Problem 1 is solvable, (ii) the
partial return functions V 0

j (·) are polyhedral functions
over Xj for all j ∈ N[1,N ], and (iii) there exists control

laws κ̃0
j (·), which are CPWA functions over Ỹj , such that

κ̃0
j (y) ∈ κ0

j (y) for all y ∈ Ỹj and j ∈ N[1,N ].

Remark 5. As before and similarly to Remarks 1, 2 and 4,
under Assumption 1 and when the control law κf (·, ·) :
Xf × ∆q → U associated with the terminal constraint set
Xf is such that ∀(x, λ) ∈ Xf × ∆q, A(λ)x + Bκf (x, λ) ∈
Xf , the controllability sets Xj are non–empty, nested,

polytopes in R
n and invariant. In this case, functions J̃0

j (·)

and control laws κ0
j (·) can be obtained for j ∈ N[2,N ] by

the following parametric optimization problem:

J̃0
j (y) = min

(u,γ)
{γ : (u, γ) ∈ D(y)} where

D(y) := {(u, γ) ∈ U × R+ : y + Bu ∈ Xj−1,

∀k ∈ Nq, ℓu(u) + ℓx(y + Bu) + J̃0
j−1(Ak(y + Bu)) ≤ γ},

which can be casted as an parametric linear programming
problem. Functions J̃0

1 (·) and κ0
1(·) are computable directly

by using (5.4). As in Remark 2 it is direct to obtain, if nec-
essary, the epigraph of functions V 0

j (·) (and consequently

functions V 0
j (·) themselves) given functions J̃0

j (·).

6. CONCLUSION

We considered the optimal control problem for con-
strained discrete–time systems affected by the measured
and bounded uncertainty and obtained its solution by
employing max–min dynamic programming. We examined
the characterization and discussed the computation of
the max–min value function and robust optimal control
policies for several particular classes of discrete time–
systems.
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