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Abstract: The threshold selection issue is considered in a fault detection system which is a
part of an active fault tolerant control scheme. The proposed approach takes explicitly into
account the closed-loop performance of the regulated system. Indeed, the threshold is selected
to ensure optimal regulation performance over a specified time horizon, while taking into account
possible malfunctions affecting the system. More specifically sensor faults, like bias or drift, are
considered in combination with a reconfiguration scheme made of software sensors. A numerical
algorithm based on randomization techniques is provided and its running is illustrated on a
numerical example of FTC for a winding machine.

1. INTRODUCTION

Fault tolerant control (FTC) systems aim at guaranteeing
that a process or device keeps fulfilling its mission even
in the presence of faults, although possibly in a degraded
mode. It involves automatically detecting and isolating
the faulty components thanks to an appropriate diagnosis
systems, and then reconfiguring the control law on-line
in response to the information provided by the diagnosis
system Blanke et al. [2006]. Despite the evident interaction
between fault detection and isolation (FDI) and reconfigu-
ration algorithms, the research on FDI and reconfiguration
methods has often evolved separately, certainly because of
the difficulty of each of these problems. Typically, in the
reconfiguration literature, it is assumed that a perfect FDI
device is available (i.e. no detection delay, no false alarm,
no missed detection ...etc.)Gao et al. [1991], Lunze et al.
[2006]. On the other hand, the figures of merit used for
FDI algorithms are the detection delay and false alarm
rate, and an algorithm is judged satisfactory if it detects
failures quickly and generates few false alarms, regardless
of the performance of the reconfigured closed loop system
Basseville et al. [1993].
Some results addressing this interaction issue have ap-
peared recently. For instance Gani et al. [2007] presents an
approach that combines a fault detection filter, to detect
actuator faults, and a reconfiguration policy based on sta-
bility region. The latter allows to switch to an appropriate
controller upon occurrence of a fault. However, the design
of the threshold in the detection system is not linked to
closed-loop performance in that paper. This is probably
due to the fact that total actuator failures are considered,
although it is not explicitly mentioned in the text, so that
sufficiently fast detection is always achieved and reconfig-
uration is compulsory. Other approaches rely on estimates
of loss of control effectiveness of the actuators or estimates

of the bias of the sensors to either retune the control law
Wu et al. [2000] or compensate for the bias Edwards et al.
[2006]. However, since the fault estimate is never totally
accurate, its use in a compensation scheme under healthy
conditions actually deteriorates closed-loop performance,
and it is thus important to complement such approaches
with an appropriate decision scheme to determine when
the fault estimate should be used for compensation as in-
dicated in Edwards et al. [2006]. This goes in the direction
of the research reported in the present paper.
Indeed, our aim is to address a question involving the
interplay between FDI systems and reconfiguration mech-
anisms, namely the tuning of the threshold of the FDI
systems based on the closed-loop performance of the FTC
system. To keep the setting sufficiently simple, a system
subject to sensor faults is considered, and the reconfigura-
tion mechanism consists in substituting a software sensor
for a faulty hardware sensor. Typically, closed-loop per-
formance will be better with the hardware sensor than
with the software sensor, however, the presence of a fault
on the hardware sensor will also degrade the closed-loop
performance. One should thus determine at what fault
level switching to the software sensor is recommended in
order to achieve the best closed-loop performance over
a given mission time. The latter may correspond to the
time interval between two maintenance operations for in-
stance. Setting the fault level actually amounts to setting
the threshold for the FDI algorithm which triggers the
reconfiguration mechanism.
This paper is organized as follows. The fault tolerant
(FTC) system is described in section 2. The threshold
selection problem is stated in section 3, and an algorithm
to solve it is presented. Finally, a winding machine example
is used in section 4 to illustrate the approach.
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2. DESCRIPTION OF THE FTC SYSTEM

2.1 System modeling

Consider the following class of discrete-time dynamical
systems:

ϕ :





xk+1 = Axxk + Buuk + Bwwk

yk = Cyxk + νk + Effk

zk = Czxk + Dzuk

(1)

where xk ∈ Rn is the state, uk ∈ Rr is the input, yk ∈ Rq

is the measured output, wk is the process noise, νk is the
measurement noise, zk is the controlled output, and fk

represents sensor faults. The sequence {wk}k is white and
Gaussian (wk ∼ N (0, Rw) with Rw a symmetric positive
definite matrix). νk is the output of the linear system

ϕν : νk+1 = Aννk + ηk (2)
where {ηk}k is a Gaussian white noise sequence (ηk ∼
N (0, Rη) with Rη > 0) independent of {wk}k. Thus νk is
sequentially correlated. Model (2) corresponds to a band
limited noise. Such a noise model is needed to ensure the
existence of a solution to the H2 control problem stated in
section 2.2. Besides, the initial state x0 is assumed to be a
Gaussian random vector with zero mean and variance Σ0,
and similarly ν0 has zero mean and variance Σν0 .

A parameterized class of functions will be considered for
fk: {

fk = 0 if k < k0

fk = f(k; k0, β) otherwise
(3)

with k0, the fault occurrence time, and β a parameter
linked to fault magnitude. Both parameters are assumed
to be random variables. The function f(k; k0, β) is also
assumed to be linear w.r.t. parameter β. It is further sup-
posed that the probability mass function (pmf), pk0(k0) of
k0 over the mission time is known, including the probabil-
ity that no fault occurs during the mission, pnf , and that
the probability density function pβ(β) of β is also known.
β and k0 are supposed to be independent.

2.2 Controller synthesis

In the absence of fault (fk = 0), process (1) is controlled
by static output feedback. Upon occurrence of a fault, the
faulty sensor will be replaced by a software sensor that
relies on the non faulty sensors. In the following, one single
sensor fault is considered for the sake of simplicity.
The nominal and the reconfigured control laws are succes-
sively presented in the next two subsections.

Nominal case The nominal controller is based on the
model of the fault free system (1), and it has the form:

ϕs : uk = Kyk (4)
Combining (1)-(2) we obtain the following dynamical
model: 




χk+1 = Āχχk + B̄uuk + Ēwwk + Ēηηk

yk = C̄yχk

zk = C̄zχk + Dzuk

(5)

where χk = [x′k ν′k]′ and

Āχ =
[

Ax 0
0 Aν

]
, B̄u =

[
Bu

0

]
, Ēw =

[
Bw

0

]
,

Ēη =
[
0
I

]
, C̄y = [ Cy I ] , C̄z = [ Cz 0 ] .

Our goal is to compute a static output feedback controller
ϕs that stabilizes the closed loop system and ensures H2

performance, as specified below.
Applying the controller ϕs to (5), we obtain the following
closed loop system:

ϕcl





χk+1 = Ãχχk + Ẽw̄k

yk = C̄yχk

zk = C̃zχk

(6)

where
w̄k =

[
w′k η′k

]′
, Ãχ = Āχ + B̄uKC̄y,

Ẽ =
[
Ēw Ēη

]
, C̃z = C̄z + DzKC̄y.

Letting Tw̄z denote the discrete transfer matrix between
w̄ and z, the H2 control problem can be stated as follows.
Determine a stabilizing gain K such that ‖ Tw̄z ‖2 is
minimum.
This can be achieved by finding the minimum value of γ2

for which there there exist a positive definite matrix P2

and a matrix K such that
tr(Ẽ′P2Ẽ) < γ2

2

Ã′χP2Ãχ − P2 + C̃ ′zC̃z < 0
Then K is a stabilizing gain such that ‖ Tw̄z ‖2< γ2.
For synthesis purpose we use the LMI methods based on
cone complementary techniques described in El Ghaoui
et al. [1997].

Reconfiguration Let us consider, without loss of general-
ity, that sensor 1 is faulty, then the proposed reconfigured
control law is given by

urk = K1ŷ1k +K2ỹk (7)

with K = [K1 K2 ], ỹk = [ y2k . . . yqk ]′ where ỹk = Myk

are the "healthy" outputs, and ŷ1k is an estimation of y1k

obtained from the state estimate of the following Kalman
filter (based on model (5) with measured output ỹk):

ϕF :
{

χ̂k+1 = Āχχ̂k + B̄uurk +Kfr(ỹk − ˆ̃yk)
ˆ̃yk = MC̄yχ̂k

(8)

where ˆ̃yk is the estimation of ỹk. This yields
ŷ1k = M1C̄yχ̂k. (9)

where M1 simply selects the first component of vector
C̄yχ̂k. In accordance with the standard Kalman filter
theory, the initial state χ̂0 is assumed to be a Gaus-
sian random vector with zero mean and variance Σ̂0 =
diag (Σ0 Σν0).
Note that the filter (8) only uses the healthy outputs ỹk to
provide robust estimation (robustness w.r.t sensor faults)
of the faulty output. When writing (8), it is implicitly
assumed that the required detectability and stabilizability
conditions are verified to be able to compute a unique
stabilizing Kalman filter gain Kfr.
Remark: In order to avoid a transient due to the initial-
ization of the filter (8) upon reconfiguration, this filter is
running both in faulty and in fault free conditions. In the
latter case, uk as given by (4) is substituted for urk.
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In the next section, the fault detection system that decides
when to switch from control law (4) to control law (7)-(9)
is described.

2.3 Fault detection (FD)

The two parts that constitute the FD system, namely the
residual generator and the decision module are successively
described. The first generates fault indicators, called resid-
uals, which have zero mean in the absence of fault and
nonzero mean upon occurrence of a fault. The decision
module then performs a test of hypothesis to determine
the possible presence of a fault.

Residual generation A Kalman filter for system (1)-
(2) will be used as a residual generator. However, for a
system made of the concatenation of equations (1) and
(2), the Kalman filtering problem is singular Jazwinski
[1970], pages 212-215. One way to solve such a problem is
to consider the following modification of the measurement
equation.
From (1), (2) with fk = 0, we have

yk −Aνyk−1 = [CyAx −AνCy ] xk−1 + CyBuuk−1

+ CyBwwk−1 + ηk−1

= Ĉyxk−1 + B̂uuk−1 + B̂wwk−1 + ηk−1 (10)

Combining (10) with (1) gives the following state space
representation with modified output:

ϕmod :

{
xk+1 = Axxk + Buuk + Bwwk

ȳk = (yk+1 −Aνyk) = Ĉyxk + B̂uuk + B̂wwk + ηk

(11)
in which the measurement noise variance is now nonsin-
gular.
Under standard detectability and stabilizability condi-
tions, a steady state Kalman filter for system (11) can
be determined. It takes the form

ϕFD :
{

x̂k+1 = Axx̂k + Buuk +Kf (ȳk − ˆ̄yk)
ˆ̄yk = Ĉyx̂k + B̂uuk

(12)

where x̂0 is a Gaussian random vector with zero mean and
variance Σ̂FD = Σ0. Let us define ek = xk− x̂k, then (11),
(12) yield

ek+1 = Ăek + B̆wk −Kfηk (13)
where

Ă = Ax −Kf Ĉy, B̆ = Bw −Kf B̂w. (14)
The residual rk is the innovation of the Kalman filter:

rk = ȳk − ˆ̄yk = Ĉyek + B̂wwk + ηk (15)

Decision module Given the Gaussian assumption for
the noise sequences {wk}k and {ηk}k, rk is normally
distributed with zero mean in the absence fault. A fault
normally induces a change in the mean of the residual
Blanke et al. [2006], chapter 6. Therefore, considering the
vector Rk =

[
r′k r′k−1 . . . r′k−l

]′, obtained by stacking up
(l + 1) residual samples, the residual evaluation problem
can be stated as the following hypothesis testing problem:
Given a realization of the random vector Rk, choose
between the following two hypotheses

H0: L(Rk) = N (0, Q)
H1: L(Rk) = N (µk, Q) where µk is an unknown non-zero

vector.

A standard χ2-test is used to solve this problem, based
on the decision function ξk = R′kQ

−1Rk which has a χ2

distribution with non centrality parameter equal to zero
under hypothesis H0. Specifically,{

if ξk < h, decide H0,

otherwise, decide H1,
(16)

where the threshold h is a tuning parameter.
The variance of Rk,denoted Q, can be computed as indi-
cated in Aberkane et al. [2008].
In typical FD systems, the threshold h used for the χ2-test
is adjusted in such a way that, in the absence of fault,

Prob(ξk > h) = α (17)
where α is a specified false alarm (FA) probability. How-
ever, in a fault tolerant control context, it is not clear
what value to choose for α. A low FA probability would a
priori be beneficial; but it implies a large value for h, and
hence a large value for the smallest detectable fault. This
is the classical trade off between false alarm and missed
detection. In FTC, what really matters is closed-loop per-
formance. Therefore, in the next section an optimization
problem is stated, for the determination of h, on the basis
of this criterium.

3. THRESHOLD OPTIMIZATION

Consider system (1) subject to fault fk described by the
specific family of functions (3). Let the mission time (for
instance the time interval between two sensor maintenance
operations) be equal to H, and assume, for the sake of
simplicity, that a single switching from control law (4)
to control law (7)-(9) can take place. Such a switching
is triggered by the FD system either upon occurrence of
a fault or due to a false alarm. Our aim is to determine
the threshold h of test (16) in such a way that a closed-
loop performance measure, averaged over all possible faults
within family (3), over all possible noise realizations and
all possible reactions of the FD system (accounting for the
false alarms and detection delay), is minimized.
A mathematical expression for this optimization problem
is:

min
h
E

(
H∑

k=0

z′kzk

)
= min

h
J (18)

where the expectation operator E carries over the noise
sequences, the initial state and the fault sequence.
The difficulty in the evaluation of this cost function stems
from the decision system which nonlinear function and
threshold impose switching between the nominal and the
reconfigured control law at a random time instant that
depends on the realizations of the different random vectors
and processes appearing in the problem statement. A
simple way to evaluate the cost would be to resort to
standard Monte Carlo simulation. However, this would not
exploit the linearity property of the closed-loop dynamical
system both in fault free and in faulty operation. The
algorithm presented next attempts to combine Monte
Carlo simulation and classical results on stochastic linear
dynamical systems to limit the computation time of the
cost function J for a given threshold h.
The contributions of the fault free trajectories and the
trajectories subject to fault occurrence are successively
considered. Next, the way to combine these results in order
to evaluate J is explained.
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3.1 Contributions of the fault free trajectories

A two step approach is used. First Monte Carlo simulation
allows to determine,at each time instant, the mean and
variance of the trajectories that yield no false alarm or
that yield a false alarm. Next the contribution to the cost
after a false alarm is triggered is computed.
The following algorithm is used for Monte Carlo simula-
tion:

• Obtain N realizations of χ0, χ̂0, x̂0, say
χn

0 , χ̂n
0 , x̂n

0 , n = 1, · · · , N.

• For i ranging from 1 to H
Step 1 Obtain N realizations of wi−1 and ηi−1, say

wn
i−1, η

n
i−1, n = 1, · · · , N.

Step 2 Perform, for each n, one simulation step
of the dynamic system (4),(5), (8), (13), (15), and
evaluate the associated decision variable ξn

i .
Step 3 Let ξ

nj

i , j = 1, · · · , Ni (j = Ni+1, · · · , Ni+
Ñi) denote the set of values of the decision variable
that cross (are below) the threshold h at time instant
i, and let χ

nj
nom(i) =

(
(χnj

i )′ (χ̂nj

i )′ (enj

i )′
)′ be the

associated state of the concatenated dynamical sys-
tem (4), (5), (8), (13), then the mean and variance of
the distribution of the state that yields a false alarm
at time instant i is evaluated as




mfa
nom(i) =

1

Ni

Ni∑
j=1

χ
nj
nom(i)

Qfa
nom(i) =

1

Ni − 1

Ni∑
j=1

(χ
nj
nom(i)−mfa

nom(i))?

(19)

where the index ”nom” indicates that the nominal
control law is used, and the symbol ? indicates the
transpose element, i.e., X? = XX ′, and X is any
given matrix.
The mean and variance of the distribution of the state
that yields no false alarm at time instant i, mnfa

nom(i)
and Qnfa

nom(i) are estimated in a similar way as (19)
from the Ñi relevant trajectories.

The mean and variance of zi, upon occurrence of a
false alarm, mfa

nom,z(i) , Qfa
nom,z(i) or in the absence of

false alarm, mnfa
nom,z(i) , Qnfa

nom,z(i) are deduced from
zi = Cnomχnom(i) (20)

with Cnom =
(
C̄z + DzKC̄y 0 0

)

Once a false alarm occurs, say at time kfa, the con-
troller is automatically reconfigured, and the closed-loop
dynamics is described by equations (5), (7),(8). The mean,
mrec(i; kfa) and variance Qrec(i; kfa) of the state of the
reconfigured system, χrec(i) =

(
χ′i χ̂′i

)′ can be computed
from the following equations.




mrec(i + 1; kfa) = Arecmrec(i; kfa)
Qrec(i + 1; kfa) = ArecQrec(i; kfa)A′rec

+Brec

(
Rw 0
0 Rν

)
B′rec

(21)

with initial conditions determined from (19) as

mrec(kfa; kfa) =
(
I 0 0
0 I 0

)
mfa

nom(kfa)

and

Qrec(kfa; kfa) =
(
I 0 0
0 I 0

)
Qfa

nom(kfa)
(
I 0 0
0 I 0

)′

where

Arec =

[
(Āχ + B̄uK2MC̄y) B̄uK1M1C̄y

(B̄uK2MC̄y +Krf MC̄y) (Āχ −Krf MC̄y + B̄uK1M1C̄y)

]

Brec =

[
Ēw Ēη

0 0

]

characterize the closed-loop system.
The resulting mean and variance of z are deduced from{

mrec,z(i; kfa) = Crecmrec(i; kfa)
Qrec,z(i; kfa) = CrecQrec(i; kfa)C′rec

(22)

with Crec =
[
(C̄z + DzK2MC̄y Dz) K1MC̄y

]
.

3.2 Contribution of the faulty trajectory

Let us assume that a fault occurs at time k0, in the
interval [1,H]. Considering the same N trajectories as in
the fault free case, there will be

∑k0−1
`=1 N` trajectories

for which a false alarm will arise in the time interval
[1, k0−1]. Since reconfiguration will take place before fault
occurrence, the contribution of these trajectories to the
cost function can be computed using the same approach
as above. For the remaining Ñk0−1 trajectories, the fault
occurring at time k0 is possibly detected at some time
kfd > k0. A reconfiguration then takes place at time kfd.
Small faults are not necessarily detected, which can be
associated to a situation where kfd > H. The detection
delay is a stochastic variable which distribution can only
be estimated by Monte Carlo simulation in the present
context. However, in the study of on-line change detection
algorithms, one often characterizes performance in terms
of the average run length (ARL) function Basseville et al.
[1993], namely the average time the algorithm runs before
an alarm is generated (in the fault free case) and the mean
time for detection (in the faulty case). The ARL depends
upon the initial value of the decision function and the fault
magnitude. It has been studied for the EWMA chart and
the CUSUM algorithm in Wieringa [1999] and Basseville
et al. [1993], and its computation is quite involved. In this
paper, we resort to a simpler decision method for which the
ARL function upon occurrence of fault with magnitude β
will be estimated from the mean of the decision function.
Letting ÂRLh(β) denote the estimated ARL function for
a decision system with threshold h, one can write:

ÂRLh(β) = E(kfd − k0) ' km
fd − k0 (23)

where km
fd is the time instant at which the mean of the

decision function becomes greater than the threshold,
namely:

km
fd = min

k
(E(R′kQ

−1Rk) > h) (24)

Here E(R′kQ
−1Rk) is computed from:

E(R′kQ
−1Rk) = tr

(
ΣR(k)Q−1

)
+ m′

R(k)Q−1mR(k)
where mR(k) and ΣR(k) are respectively the mean and
the variance of Rk that can be computed as detailed in
Aberkane et al. [2008].
For a fault at time k0 with magnitude β, we shall ap-
proximate the trajectory zk, k > k0 by assuming that the
system operates with the faulty sensor and the nominal
control law from time k0 to time k0 + ÂRLh(β) − 1, and
that reconfiguration takes place at time k0 + ÂRLh(β).
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In the time interval [k0, k0+ÂRLh(β)−1], the contribution
E(z′kzk) associated to such trajectories, for a given fault
magnitude β, takes the form:

E(z′kzk) = tr
(
Qnom,β(k; k0)CnomC′nom

+Cnommnom,β(k; k0)mnom,β(k; k0)′C′nom

)
(25)

where mnom,β(k; k0) and Qnom,β(k; k0) are computed
from




mnom,β(k + 1; k0) = Anommnom,β(k; k0) + Fnomfk

Qnom(k + 1; k0) = AnomQnom(k; k0)A′nom

+Bnom

(
Rw 0

0 Rη

)
B′nom

k0 − 1 ≤ k ≤ k0 + ÂRLh(β)− 1

(26)

with

Anom =

[
(Āχ + B̄uKC̄y) 0

(B̄uKC̄y +KfrMC̄y) (Āχ −KfrMC̄y)

]
,

Bnom =

[
Ēw Ēη

0 0

]
, Cnom =

[
(C̄z + DzKC̄y) 0

]
,

Fnom =

[
B̄uKEf

B̄uKEf +KfrMEf

]
(27)

and with initial conditions mnom,β(k0 − 1; k0) =(
I 0 0
0 I 0

)
mnfa

nom(k0 − 1) and Qnom(k0 − 1; k0) =
(
I 0 0
0 I 0

)
Qnfa

nom(k0 − 1)
(
I 0 0
0 I 0

)′
. At time kr(β) = k0 +

ÂRLh(β), the reconfiguration takes place, and the mean
and variance of (χ′k χ̂′k), for k ≥ kr(β) are then given by
equations of the same form as (21), namely:




mrec(k + 1; kr(β)) = Arecmrec(k; kr(β))

Qrec(k + 1; kr(β)) = ArecQrec(k; kr(β))A′rec

+Brec

(
Rw 0

0 Rν

)
B′rec

(28)

with the following initial conditions mrec(kr(β); kr(β)) =
mnom,β(kr(β); k0), Qrec(kr(β), kr(β)) =
Qnom,β(kr(β); k0). The mean and variance of z in
the presence of a fault for the relevant values of k,
mnom,β,z(k; k0), Qnom,z(k; k0), and mrec,z(k; kr(β)),
Qrec,z(k; kr(β)) are deduced in a straightforward way.

3.3 Global expression for cost J

This expression is obtained by grouping the above results
and accounting for the pmf of the fault occurrence time
and the pdf of the fault magnitude β. One actually
computes JM = E

(∑H
k=0 zkz′k

)
. Then J = tr(JM ).

JM =
pnf

N

H∑
k=1

[(
Nk(mfa

nom,z(k) ? +Qfa
nom,z(k))

)

+Ñk

(
mnfa

nom,z(k) ? +Qnfa
nom,z(k)′

)
+

k−1∑
i=1

Ni (mrec,z(k; i) ? +Qrec,z(k; i))

]

+

H∑
k0=1

pk0

N

[
k0−1∑
i=1

Ni

(
i−1∑
k=1

(mnfa
nom,z(k) ? +Qnfa

nom,z(k))

+

H∑
k=i

(mrec,z(k; i) ? +Qrec,z(k; i))

)

+ Ñk0−1

(
k0−1∑
k=1

(mnfa
nom,z(k) ? +Qnfa

nom,z(k))+

∫
pβ(β)

(
kr(β)−1∑

k=k0

(mnom,β,z(k; k0) ? +Qnom,z(k; k0))

+

H∑
k=kr(β)

(mrec,z(k; kr(β)) ? +Qrec,z(k; kr(β)))


 dβ





 (29)

The first three lines correspond to the contribution of the
fault free trajectories. The fourth and fifth lines account
for the faulty case in which a reconfiguration takes place
before the fault occurrence time k0, due to a false alarm.
Finally the remaining lines account for the faulty situation
in the absence of false alarm. From a computational point
of view the integral over β will have to be evaluated by
Monte Carlo simulation by considering a set of values βi,
i = 1, · · · , Nβ drawn from the distribution described by
pβ(β).

3.4 Algorithm for computing J

To solve the optimization problem (18), an appropriate
numerical optimization software should be used, based on
the computation of the cost function for a given value of h.
Questions regarding properties of the cost, like convexity,
are open at this stage. The computations of (29) can be
performed using the following 6 step procedure.

1. By Monte Carlo simulation, determine
mfa

nom,z(k), Qfa
nom,z(k),mnfa

nom,z(k), Qnfa
nom,z(k), k =

1, · · · ,H and the associated values for the state of
the augmented nominal system (see (19), (20)).

2. Solve (21), with initial conditions from (19) and
deduce from (22) all the terms of the third line in
JM .

3. Sample Nβ values from the probability density func-
tion pβ(β). Solve equation (26) as well as the equa-
tions for the mean and variance of r (deduced from
(13) and (15)) for fault magnitude β = 1; by linearity
the values of mnom,β(k; k0) and mr(k; k0) for an ar-
bitrary value of β can be obtained directly from the
case β = 1.

4. For each βi, compute ÂRLh(βi) by (23), (24) on the
basis of step 3.

5. Solve (28) for k = kr(βi) up to H, for each βi, and
deduce mrec,z(k; kr(βi)), Qrec,z(k; kr(βi))

6. Compute JM by introducing the results of steps 1 to
5 into (29).

A significant simplification in the computation of the cost
function can be obtained if it is assumed that the transient
due to the initialization of the process equipped with its
controller and supervision system has vanished, so that
the state of system (6), (8), (12) is a weakly stationary
random process. In this situation, mfa

nom,z(k), Qfa
nom,z(k),

mnfa
nom,z(k), Qnfa

nom,z(k) are identical for all k and Nk = Nfa,
a constant independent of k, while Ñk = N − kNfa .
Besides mrec,z(k; i) and Qrec,z(k; i) only depend on the
difference (k − i), and similarly for mnom,β,z(k; i) and
Qnom,β,z(k; i) (see Aberkane et al. [2008]).
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4. NUMERICAL EXAMPLE

In this section, the proposed performance based thresh-
old selection scheme will be illustrated using a winding
machine example. The winding process is composed of
a plastic web and three reels, respectively called the un-
winding, pacer and rewinding reels. Each reel is coupled
with a DC-motor via gear reduction. The angular speed of
each reel and both tensions between the reels are measured
by tachometers and tension meters. Each motor is driven
by a local controller. The first control loop adjusts the
motor current, while the second loop controls the angular
speed. This system is linearized around the operating point
U0 = [−0.15 0.6 0.15 ], X0 = [ 0.6 0.5 0.4 ] and we obtain
the following state space representation

Ax =

[
0.4126 0 −0.0196
0.0333 0.5207 −0.0413
−0.0101 0 0.2571

]
, Bu =

[ −1.7734 0.0696 0.0734
0.0928 0.4658 0.1051
−0.0424 −0.093 2.0752

]

Bw =

[
0.5 0 0
0 0.5 0
0 0 0.5

]
; Cy = I; Cz =

[ I
0

]
; Dz =

[
0
I

]
.

which corresponds to a sampled data model at sampling
period Ts = 0.1s. The covariance matrices of the noise
signals are given as follows:

Rw = 0.04× I, Rη = 0.01× I
The state vector xt ∈ R3 is composed of the unwinding
tension, the angular speed and the winding tension, respec-
tively. The command vector is composed by the current set
point of the inner loop for the unwinding reel, the voltage
command of the pacer motor and the current set point the
inner loop for the winding reel.
For illustration purpose, we will consider the linear
quadratic performance index given by:

J =
100∑

k=0

E(z′kzk)

We assume that sensor 1 is subject to faults with a
profile given as f(k) = β {min(α(k − k0), fmax)}, where
fmax = 1, α = 0.5 and β is an uniformly distributed
random variable in [0, 1]. The fault time occurrence k0 is
also assumed to be uniformly distributed random variable.
The residual vector Rk is obtained by stacking up (2 + 1)
residual samples, i.e. l = 2.
Figure 1 represents the evolution of the performance index
J with respect to threshold h. This figure was obtained
using the algorithm of section 3.4 with N = 10000. It can
be seen that the optimal threshold, corresponding to the
minimal value of J is given by hopt = arg minJ = 13.
This value is significantly lower than the threshold of a
standard χ2 test designed for a 95% or 99% false alarm
probability which would respectively correspond to h =
16.9 or 21.7.

5. CONCLUSION

The optimization of the threshold of a fault detection
system, on the basis of the closed-loop performance of the
FTC system in which it is included, is considered. A simple
situation where a sensor fault is accommodated by intro-
duction of a software sensor in place of the hardware sensor
is considered. The closed loop performance is computed
by resorting to a combination of Monte Carlo simulation
and standard tools from stochastic system theory in order
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Figure 1. Performance index J in function of h

to limit the computational load. The proposed algorithm
is illustrated on a fault tolerant controller for a winding
machine.
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